code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations import math def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] ): '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : int = [90, 23, 6, 33, 21, 65, 123, 3_4423] UpperCAmelCase__ : Union[str, Any] = math.log(len(__SCREAMING_SNAKE_CASE ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
704
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=0.6 , __UpperCamelCase=None , )-> List[Any]: UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : int = mask_ratio UpperCAmelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self )-> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = ViTMAEModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _A = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} _A = False _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Any = ViTMAEModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> Dict: pass def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Dict: # make masks reproducible np.random.seed(2 ) UpperCAmelCase__ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : str = torch.from_numpy(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Optional[Any] = pt_noise super().check_pt_tf_models(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = outputs[0].cpu().numpy() UpperCAmelCase__ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model_class.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) # Make sure we don't have nans UpperCAmelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> List[str]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Any: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self )-> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self )-> Union[str, Any]: pass @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ViTMAEModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> List[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self )-> Optional[int]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase__ : Any = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCamelCase ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : List[Any] = ViTMAEConfig() UpperCAmelCase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**__UpperCamelCase , noise=torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ) ) # verify the logits UpperCAmelCase__ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCamelCase ) , atol=1E-4 ) )
660
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig A__ : List[Any] = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } A__ : str = logging.get_logger(__name__) class _lowercase ( _UpperCAmelCase ): '''simple docstring''' _A = '''maskformer''' _A = {'''hidden_size''': '''mask_feature_size'''} _A = ['''resnet''', '''swin'''] _A = ['''detr'''] def __init__( self , __UpperCamelCase = 2_56 , __UpperCamelCase = 2_56 , __UpperCamelCase = 0.1 , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0.02 , __UpperCamelCase = 1.0 , __UpperCamelCase = 1.0 , __UpperCamelCase = 1.0 , __UpperCamelCase = 20.0 , __UpperCamelCase = None , **__UpperCamelCase , )-> List[str]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase__ : int = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(A_ , A_ ): UpperCAmelCase__ : Optional[int] = backbone_config.pop("model_type" ) UpperCAmelCase__ : Tuple = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : List[str] = config_class.from_dict(A_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase__ : Tuple = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase__ : int = ( decoder_config.pop("model_type" ) if isinstance(A_ , A_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(A_ , A_ ): UpperCAmelCase__ : List[Any] = CONFIG_MAPPING[decoder_type] UpperCAmelCase__ : Union[str, Any] = config_class.from_dict(A_ ) UpperCAmelCase__ : Union[str, Any] = backbone_config UpperCAmelCase__ : Union[str, Any] = decoder_config # main feature dimension for the model UpperCAmelCase__ : Optional[Any] = fpn_feature_size UpperCAmelCase__ : Union[str, Any] = mask_feature_size # initializer UpperCAmelCase__ : List[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std # Hungarian matcher && loss UpperCAmelCase__ : Dict = cross_entropy_weight UpperCAmelCase__ : Union[str, Any] = dice_weight UpperCAmelCase__ : Union[str, Any] = mask_weight UpperCAmelCase__ : str = use_auxiliary_loss UpperCAmelCase__ : int = no_object_weight UpperCAmelCase__ : Dict = output_auxiliary_logits UpperCAmelCase__ : Optional[Any] = self.decoder_config.encoder_attention_heads UpperCAmelCase__ : List[Any] = self.decoder_config.num_hidden_layers super().__init__(**A_ ) @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase )-> Union[str, Any]: return cls( backbone_config=A_ , decoder_config=A_ , **A_ , ) def lowerCAmelCase__ ( self )-> Dict[str, any]: UpperCAmelCase__ : Dict = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : Optional[int] = self.backbone_config.to_dict() UpperCAmelCase__ : Dict = self.decoder_config.to_dict() UpperCAmelCase__ : Tuple = self.__class__.model_type return output
705
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _lowercase : '''simple docstring''' _A = 42 # setable values _A = 42 _A = 42 _A = None @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: return cls(common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase ) @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A = [e.name for e in FlaxKarrasDiffusionSchedulers] _A = 42 @property def lowerCAmelCase__ ( self )-> Optional[int]: return True @register_to_config def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = 0.0001 , __UpperCamelCase = 0.02 , __UpperCamelCase = "linear" , __UpperCamelCase = None , __UpperCamelCase = "fixed_small" , __UpperCamelCase = True , __UpperCamelCase = "epsilon" , __UpperCamelCase = jnp.floataa , )-> List[str]: UpperCAmelCase__ : int = dtype def lowerCAmelCase__ ( self , __UpperCamelCase = None )-> DDPMSchedulerState: if common is None: UpperCAmelCase__ : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> jnp.ndarray: return sample def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = () )-> DDPMSchedulerState: UpperCAmelCase__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Optional[int] = (jnp.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : Dict = jnp.clip(__UpperCamelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Tuple = jnp.log(jnp.clip(__UpperCamelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] UpperCAmelCase__ : Optional[int] = (predicted_variance + 1) / 2 UpperCAmelCase__ : Any = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase__ : List[str] = timestep if key is None: UpperCAmelCase__ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = jnp.split(__UpperCamelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : Optional[Any] = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Any = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : List[Any] = jnp.clip(__UpperCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : Any = jax.random.split(__UpperCamelCase , num=1 ) UpperCAmelCase__ : int = jax.random.normal(__UpperCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__UpperCamelCase , __UpperCamelCase , predicted_variance=__UpperCamelCase ) ** 0.5) * noise UpperCAmelCase__ : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase , state=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return add_noise_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return get_velocity_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __len__( self )-> Tuple: return self.config.num_train_timesteps
660
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[str] = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : List[Any] = tokenizer("Hello there" , return_tensors="np" ).input_ids UpperCAmelCase__ : str = tokenizer("Hi I am" , return_tensors="np" ).input_ids UpperCAmelCase__ : Any = shift_tokens_right(__UpperCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase__ : List[Any] = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits UpperCAmelCase__ : List[str] = optax.softmax_cross_entropy(__UpperCamelCase , onehot(__UpperCamelCase , logits.shape[-1] ) ).mean() UpperCAmelCase__ : Optional[Any] = -(labels.shape[-1] * loss.item()) UpperCAmelCase__ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
706
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel A__ : List[str] = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 48_000, "sample_size": 65_536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 48_000, "sample_size": 131_072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 16_000, "sample_size": 65_536, }, } def a__ ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' return torch.atana(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / math.pi * 2 def a__ ( lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = torch.sin(t * math.pi / 2 ) ** 2 UpperCAmelCase__ : int = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' pass class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> Optional[Any]: super().__init__() UpperCAmelCase__ : List[Any] = DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) UpperCAmelCase__ : Any = deepcopy(self.diffusion ) UpperCAmelCase__ : Optional[int] = torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def a__ ( lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = MODELS_MAP[model_name]["url"] os.system(F"wget {url} ./" ) return F"./{model_name}.ckpt" A__ : Tuple = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } A__ : str = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } A__ : int = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } A__ : List[Any] = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } A__ : Any = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } A__ : List[str] = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def a__ ( lowerCAmelCase : Union[str, Any] ): '''simple docstring''' if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def a__ ( lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(_SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return name.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif name.startswith(_SCREAMING_SNAKE_CASE ): return [name.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for v in value] raise ValueError(F"Attn error with {name}" ) def a__ ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=13 ): '''simple docstring''' UpperCAmelCase__ : str = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) UpperCAmelCase__ : Optional[Any] = 0 if string.startswith("net.3." ): depth += 1 UpperCAmelCase__ : Union[str, Any] = string[6:] elif string.startswith("net." ): UpperCAmelCase__ : List[Any] = string[4:] while string.startswith("main.7." ): depth += 1 UpperCAmelCase__ : Any = string[7:] if string.startswith("main." ): UpperCAmelCase__ : Optional[Any] = string[5:] # mid block if string[:2].isdigit(): UpperCAmelCase__ : Optional[int] = string[:2] UpperCAmelCase__ : str = string[2:] else: UpperCAmelCase__ : int = string[0] UpperCAmelCase__ : Dict = string[1:] if depth == max_depth: UpperCAmelCase__ : List[Any] = MID_NUM_TO_LAYER[layer_num] UpperCAmelCase__ : List[str] = "mid_block" elif depth > 0 and int(_SCREAMING_SNAKE_CASE ) < 7: UpperCAmelCase__ : str = DOWN_NUM_TO_LAYER[layer_num] UpperCAmelCase__ : List[str] = F"down_blocks.{depth}" elif depth > 0 and int(_SCREAMING_SNAKE_CASE ) > 7: UpperCAmelCase__ : Union[str, Any] = UP_NUM_TO_LAYER[layer_num] UpperCAmelCase__ : Union[str, Any] = F"up_blocks.{max_depth - depth - 1}" elif depth == 0: UpperCAmelCase__ : Optional[Any] = DEPTH_0_TO_LAYER[layer_num] UpperCAmelCase__ : int = F"up_blocks.{max_depth - 1}" if int(_SCREAMING_SNAKE_CASE ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F"Naming error with {input_string} and string_left: {string_left}." ) UpperCAmelCase__ : Union[str, Any] = string_left[1:] if "resnets" in new_layer: UpperCAmelCase__ : Optional[Any] = convert_resconv_naming(_SCREAMING_SNAKE_CASE ) elif "attentions" in new_layer: UpperCAmelCase__ : Dict = convert_attn_naming(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Any = new_string_left if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ : List[Any] = prefix + "." + new_layer + "." + string_left else: UpperCAmelCase__ : Optional[Any] = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue UpperCAmelCase__ : Any = rename(_SCREAMING_SNAKE_CASE ) # check if we need to transform from Conv => Linear for attention if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ : Union[str, Any] = transform_conv_attns(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ : Dict = v return new_state_dict def a__ ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 1: if len(v.shape ) == 3: # weight UpperCAmelCase__ : Any = v[:, :, 0] else: # bias UpperCAmelCase__ : Any = v else: # qkv matrices UpperCAmelCase__ : Any = v.shape[0] UpperCAmelCase__ : Tuple = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCAmelCase__ : Optional[int] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCAmelCase__ : str = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def a__ ( lowerCAmelCase : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase__ : Optional[Any] = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"Make sure to provide one of the official model names {MODELS_MAP.keys()}" UpperCAmelCase__ : str = download(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : List[Any] = MODELS_MAP[model_name]["sample_rate"] UpperCAmelCase__ : Dict = MODELS_MAP[model_name]["sample_size"] UpperCAmelCase__ : int = Object() UpperCAmelCase__ : List[Any] = sample_size UpperCAmelCase__ : List[str] = sample_rate UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = UNetaDModel(sample_size=_SCREAMING_SNAKE_CASE , sample_rate=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Tuple = diffusers_model.state_dict() UpperCAmelCase__ : Dict = DiffusionUncond(_SCREAMING_SNAKE_CASE ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_SCREAMING_SNAKE_CASE )["state_dict"] ) UpperCAmelCase__ : Tuple = orig_model.diffusion_ema.eval() UpperCAmelCase__ : Optional[int] = orig_model.state_dict() UpperCAmelCase__ : Optional[Any] = rename_orig_weights(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCAmelCase__ : Union[str, Any] = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_SCREAMING_SNAKE_CASE ) == 0, F"Problem with {renamed_minus_diffusers}" assert all(k.endswith("kernel" ) for k in list(_SCREAMING_SNAKE_CASE ) ), F"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": UpperCAmelCase__ : Optional[int] = value.squeeze() UpperCAmelCase__ : str = value diffusers_model.load_state_dict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : List[Any] = 100 UpperCAmelCase__ : List[str] = 33 UpperCAmelCase__ : Any = IPNDMScheduler(num_train_timesteps=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Dict = torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[int] = torch.randn([1, 2, config.sample_size] , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[int] = torch.linspace(1 , 0 , steps + 1 , device=_SCREAMING_SNAKE_CASE )[:-1] UpperCAmelCase__ : Dict = get_crash_schedule(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[Any] = DanceDiffusionPipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : str = torch.manual_seed(33 ) UpperCAmelCase__ : str = pipe(num_inference_steps=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).audios UpperCAmelCase__ : Optional[int] = sampling.iplms_sample(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {} ) UpperCAmelCase__ : Any = generated.clamp(-1 , 1 ) UpperCAmelCase__ : List[str] = (generated - audio).abs().sum() UpperCAmelCase__ : Optional[int] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , _SCREAMING_SNAKE_CASE ) print("Diff max" , _SCREAMING_SNAKE_CASE ) assert diff_max < 1E-3, F"Diff max: {diff_max} is too much :-/" print(F"Conversion for {model_name} successful!" ) if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") A__ : str = parser.parse_args() main(args)
707
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : Dict = logging.get_logger(__name__) def a__ ( lowerCAmelCase : Optional[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase__ : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase__ : int = get_size_dict(__UpperCamelCase , param_name="crop_size" ) UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : List[Any] = do_center_crop UpperCAmelCase__ : str = crop_size UpperCAmelCase__ : Optional[int] = resample UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = offset UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(__UpperCamelCase , size["shortest_edge"] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: UpperCAmelCase__ : Any = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = image.astype(np.floataa ) if offset: UpperCAmelCase__ : Tuple = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = to_numpy_array(__UpperCamelCase ) if do_resize: UpperCAmelCase__ : Union[str, Any] = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: UpperCAmelCase__ : int = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: UpperCAmelCase__ : List[str] = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: UpperCAmelCase__ : List[Any] = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) UpperCAmelCase__ : Dict = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> PIL.Image.Image: UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Optional[int] = offset if offset is not None else self.offset UpperCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Tuple = get_size_dict(__UpperCamelCase , param_name="crop_size" ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ : List[str] = make_batched(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] UpperCAmelCase__ : Dict = {"pixel_values": videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
660
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _lowercase ( A_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Tuple = dataset UpperCAmelCase__ : Optional[int] = process UpperCAmelCase__ : Optional[int] = params def __len__( self )-> str: return len(self.dataset ) def __getitem__( self , __UpperCamelCase )-> Tuple: UpperCAmelCase__ : Dict = self.dataset[i] UpperCAmelCase__ : Tuple = self.process(__UpperCamelCase , **self.params ) return processed class _lowercase ( A_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None )-> List[str]: UpperCAmelCase__ : List[str] = loader UpperCAmelCase__ : Tuple = infer UpperCAmelCase__ : str = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Tuple = loader_batch_size # Internal bookkeeping UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Optional[Any] = None def __len__( self )-> List[Any]: return len(self.loader ) def __iter__( self )-> int: UpperCAmelCase__ : Tuple = iter(self.loader ) return self def lowerCAmelCase__ ( self )-> List[str]: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCAmelCase__ : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCAmelCase__ : Any = {} for k, element in self._loader_batch_data.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): # Convert ModelOutput to tuple first UpperCAmelCase__ : Any = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : Any = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__UpperCamelCase , __UpperCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCAmelCase__ : List[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCAmelCase__ : Optional[int] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCAmelCase__ : List[Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : List[str] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCAmelCase__ : str = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCAmelCase__ : Optional[int] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCAmelCase__ : Union[str, Any] = self._loader_batch_data.__class__(__UpperCamelCase ) self._loader_batch_index += 1 return result def lowerCAmelCase__ ( self )-> str: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCAmelCase__ : Any = next(self.iterator ) UpperCAmelCase__ : Optional[int] = self.infer(__UpperCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__UpperCamelCase , torch.Tensor ): UpperCAmelCase__ : Optional[int] = processed else: UpperCAmelCase__ : Union[str, Any] = list(processed.keys() )[0] UpperCAmelCase__ : List[Any] = processed[key] if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Any = len(__UpperCamelCase ) else: UpperCAmelCase__ : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : Dict = observed_batch_size # Setting internal index to unwrap the batch UpperCAmelCase__ : List[str] = processed UpperCAmelCase__ : List[Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _lowercase ( A_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None )-> Optional[Any]: super().__init__(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __iter__( self )-> Dict: UpperCAmelCase__ : Optional[Any] = iter(self.loader ) UpperCAmelCase__ : Dict = None return self def lowerCAmelCase__ ( self )-> int: if self.subiterator is None: UpperCAmelCase__ : List[Any] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCAmelCase__ : Optional[int] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCAmelCase__ : List[Any] = self.infer(next(self.iterator ) , **self.params ) UpperCAmelCase__ : str = next(self.subiterator ) return processed class _lowercase ( A_ ): '''simple docstring''' def __iter__( self )-> Any: UpperCAmelCase__ : int = iter(self.loader ) return self def lowerCAmelCase__ ( self )-> Union[str, Any]: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Union[str, Any] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : Dict = self.loader_batch_item() UpperCAmelCase__ : Union[str, Any] = item.pop("is_last" ) accumulator.append(__UpperCamelCase ) if is_last: return accumulator while not is_last: UpperCAmelCase__ : int = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__UpperCamelCase , torch.Tensor ): UpperCAmelCase__ : List[Any] = processed else: UpperCAmelCase__ : Tuple = list(processed.keys() )[0] UpperCAmelCase__ : List[Any] = processed[key] if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : List[Any] = len(__UpperCamelCase ) else: UpperCAmelCase__ : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCAmelCase__ : Union[str, Any] = observed_batch_size UpperCAmelCase__ : List[Any] = processed UpperCAmelCase__ : Tuple = 0 while self._loader_batch_index < self.loader_batch_size: UpperCAmelCase__ : Tuple = self.loader_batch_item() UpperCAmelCase__ : Dict = item.pop("is_last" ) accumulator.append(__UpperCamelCase ) if is_last: return accumulator else: UpperCAmelCase__ : Any = processed UpperCAmelCase__ : Optional[Any] = item.pop("is_last" ) accumulator.append(__UpperCamelCase ) return accumulator class _lowercase ( A_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase )-> str: UpperCAmelCase__ : Any = dataset UpperCAmelCase__ : Optional[Any] = key def __len__( self )-> Dict: return len(self.dataset ) def __getitem__( self , __UpperCamelCase )-> Tuple: return self.dataset[i][self.key] class _lowercase ( A_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCAmelCase__ : int = dataset UpperCAmelCase__ : Dict = keya UpperCAmelCase__ : List[str] = keya def __len__( self )-> Union[str, Any]: return len(self.dataset ) def __getitem__( self , __UpperCamelCase )-> Optional[Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
708
"""simple docstring""" def a__ ( lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(lowerCAmelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
"""simple docstring""" from collections.abc import Callable def a__ ( lowerCAmelCase : Callable[[float], float] , lowerCAmelCase : float , lowerCAmelCase : float ): '''simple docstring''' UpperCAmelCase__ : float = a UpperCAmelCase__ : float = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: UpperCAmelCase__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: UpperCAmelCase__ : Optional[int] = mid else: UpperCAmelCase__ : Any = mid UpperCAmelCase__ : Any = start + (end - start) / 2.0 return mid def a__ ( lowerCAmelCase : float ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
709
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A__ : Optional[Any] = logging.get_logger(__name__) def a__ ( lowerCAmelCase : bool , lowerCAmelCase : bool ): '''simple docstring''' def run_func(lowerCAmelCase : Dict ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a__ ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Dict = random.Random() UpperCAmelCase__ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = 42 _A = "TensorFlow" @property def lowerCAmelCase__ ( self )-> Optional[int]: return tf.__version__ def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: # initialize GPU on separate process UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Union[str, Any] = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: UpperCAmelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : List[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Any = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Optional[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Optional[int] = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : str = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : Any = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Dict = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : Any = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : int = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Optional[Any] = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Any = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : int = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : int = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : Union[str, Any] = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Dict = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Union[str, Any] = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Any = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients UpperCAmelCase__ : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase__ ( self , __UpperCamelCase )-> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase__ : Optional[Any] = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=10 , ) return min(__UpperCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase__ : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase__ : Optional[int] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) UpperCAmelCase__ : str = meminfo.used UpperCAmelCase__ : int = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase__ : Any = None else: UpperCAmelCase__ : List[Any] = measure_peak_memory_cpu(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase__ : Optional[Any] = stop_memory_tracing(__UpperCamelCase ) if memory is None: UpperCAmelCase__ : Tuple = summary.total else: UpperCAmelCase__ : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
660
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A__ : Dict = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def a__ ( lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Any=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , lowerCAmelCase : Union[str, Any]=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase__ : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase__ : Union[str, Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase__ : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase__ : List[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=0.02 , )-> Optional[Any]: UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : List[str] = seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : str = eos_token_id UpperCAmelCase__ : Any = pad_token_id UpperCAmelCase__ : Any = bos_token_id UpperCAmelCase__ : Optional[int] = initializer_range def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase__ : int = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase__ : Optional[int] = shift_tokens_right(lowerCamelCase_ , 1 , 2 ) UpperCAmelCase__ : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase_ , ) UpperCAmelCase__ : Optional[int] = prepare_blenderbot_inputs_dict(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return config, inputs_dict def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCAmelCase__ : Optional[int] = 20 UpperCAmelCase__ : Optional[Any] = model_class_name(lowerCamelCase_ ) UpperCAmelCase__ : Any = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase__ , UpperCAmelCase__ : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase__ : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCAmelCase__ : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) UpperCAmelCase__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase__ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase_ , ) UpperCAmelCase__ : Union[str, Any] = model.decode(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCAmelCase__ : str = 20 UpperCAmelCase__ : List[str] = model_class_name(lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = model.encode(inputs_dict["input_ids"] ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCAmelCase__ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase__ : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase__ : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) UpperCAmelCase__ : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCAmelCase__ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase_ , decoder_position_ids=lowerCamelCase_ , ) UpperCAmelCase__ : str = model.decode(lowerCamelCase_ , lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ ) UpperCAmelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' _A = 99 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Optional[int] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase__ : Dict = input_ids.shape[0] UpperCAmelCase__ : int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self._get_config_and_data() UpperCAmelCase__ : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase_ ) UpperCAmelCase__ : str = lm_model(input_ids=lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCamelCase_ ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : List[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase__ : List[str] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase_ ) UpperCAmelCase__ : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase__ : Any = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase__ : Union[str, Any] = lm_model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ) UpperCAmelCase__ : int = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCamelCase_ ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : Any = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase__ : str = shift_tokens_right(lowerCamelCase_ , 1 , 2 ) UpperCAmelCase__ : Dict = np.equal(lowerCamelCase_ , 1 ).astype(np.floataa ).sum() UpperCAmelCase__ : Tuple = np.equal(lowerCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowercase ( a__ , unittest.TestCase , a__ ): '''simple docstring''' _A = True _A = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _A = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : int = FlaxBlenderbotSmallModelTester(self ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Tuple = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase__ : str = model_class(lowerCamelCase_ ) @jax.jit def encode_jitted(__UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): return model.encode(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase__ : Tuple = encode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase__ : List[str] = encode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) UpperCAmelCase__ : int = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCAmelCase__ : str = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): return model.decode( decoder_input_ids=lowerCamelCase_ , decoder_attention_mask=lowerCamelCase_ , encoder_outputs=lowerCamelCase_ , ) with self.subTest("JIT Enabled" ): UpperCAmelCase__ : Optional[Any] = decode_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase__ : Optional[int] = decode_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: for model_class_name in self.all_model_classes: UpperCAmelCase__ : Optional[int] = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase__ : Any = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase__ : List[Any] = model(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
710
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule A__ : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
660
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def a__ ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: UpperCAmelCase__ : Tuple = ksize + 1 UpperCAmelCase__ : List[str] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(lowerCAmelCase ): for x in range(lowerCAmelCase ): # distance from center UpperCAmelCase__ : Dict = x - ksize // 2 UpperCAmelCase__ : str = y - ksize // 2 # degree to radiant UpperCAmelCase__ : Optional[Any] = theta / 180 * np.pi UpperCAmelCase__ : str = np.cos(_theta ) UpperCAmelCase__ : List[str] = np.sin(_theta ) # get kernel x UpperCAmelCase__ : Dict = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase__ : Any = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase__ : List[Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A__ : Union[str, Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value A__ : str = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A__ : str = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A__ : Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A__ : Any = out / out.max() * 255 A__ : int = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
711
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCamelCase = 7_68 , )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , )-> Any: UpperCAmelCase__ : Dict = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) UpperCAmelCase__ : Any = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Any = (embeds * self.std) + self.mean return embeds
660
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=None , )-> Optional[int]: UpperCAmelCase__ : int = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Union[str, Any] = patch_size UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Optional[int] = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[Any] = num_patches + 1 def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : List[Any] = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self )-> Any: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Any: UpperCAmelCase__ : List[Any] = TFViTModel(config=lowerCAmelCase_ ) UpperCAmelCase__ : str = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase__ : Optional[Any] = self.image_size // 2 UpperCAmelCase__ : Tuple = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase__ : Union[str, Any] = model(lowerCAmelCase_ , interpolate_pos_encoding=lowerCAmelCase_ , training=lowerCAmelCase_ ) UpperCAmelCase__ : Tuple = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Any: UpperCAmelCase__ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase__ : int = TFViTForImageClassification(lowerCAmelCase_ ) UpperCAmelCase__ : Any = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase__ : Tuple = self.image_size // 2 UpperCAmelCase__ : Any = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase__ : str = model(lowerCAmelCase_ , interpolate_pos_encoding=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Optional[int] = 1 UpperCAmelCase__ : int = TFViTForImageClassification(lowerCAmelCase_ ) UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[int] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = config_and_inputs UpperCAmelCase__ : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () _A = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[Any] = TFViTModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> Dict: pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> str: pass def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(lowerCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , tf.keras.layers.Layer ) ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(lowerCAmelCase_ ) UpperCAmelCase__ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Any = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(lowerCAmelCase_ ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> str: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Any = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="tf" ) # forward pass UpperCAmelCase__ : Tuple = model(**lowerCAmelCase_ ) # verify the logits UpperCAmelCase__ : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) UpperCAmelCase__ : Any = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 )
712
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): '''simple docstring''' # Construct model if gpta_config_file == "": UpperCAmelCase__ : Optional[int] = GPTaConfig() else: UpperCAmelCase__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
660
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase : list , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Any = [] UpperCAmelCase__ : int = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase__ : int = result + left + right return input_list def a__ ( lowerCAmelCase : list ): '''simple docstring''' if len(a_ ) <= 1: return input_list UpperCAmelCase__ : List[str] = list(a_ ) # iteration for two-way merging UpperCAmelCase__ : Optional[int] = 2 while p <= len(a_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(a_ ) , a_ ): UpperCAmelCase__ : List[str] = i UpperCAmelCase__ : int = i + p - 1 UpperCAmelCase__ : Dict = (low + high + 1) // 2 UpperCAmelCase__ : Optional[Any] = merge(a_ , a_ , a_ , a_ ) # final merge of last two parts if p * 2 >= len(a_ ): UpperCAmelCase__ : Dict = i UpperCAmelCase__ : int = merge(a_ , 0 , a_ , len(a_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": A__ : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": A__ : Any = [] else: A__ : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
713
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A__ : Optional[int] = ["""small""", """medium""", """large"""] A__ : Optional[int] = """lm_head.decoder.weight""" A__ : Dict = """lm_head.weight""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = d.pop(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) A__ : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: A__ : Tuple = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A__ : str = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
660
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _lowercase ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): '''simple docstring''' def __init__( self , __UpperCamelCase=None , **__UpperCamelCase )-> List[Any]: super().__init__(features=_A ) UpperCAmelCase__ : Any = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: import torch if isinstance(_A , _A ) and column: if all( isinstance(_A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_A ) return column def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: import torch if isinstance(_A , (str, bytes, type(_A )) ): return value elif isinstance(_A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase__ : Any = {} if isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase__ : str = {"dtype": torch.intaa} elif isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase__ : Dict = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A , PIL.Image.Image ): UpperCAmelCase__ : Optional[int] = np.asarray(_A ) return torch.tensor(_A , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: import torch # support for torch, tf, jax etc. if hasattr(_A , "__array__" ) and not isinstance(_A , torch.Tensor ): UpperCAmelCase__ : str = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: return map_nested(self._recursive_tensorize , _A , map_list=_A ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : List[Any] = self.numpy_arrow_extractor().extract_row(_A ) UpperCAmelCase__ : List[Any] = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : List[str] = self.numpy_arrow_extractor().extract_column(_A ) UpperCAmelCase__ : Dict = self.python_features_decoder.decode_column(_A , pa_table.column_names[0] ) UpperCAmelCase__ : Any = self.recursive_tensorize(_A ) UpperCAmelCase__ : List[Any] = self._consolidate(_A ) return column def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : Optional[int] = self.numpy_arrow_extractor().extract_batch(_A ) UpperCAmelCase__ : Optional[Any] = self.python_features_decoder.decode_batch(_A ) UpperCAmelCase__ : Dict = self.recursive_tensorize(_A ) for column_name in batch: UpperCAmelCase__ : Dict = self._consolidate(batch[column_name] ) return batch
714
"""simple docstring""" from math import isqrt def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def a__ ( lowerCAmelCase : int = 10**8 ): '''simple docstring''' UpperCAmelCase__ : Dict = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowercase : '''simple docstring''' @staticmethod def lowerCAmelCase__ ( *__UpperCamelCase , **__UpperCamelCase )-> Any: pass @is_pipeline_test @require_vision @require_timm @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' _A = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> str: UpperCAmelCase__ : Dict = ObjectDetectionPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> Any: UpperCAmelCase__ : str = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { "score": ANY(__UpperCamelCase ), "label": ANY(__UpperCamelCase ), "box": {"xmin": ANY(__UpperCamelCase ), "ymin": ANY(__UpperCamelCase ), "xmax": ANY(__UpperCamelCase ), "ymax": ANY(__UpperCamelCase )}, } , ) import datasets UpperCAmelCase__ : Union[str, Any] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) UpperCAmelCase__ : List[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] UpperCAmelCase__ : Optional[int] = object_detector(__UpperCamelCase , threshold=0.0 ) self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCamelCase , { "score": ANY(__UpperCamelCase ), "label": ANY(__UpperCamelCase ), "box": {"xmin": ANY(__UpperCamelCase ), "ymin": ANY(__UpperCamelCase ), "xmax": ANY(__UpperCamelCase ), "ymax": ANY(__UpperCamelCase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def lowerCAmelCase__ ( self )-> Tuple: pass @require_torch def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : int = "hf-internal-testing/tiny-detr-mobilenetsv3" UpperCAmelCase__ : Any = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Any = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) UpperCAmelCase__ : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ] , ) UpperCAmelCase__ : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 1_59, "ymin": 1_20, "xmax": 4_80, "ymax": 3_59}}, ], ] , ) @require_torch @slow def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Any = "facebook/detr-resnet-50" UpperCAmelCase__ : Optional[Any] = AutoModelForObjectDetection.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Dict = AutoFeatureExtractor.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Dict = ObjectDetectionPipeline(model=__UpperCamelCase , feature_extractor=__UpperCamelCase ) UpperCAmelCase__ : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) UpperCAmelCase__ : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Optional[Any] = "facebook/detr-resnet-50" UpperCAmelCase__ : Dict = pipeline("object-detection" , model=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) UpperCAmelCase__ : Optional[int] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 1_75, "ymax": 1_17}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 3_33, "ymin": 72, "xmax": 3_68, "ymax": 1_87}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 6_39, "ymax": 4_73}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ], ] , ) @require_torch @slow def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : List[Any] = 0.9985 UpperCAmelCase__ : Dict = "facebook/detr-resnet-50" UpperCAmelCase__ : Optional[Any] = pipeline("object-detection" , model=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__UpperCamelCase ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 3_14, "ymax": 4_70}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 3_45, "ymin": 23, "xmax": 6_40, "ymax": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Union[str, Any] = "Narsil/layoutlmv3-finetuned-funsd" UpperCAmelCase__ : Optional[Any] = 0.9993 UpperCAmelCase__ : Optional[Any] = pipeline("object-detection" , model=__UpperCamelCase , threshold=__UpperCamelCase ) UpperCAmelCase__ : List[str] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 2_94, "ymin": 2_54, "xmax": 3_43, "ymax": 2_64}}, ] , )
715
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = np.full((len(lowerCAmelCase ), sequence_length, 2) , lowerCAmelCase ) else: UpperCAmelCase__ : Optional[Any] = np.full((len(lowerCAmelCase ), sequence_length) , lowerCAmelCase ) for i, tensor in enumerate(lowerCAmelCase ): if padding_side == "right": if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Dict = tensor[:sequence_length] else: UpperCAmelCase__ : Tuple = tensor[:sequence_length] else: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase__ : int = tensor[:sequence_length] return out_tensor.tolist() def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = ord(lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCAmelCase__ : Optional[Any] = unicodedata.category(lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -100 _A = "pt" def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: import torch UpperCAmelCase__ : Optional[Any] = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase__ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase__ : str = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch UpperCAmelCase__ : Optional[Any] = torch.tensor(batch["entity_ids"] ).shape[1] UpperCAmelCase__ : int = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase__ : int = [ list(__UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) for label in labels ] else: UpperCAmelCase__ : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) + list(__UpperCamelCase ) for label in labels ] UpperCAmelCase__ : Optional[Any] = [feature["ner_tags"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , -1 , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = [feature["original_entity_spans"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , (-1, -1) , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {k: torch.tensor(__UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
660
0
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Optional[int] = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class _lowercase : '''simple docstring''' _A = 42 _A = None _A = None _A = None _A = None def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = _str_to_version_tuple(self.version_str ) def __repr__( self )-> Dict: return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def lowerCAmelCase__ ( self )-> Dict: return self.major, self.minor, self.patch def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: if isinstance(__UpperCamelCase , __UpperCamelCase ): return Version(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): return other raise TypeError(F"{other} (type {type(__UpperCamelCase )}) cannot be compared to version." ) def __eq__( self , __UpperCamelCase )-> Optional[int]: try: UpperCAmelCase__ : Any = self._validate_operand(__UpperCamelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : List[str] = self._validate_operand(__UpperCamelCase ) return self.tuple < other.tuple def __hash__( self )-> Union[str, Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : Union[str, Any] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowerCAmelCase__ ( self )-> Union[str, Any]: return self.version_str def a__ ( lowerCAmelCase : Dict ): '''simple docstring''' UpperCAmelCase__ : str = _VERSION_REG.match(_UpperCamelCase ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(_UpperCamelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def a__ ( lowerCAmelCase : Any ): '''simple docstring''' return ".".join(str(_UpperCamelCase ) for v in version_tuple )
716
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
660
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A = LongformerTokenizer _A = True _A = LongformerTokenizerFast _A = True def lowerCAmelCase__ ( self )-> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase__ : int = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) UpperCAmelCase__ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase__ : List[str] = {"unk_token": "<unk>"} UpperCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCamelCase ) ) def lowerCAmelCase__ ( self , **__UpperCamelCase )-> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowerCAmelCase__ ( self , **__UpperCamelCase )-> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: UpperCAmelCase__ : Optional[Any] = "lower newer" UpperCAmelCase__ : str = "lower newer" return input_text, output_text def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ : Optional[int] = "lower newer" UpperCAmelCase__ : int = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase__ : List[Any] = tokenizer.tokenize(__UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = tokens + [tokenizer.unk_token] UpperCAmelCase__ : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : int = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__UpperCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode("sequence builders" , add_special_tokens=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = tokenizer.encode( "sequence builders" , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) UpperCAmelCase__ : Dict = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) UpperCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) UpperCAmelCase__ : str = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = "Encode this sequence." UpperCAmelCase__ : List[Any] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments UpperCAmelCase__ : Any = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Tuple = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) UpperCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) UpperCAmelCase__ : Union[str, Any] = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) # Testing spaces after special tokens UpperCAmelCase__ : Union[str, Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase )} ) # mask token has a left space UpperCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) UpperCAmelCase__ : Dict = "Encode <mask> sequence" UpperCAmelCase__ : Optional[Any] = "Encode <mask>sequence" UpperCAmelCase__ : List[str] = tokenizer.encode(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = encoded.index(__UpperCamelCase ) UpperCAmelCase__ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[str] = tokenizer.encode(__UpperCamelCase ) UpperCAmelCase__ : int = encoded.index(__UpperCamelCase ) UpperCAmelCase__ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> int: pass def lowerCAmelCase__ ( self )-> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Dict = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase__ : Dict = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase__ : List[str] = "A, <mask> AllenNLP sentence." UpperCAmelCase__ : int = tokenizer_r.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase__ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase__ : int = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __UpperCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __UpperCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def lowerCAmelCase__ ( self )-> Dict: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase__ : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) UpperCAmelCase__ : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase__ : List[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __UpperCamelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , __UpperCamelCase ) self.assertEqual(post_processor_state["trim_offsets"] , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : List[str] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase__ : str = F"{text_of_1_token} {text_of_1_token}" UpperCAmelCase__ : Dict = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) UpperCAmelCase__ : int = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) UpperCAmelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) UpperCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) UpperCAmelCase__ : Tuple = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) UpperCAmelCase__ : Optional[int] = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase__ : str = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ) + 1, 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) UpperCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) UpperCAmelCase__ : List[Any] = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) UpperCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , )
717
"""simple docstring""" from manim import * class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : str = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[Any] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : int = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("CPU" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Union[str, Any] = Text("GPU" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Model" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): rect.set_stroke(__UpperCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase__ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCamelCase , buff=0.0 ) self.add(__UpperCamelCase ) cpu_targs.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Any = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , aligned_edge=__UpperCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : str = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase__ : Optional[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.play(Write(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = fill.copy().set_fill(__UpperCamelCase , opacity=0.7 ) target.move_to(__UpperCamelCase ) first_animations.append(GrowFromCenter(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
660
0
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self )-> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase__ : List[str] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCamelCase__ , cache_dir=lowerCamelCase__ ) UpperCAmelCase__ : List[str] = [t[-1] for t in os.walk(os.path.join(lowerCamelCase__ , os.listdir(lowerCamelCase__ )[0] , "snapshots" ) )] UpperCAmelCase__ : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCamelCase__ ) UpperCAmelCase__ : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase__ : str = jax.random.PRNGKey(0 ) UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Tuple = jax.device_count() UpperCAmelCase__ : Union[str, Any] = num_samples * [prompt] UpperCAmelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng UpperCAmelCase__ : int = replicate(lowerCamelCase__ ) UpperCAmelCase__ : Optional[int] = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ : Any = shard(lowerCamelCase__ ) UpperCAmelCase__ : Any = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1E-3 assert np.abs(np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase__ : str = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase__ ) == num_samples def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowerCamelCase__ ) UpperCAmelCase__ : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase__ : str = jax.random.PRNGKey(0 ) UpperCAmelCase__ : Any = 50 UpperCAmelCase__ : Optional[int] = jax.device_count() UpperCAmelCase__ : Any = num_samples * [prompt] UpperCAmelCase__ : str = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng UpperCAmelCase__ : int = replicate(lowerCamelCase__ ) UpperCAmelCase__ : List[Any] = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ : Any = shard(lowerCamelCase__ ) UpperCAmelCase__ : List[str] = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase__ ) UpperCAmelCase__ : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase__ : Dict = jax.random.PRNGKey(0 ) UpperCAmelCase__ : Union[str, Any] = 50 UpperCAmelCase__ : List[str] = jax.device_count() UpperCAmelCase__ : List[str] = num_samples * [prompt] UpperCAmelCase__ : List[Any] = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng UpperCAmelCase__ : str = replicate(lowerCamelCase__ ) UpperCAmelCase__ : List[Any] = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ : Optional[int] = shard(lowerCamelCase__ ) UpperCAmelCase__ : Any = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) UpperCAmelCase__ : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase__ : List[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase__ : List[str] = 50 UpperCAmelCase__ : Optional[Any] = jax.device_count() UpperCAmelCase__ : Optional[int] = num_samples * [prompt] UpperCAmelCase__ : Dict = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng UpperCAmelCase__ : Optional[int] = replicate(lowerCamelCase__ ) UpperCAmelCase__ : str = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = shard(lowerCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[str] = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , ) UpperCAmelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , ) UpperCAmelCase__ : List[Any] = scheduler.create_state() UpperCAmelCase__ : Union[str, Any] = scheduler_state UpperCAmelCase__ : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase__ : Tuple = jax.random.PRNGKey(0 ) UpperCAmelCase__ : Optional[int] = 50 UpperCAmelCase__ : int = jax.device_count() UpperCAmelCase__ : Dict = num_samples * [prompt] UpperCAmelCase__ : str = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng UpperCAmelCase__ : List[Any] = replicate(lowerCamelCase__ ) UpperCAmelCase__ : Optional[Any] = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = shard(lowerCamelCase__ ) UpperCAmelCase__ : Dict = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1E-3 assert np.abs((np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase__ : str = jax.device_count() UpperCAmelCase__ : Union[str, Any] = num_samples * [prompt] UpperCAmelCase__ : str = jax.random.split(jax.random.PRNGKey(0 ) , lowerCamelCase__ ) UpperCAmelCase__ : Dict = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase__ , ) UpperCAmelCase__ : List[str] = replicate(lowerCamelCase__ ) UpperCAmelCase__ : Tuple = pipeline.prepare_inputs(lowerCamelCase__ ) UpperCAmelCase__ : int = shard(lowerCamelCase__ ) UpperCAmelCase__ : List[Any] = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention UpperCAmelCase__ : Tuple = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCamelCase__ , use_memory_efficient_attention=lowerCamelCase__ , ) UpperCAmelCase__ : Any = replicate(lowerCamelCase__ ) UpperCAmelCase__ : List[str] = pipeline.prepare_inputs(lowerCamelCase__ ) UpperCAmelCase__ : int = shard(lowerCamelCase__ ) UpperCAmelCase__ : Dict = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
718
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : nn.ModuleList , lowerCAmelCase : nn.ModuleList , lowerCAmelCase : List[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F"{len(lowerCAmelCase )} != {len(lowerCAmelCase )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): '''simple docstring''' try: UpperCAmelCase__ : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : int , lowerCAmelCase : Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( lowerCAmelCase : Union[str, PreTrainedModel] , lowerCAmelCase : Union[str, Path] = "student" , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"teacher must be a model or string got type {type(lowerCAmelCase )}" UpperCAmelCase__ : int = teacher.config.to_diff_dict() try: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ : Tuple = teacher_e if d is None: UpperCAmelCase__ : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ : Optional[Any] = teacher_e if d is None: UpperCAmelCase__ : Optional[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights UpperCAmelCase__ : Tuple = teacher.config_class(**lowerCAmelCase ) UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ : Optional[int] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ , UpperCAmelCase__ : int = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) UpperCAmelCase__ : int = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
660
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' return EnvironmentCommand() class _lowercase ( UpperCamelCase_ ): '''simple docstring''' @staticmethod def lowerCAmelCase__ ( __UpperCamelCase )-> int: UpperCAmelCase__ : Dict = parser.add_parser("env" ) download_parser.set_defaults(func=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : Union[str, Any] = huggingface_hub.__version__ UpperCAmelCase__ : str = '''not installed''' UpperCAmelCase__ : str = '''NA''' if is_torch_available(): import torch UpperCAmelCase__ : Any = torch.__version__ UpperCAmelCase__ : Optional[Any] = torch.cuda.is_available() UpperCAmelCase__ : Optional[int] = '''not installed''' if is_transformers_available(): import transformers UpperCAmelCase__ : Tuple = transformers.__version__ UpperCAmelCase__ : Optional[int] = '''not installed''' if is_accelerate_available(): import accelerate UpperCAmelCase__ : Optional[Any] = accelerate.__version__ UpperCAmelCase__ : int = '''not installed''' if is_xformers_available(): import xformers UpperCAmelCase__ : Any = xformers.__version__ UpperCAmelCase__ : Optional[Any] = { '''`diffusers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''PyTorch version (GPU?)''': F"{pt_version} ({pt_cuda_available})", '''Huggingface_hub version''': hub_version, '''Transformers version''': transformers_version, '''Accelerate version''': accelerate_version, '''xFormers version''': xformers_version, '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(__UpperCamelCase ) ) return info @staticmethod def lowerCAmelCase__ ( __UpperCamelCase )-> Tuple: return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
719
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Tuple = ort.SessionOptions() UpperCAmelCase__ : List[str] = False return options def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : Tuple = np.random.RandomState(0 ) UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images UpperCAmelCase__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : List[str] = np.random.RandomState(0 ) UpperCAmelCase__ : str = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : int = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
660
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union A__ : Optional[Any] = TypeVar("""T""") A__ : List[str] = Union[List[T], Tuple[T, ...]] A__ : int = Union[T, List[T], Dict[str, T]] A__ : List[str] = Union[str, bytes, os.PathLike]
720
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'table-transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=1_00 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , )-> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : int = backbone_config.get("model_type" ) UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : int = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = None, None, None UpperCAmelCase__ : Optional[int] = use_timm_backbone UpperCAmelCase__ : Dict = backbone_config UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : int = d_model UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : str = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = auxiliary_loss UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[str] = backbone UpperCAmelCase__ : List[Any] = use_pretrained_backbone UpperCAmelCase__ : List[str] = dilation # Hungarian matcher UpperCAmelCase__ : Dict = class_cost UpperCAmelCase__ : Any = bbox_cost UpperCAmelCase__ : Tuple = giou_cost # Loss coefficients UpperCAmelCase__ : Any = mask_loss_coefficient UpperCAmelCase__ : Dict = dice_loss_coefficient UpperCAmelCase__ : Any = bbox_loss_coefficient UpperCAmelCase__ : Tuple = giou_loss_coefficient UpperCAmelCase__ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> int: return self.encoder_attention_heads @property def lowerCAmelCase__ ( self )-> int: return self.d_model class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-5 @property def lowerCAmelCase__ ( self )-> int: return 12
660
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Any): '''simple docstring''' UpperCAmelCase__ : str = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias")) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ]) return rename_keys def a__ ( lowerCAmelCase : Optional[int] , lowerCAmelCase : int): '''simple docstring''' for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) UpperCAmelCase__ : List[Any] = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight") UpperCAmelCase__ : Tuple = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCAmelCase__ : Optional[Any] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCAmelCase__ : str = in_proj_weight[ -encoder_config.hidden_size :, : ] def a__ ( lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : List[Any]): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = dct.pop(lowerCamelCase__) UpperCAmelCase__ : int = val def a__ ( lowerCAmelCase : Optional[Any]): '''simple docstring''' if "handwritten" in checkpoint_url: UpperCAmelCase__ : Optional[Any] = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase__ : Tuple = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" UpperCAmelCase__ : Optional[Any] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__).raw).convert("RGB") return im @torch.no_grad() def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : int): '''simple docstring''' UpperCAmelCase__ : List[str] = ViTConfig(image_size=384 , qkv_bias=lowerCamelCase__) UpperCAmelCase__ : Any = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCAmelCase__ : List[str] = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCAmelCase__ : Union[str, Any] = 1024 UpperCAmelCase__ : Dict = 4096 UpperCAmelCase__ : Any = 24 UpperCAmelCase__ : Optional[Any] = 16 UpperCAmelCase__ : Optional[int] = 1024 else: raise ValueError("Should either find \'base\' or \'large\' in checkpoint URL") # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Tuple = "relu" UpperCAmelCase__ : Dict = 1024 UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False # load HuggingFace model UpperCAmelCase__ : Dict = ViTModel(lowerCamelCase__ , add_pooling_layer=lowerCamelCase__) UpperCAmelCase__ : Any = TrOCRForCausalLM(lowerCamelCase__) UpperCAmelCase__ : Any = VisionEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__) model.eval() # load state_dict of original model, rename some keys UpperCAmelCase__ : Dict = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" , check_hash=lowerCamelCase__)["model"] UpperCAmelCase__ : int = create_rename_keys(lowerCamelCase__ , lowerCamelCase__) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCAmelCase__ : List[Any] = state_dict.pop(lowerCamelCase__) if key.startswith("decoder") and "output_projection" not in key: UpperCAmelCase__ : List[str] = val else: UpperCAmelCase__ : int = val # load state dict model.load_state_dict(lowerCamelCase__) # Check outputs on an image UpperCAmelCase__ : Optional[Any] = ViTImageProcessor(size=encoder_config.image_size) UpperCAmelCase__ : Optional[Any] = RobertaTokenizer.from_pretrained("roberta-large") UpperCAmelCase__ : Any = TrOCRProcessor(lowerCamelCase__ , lowerCamelCase__) UpperCAmelCase__ : int = processor(images=prepare_img(lowerCamelCase__) , return_tensors="pt").pixel_values # verify logits UpperCAmelCase__ : List[Any] = torch.tensor([[model.config.decoder.decoder_start_token_id]]) UpperCAmelCase__ : Dict = model(pixel_values=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__) UpperCAmelCase__ : Tuple = outputs.logits UpperCAmelCase__ : Tuple = torch.Size([1, 1, 5_0265]) if "trocr-base-handwritten" in checkpoint_url: UpperCAmelCase__ : Optional[Any] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311]) elif "trocr-large-handwritten" in checkpoint_url: UpperCAmelCase__ : List[str] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170]) elif "trocr-base-printed" in checkpoint_url: UpperCAmelCase__ : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210]) elif "trocr-large-printed" in checkpoint_url: UpperCAmelCase__ : Optional[int] = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535]) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowerCamelCase__ , atol=1E-3), "First elements of logits not as expected" Path(lowerCamelCase__).mkdir(exist_ok=lowerCamelCase__) print(F"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(lowerCamelCase__) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(lowerCamelCase__) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) A__ : int = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
721
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) A__ : int = getLogger(__name__) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 1024 , lowerCAmelCase : List[Any]="val" , lowerCAmelCase : str=None , lowerCAmelCase : int=False , lowerCAmelCase : Dict="summarization" , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict = None , lowerCAmelCase : List[str]="" , **lowerCAmelCase : int , ): '''simple docstring''' UpperCAmelCase__ : Dict = str(lowerCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=lowerCAmelCase ) UpperCAmelCase__ : List[str] = Path(lowerCAmelCase ) UpperCAmelCase__ : str = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).cuda() if fpaa: UpperCAmelCase__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase , lowerCAmelCase ) # update config with task specific params UpperCAmelCase__ : List[Any] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase__ : Any = num_return_sequences UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase__ : int = tokenizer.model_max_length if prefix is None: UpperCAmelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase__ : str = SeqaSeqDataset( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , max_target_length=1024 , type_path=lowerCAmelCase , n_obs=lowerCAmelCase , prefix=lowerCAmelCase , **lowerCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase__ : Union[str, Any] = ds.make_sortish_sampler(lowerCAmelCase , distributed=lowerCAmelCase , add_extra_examples=lowerCAmelCase , shuffle=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = DataLoader(lowerCAmelCase , sampler=lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn ) UpperCAmelCase__ : str = [] for batch in tqdm(lowerCAmelCase ): UpperCAmelCase__ : Dict = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=lowerCAmelCase , num_beams=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase__ : int = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) UpperCAmelCase__ : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase__ : str = chunks(lowerCAmelCase , lowerCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(lowerCAmelCase , lowerCAmelCase ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' UpperCAmelCase__ : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=lowerCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument( "--type_path" , type=lowerCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowerCAmelCase , default=8 , required=lowerCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=lowerCAmelCase , default=1 , required=lowerCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=lowerCAmelCase , default=600 , required=lowerCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument( "--prefix" , type=lowerCAmelCase , required=lowerCAmelCase , default=lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_known_args() UpperCAmelCase__ : int = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase__ : Dict = Path(args.save_dir + "_tmp" ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) # this handles locking. UpperCAmelCase__ : List[str] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase__ : List[str] = {} if args.src_lang is not None: UpperCAmelCase__ : str = args.src_lang if args.tgt_lang is not None: UpperCAmelCase__ : List[str] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = eval_data_dir( args.data_dir , lowerCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase , **lowerCAmelCase , ) if args.local_rank <= 0: UpperCAmelCase__ : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ : Tuple = gather_results_from_each_node(lowerCAmelCase , lowerCAmelCase , args.sync_timeout ) UpperCAmelCase__ : Union[str, Any] = combine_partial_results(lowerCAmelCase ) if args.num_return_sequences > 1: UpperCAmelCase__ : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase , lowerCAmelCase ) return UpperCAmelCase__ : Optional[Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(lowerCAmelCase ) as f: UpperCAmelCase__ : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase__ : List[Any] = "translation" in args.task UpperCAmelCase__ : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase__ : Optional[Any] = "bleu" if calc_bleu else "rouge" UpperCAmelCase__ : Dict = score_fn(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = time.time() - start_time UpperCAmelCase__ : Optional[int] = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase__ : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) print(lowerCAmelCase ) write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase ) def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = [] for partial_result in partial_results: records.extend(lowerCAmelCase ) UpperCAmelCase__ : Dict = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["id"] ) UpperCAmelCase__ : List[str] = [x["pred"] for x in records] return preds def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): '''simple docstring''' # WAIT FOR lots of .json files UpperCAmelCase__ : int = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase__ : Dict = None while (time.time() - start_wait) < timeout: UpperCAmelCase__ : str = list(save_dir.glob("rank_*.json" ) ) if len(lowerCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase__ : Union[str, Any] = lmap(lowerCAmelCase , lowerCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
660
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=30 , __UpperCamelCase=4_00 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , __UpperCamelCase=1 / 2_55 , __UpperCamelCase=True , )-> int: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase__ : Any = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : str = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : List[Any] = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : Any = image_mean UpperCAmelCase__ : Any = image_std UpperCAmelCase__ : List[Any] = do_rescale UpperCAmelCase__ : int = rescale_factor UpperCAmelCase__ : Optional[Any] = do_pad def lowerCAmelCase__ ( self )-> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False )-> List[Any]: if not batched: UpperCAmelCase__ : List[Any] = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCAmelCase__ : Dict = image.size else: UpperCAmelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Union[str, Any] = int(self.size["shortest_edge"] * h / w ) UpperCAmelCase__ : int = self.size["shortest_edge"] elif w > h: UpperCAmelCase__ : List[Any] = self.size["shortest_edge"] UpperCAmelCase__ : Dict = int(self.size["shortest_edge"] * w / h ) else: UpperCAmelCase__ : Union[str, Any] = self.size["shortest_edge"] UpperCAmelCase__ : List[Any] = self.size["shortest_edge"] else: UpperCAmelCase__ : Any = [] for image in image_inputs: UpperCAmelCase__ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Dict = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCAmelCase__ : Tuple = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : str = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self )-> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size" ) ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCAmelCase__ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> str: pass def lowerCAmelCase__ ( self )-> List[Any]: # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self )-> Union[str, Any]: # Initialize image_processing UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Optional[int] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self )-> List[Any]: # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Union[str, Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self )-> str: # prepare image and target UpperCAmelCase__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCAmelCase__ : Optional[Any] = json.loads(f.read() ) UpperCAmelCase__ : Union[str, Any] = {"image_id": 3_97_69, "annotations": target} # encode them UpperCAmelCase__ : Any = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) UpperCAmelCase__ : List[Any] = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="pt" ) # verify pixel values UpperCAmelCase__ : List[str] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , __UpperCamelCase ) UpperCAmelCase__ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area UpperCAmelCase__ : Optional[Any] = torch.tensor([5887.9600, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCamelCase ) ) # verify boxes UpperCAmelCase__ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id UpperCAmelCase__ : Union[str, Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCamelCase ) ) # verify is_crowd UpperCAmelCase__ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCamelCase ) ) # verify class_labels UpperCAmelCase__ : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCamelCase ) ) # verify orig_size UpperCAmelCase__ : Any = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCamelCase ) ) # verify size UpperCAmelCase__ : Tuple = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCamelCase ) ) @slow def lowerCAmelCase__ ( self )-> Tuple: # prepare image, target and masks_path UpperCAmelCase__ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCAmelCase__ : Dict = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} UpperCAmelCase__ : Optional[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCAmelCase__ : str = ConditionalDetrImageProcessor(format="coco_panoptic" ) UpperCAmelCase__ : List[Any] = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="pt" ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , __UpperCamelCase ) UpperCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area UpperCAmelCase__ : str = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCamelCase ) ) # verify boxes UpperCAmelCase__ : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCamelCase ) UpperCAmelCase__ : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCamelCase ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCamelCase ) ) # verify class_labels UpperCAmelCase__ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCamelCase ) ) # verify masks UpperCAmelCase__ : Optional[int] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __UpperCamelCase ) # verify orig_size UpperCAmelCase__ : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCamelCase ) ) # verify size UpperCAmelCase__ : str = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCamelCase ) )
700
"""simple docstring""" from timeit import timeit def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): '''simple docstring''' def do_benchmark(lowerCAmelCase : int ) -> None: UpperCAmelCase__ : Dict = "import __main__ as z" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Any = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
660
0
"""simple docstring""" def a__ ( lowerCAmelCase : List[str] ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a__ ( lowerCAmelCase : dict[int, list[int]] ): UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Dict = len(lowerCAmelCase ) # No of vertices in graph UpperCAmelCase__ : str = [0] * n UpperCAmelCase__ : Optional[Any] = [False] * n def dfs(lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] ): UpperCAmelCase__ : int = True UpperCAmelCase__ : List[Any] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , id_ ) UpperCAmelCase__ : Any = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase__ : int = min(low[at] , low[to] ) UpperCAmelCase__ : list[tuple[int, int]] = [] for i in range(lowerCAmelCase ): if not visited[i]: dfs(lowerCAmelCase , -1 , lowerCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowercase ( unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Optional[Any] = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase__ : List[str] = load_tool("text-classification" , remote=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Dict = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Any = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : str = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" )
660
0
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) A__ : Any = { """sample_size""": 32, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_000, """block_out_channels""": [32, 64], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } A__ : List[str] = { """sample_size""": 64, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_000, """block_out_channels""": [192, 192 * 2, 192 * 3, 192 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } A__ : Optional[int] = { """sample_size""": 256, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], """attention_head_dim""": 64, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } A__ : Dict = { """num_train_timesteps""": 40, """sigma_min""": 0.002, """sigma_max""": 80.0, } A__ : Dict = { """num_train_timesteps""": 201, """sigma_min""": 0.002, """sigma_max""": 80.0, } A__ : Optional[int] = { """num_train_timesteps""": 151, """sigma_min""": 0.002, """sigma_max""": 80.0, } def a__ ( lowerCAmelCase : Dict ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def a__ ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=False ): '''simple docstring''' UpperCAmelCase__ : Tuple = checkpoint[F"{old_prefix}.in_layers.0.weight"] UpperCAmelCase__ : Optional[Any] = checkpoint[F"{old_prefix}.in_layers.0.bias"] UpperCAmelCase__ : str = checkpoint[F"{old_prefix}.in_layers.2.weight"] UpperCAmelCase__ : int = checkpoint[F"{old_prefix}.in_layers.2.bias"] UpperCAmelCase__ : Optional[int] = checkpoint[F"{old_prefix}.emb_layers.1.weight"] UpperCAmelCase__ : List[str] = checkpoint[F"{old_prefix}.emb_layers.1.bias"] UpperCAmelCase__ : Dict = checkpoint[F"{old_prefix}.out_layers.0.weight"] UpperCAmelCase__ : Tuple = checkpoint[F"{old_prefix}.out_layers.0.bias"] UpperCAmelCase__ : str = checkpoint[F"{old_prefix}.out_layers.3.weight"] UpperCAmelCase__ : Optional[Any] = checkpoint[F"{old_prefix}.out_layers.3.bias"] if has_skip: UpperCAmelCase__ : int = checkpoint[F"{old_prefix}.skip_connection.weight"] UpperCAmelCase__ : str = checkpoint[F"{old_prefix}.skip_connection.bias"] return new_checkpoint def a__ ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : Dict = checkpoint[F"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) UpperCAmelCase__ : Optional[int] = checkpoint[F"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) UpperCAmelCase__ : int = checkpoint[F"{old_prefix}.norm.weight"] UpperCAmelCase__ : Any = checkpoint[F"{old_prefix}.norm.bias"] UpperCAmelCase__ : int = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Union[str, Any] = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Union[str, Any] = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : int = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase__ : int = ( checkpoint[F"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase__ : Optional[Any] = checkpoint[F"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def a__ ( lowerCAmelCase : str , lowerCAmelCase : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase , map_location="cpu" ) UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Optional[int] = checkpoint["time_embed.0.weight"] UpperCAmelCase__ : str = checkpoint["time_embed.0.bias"] UpperCAmelCase__ : Optional[Any] = checkpoint["time_embed.2.weight"] UpperCAmelCase__ : int = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: UpperCAmelCase__ : str = checkpoint["label_emb.weight"] UpperCAmelCase__ : List[str] = checkpoint["input_blocks.0.0.weight"] UpperCAmelCase__ : int = checkpoint["input_blocks.0.0.bias"] UpperCAmelCase__ : Any = unet_config["down_block_types"] UpperCAmelCase__ : List[Any] = unet_config["layers_per_block"] UpperCAmelCase__ : str = unet_config["attention_head_dim"] UpperCAmelCase__ : List[str] = unet_config["block_out_channels"] UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : List[Any] = channels_list[0] for i, layer_type in enumerate(lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = channels_list[i] UpperCAmelCase__ : Tuple = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowerCAmelCase ): UpperCAmelCase__ : str = F"down_blocks.{i}.resnets.{j}" UpperCAmelCase__ : List[str] = F"input_blocks.{current_layer}.0" UpperCAmelCase__ : Tuple = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase__ : int = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_skip=lowerCAmelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowerCAmelCase ): UpperCAmelCase__ : str = F"down_blocks.{i}.resnets.{j}" UpperCAmelCase__ : List[str] = F"input_blocks.{current_layer}.0" UpperCAmelCase__ : Optional[int] = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase__ : Any = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_skip=lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = F"down_blocks.{i}.attentions.{j}" UpperCAmelCase__ : int = F"input_blocks.{current_layer}.1" UpperCAmelCase__ : Any = convert_attention( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) current_layer += 1 if i != len(lowerCAmelCase ) - 1: UpperCAmelCase__ : Dict = F"down_blocks.{i}.downsamplers.0" UpperCAmelCase__ : Any = F"input_blocks.{current_layer}.0" UpperCAmelCase__ : str = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) current_layer += 1 UpperCAmelCase__ : Union[str, Any] = current_channels # hardcoded the mid-block for now UpperCAmelCase__ : Dict = "mid_block.resnets.0" UpperCAmelCase__ : Any = "middle_block.0" UpperCAmelCase__ : str = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = "mid_block.attentions.0" UpperCAmelCase__ : List[str] = "middle_block.1" UpperCAmelCase__ : Optional[int] = convert_attention(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = "mid_block.resnets.1" UpperCAmelCase__ : Optional[int] = "middle_block.2" UpperCAmelCase__ : Optional[int] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Tuple = unet_config["up_block_types"] for i, layer_type in enumerate(lowerCAmelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase__ : int = F"up_blocks.{i}.resnets.{j}" UpperCAmelCase__ : int = F"output_blocks.{current_layer}.0" UpperCAmelCase__ : Optional[Any] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_skip=lowerCAmelCase ) current_layer += 1 if i != len(lowerCAmelCase ) - 1: UpperCAmelCase__ : str = F"up_blocks.{i}.upsamplers.0" UpperCAmelCase__ : Any = F"output_blocks.{current_layer-1}.1" UpperCAmelCase__ : Optional[Any] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase__ : Union[str, Any] = F"up_blocks.{i}.resnets.{j}" UpperCAmelCase__ : Tuple = F"output_blocks.{current_layer}.0" UpperCAmelCase__ : Optional[Any] = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , has_skip=lowerCAmelCase ) UpperCAmelCase__ : List[str] = F"up_blocks.{i}.attentions.{j}" UpperCAmelCase__ : Dict = F"output_blocks.{current_layer}.1" UpperCAmelCase__ : int = convert_attention( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) current_layer += 1 if i != len(lowerCAmelCase ) - 1: UpperCAmelCase__ : int = F"up_blocks.{i}.upsamplers.0" UpperCAmelCase__ : Tuple = F"output_blocks.{current_layer-1}.2" UpperCAmelCase__ : int = convert_resnet(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = checkpoint["out.0.weight"] UpperCAmelCase__ : Optional[int] = checkpoint["out.0.bias"] UpperCAmelCase__ : Any = checkpoint["out.2.weight"] UpperCAmelCase__ : str = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") A__ : List[str] = parser.parse_args() A__ : Union[str, Any] = strabool(args.class_cond) A__ : List[str] = os.path.basename(args.unet_path) print(f"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: A__ : Optional[Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A__ : Any = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: A__ : str = TEST_UNET_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: A__ : Optional[int] = None A__ : List[Any] = con_pt_to_diffuser(args.unet_path, unet_config) A__ : str = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: A__ : Optional[Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: A__ : List[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A__ : Any = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"""Checkpoint type {ckpt_name} is not currently supported.""") A__ : List[Any] = CMStochasticIterativeScheduler(**scheduler_config) A__ : Any = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
702
"""simple docstring""" def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase , lowerCAmelCase ) ) ) def a__ ( lowerCAmelCase : list[float] ): '''simple docstring''' if point: if isinstance(lowerCAmelCase , lowerCAmelCase ): for item in point: if not isinstance(lowerCAmelCase , (int, float) ): UpperCAmelCase__ : Tuple = ( "Expected a list of numbers as input, found " F"{type(lowerCAmelCase ).__name__}" ) raise TypeError(lowerCAmelCase ) else: UpperCAmelCase__ : Dict = F"Expected a list of numbers as input, found {type(lowerCAmelCase ).__name__}" raise TypeError(lowerCAmelCase ) else: raise ValueError("Missing an input" ) def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase , lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
import random def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = num - 1 UpperCAmelCase__ : Dict = 0 while s % 2 == 0: UpperCAmelCase__ : Tuple = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase__ : Optional[int] = random.randrange(2 , num - 1 ) UpperCAmelCase__ : Optional[Any] = pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if v != 1: UpperCAmelCase__ : Union[str, Any] = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase__ : Optional[int] = i + 1 UpperCAmelCase__ : Optional[int] = (v**2) % num return True def a__ ( lowerCAmelCase : int ): '''simple docstring''' if num < 2: return False UpperCAmelCase__ : List[str] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase ) def a__ ( lowerCAmelCase : int = 1024 ): '''simple docstring''' while True: UpperCAmelCase__ : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase ): return num if __name__ == "__main__": A__ : int = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
703
"""simple docstring""" import math def a__ ( lowerCAmelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( lowerCAmelCase : int = 1_0001 ): '''simple docstring''' try: UpperCAmelCase__ : List[str] = int(lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : str = 2 while len(lowerCAmelCase ) < nth: if is_prime(lowerCAmelCase ): primes.append(lowerCAmelCase ) num += 1 else: num += 1 return primes[len(lowerCAmelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : List[Any] = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCAmelCase__ : Optional[int] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase__ : Optional[Any] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : Dict = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(__UpperCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __UpperCamelCase , atol=1E-3 ) ) @slow def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : int = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) UpperCAmelCase__ : Optional[Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase__ : List[str] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase__ : int = model(__UpperCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __UpperCamelCase , atol=1E-3 ) )
704
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=0.6 , __UpperCamelCase=None , )-> List[Any]: UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : int = mask_ratio UpperCAmelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self )-> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = ViTMAEModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _A = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} _A = False _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Any = ViTMAEModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> Dict: pass def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Dict: # make masks reproducible np.random.seed(2 ) UpperCAmelCase__ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : str = torch.from_numpy(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Optional[Any] = pt_noise super().check_pt_tf_models(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = outputs[0].cpu().numpy() UpperCAmelCase__ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model_class.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) # Make sure we don't have nans UpperCAmelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> List[str]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Any: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self )-> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self )-> Union[str, Any]: pass @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ViTMAEModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> List[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self )-> Optional[int]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase__ : Any = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCamelCase ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : List[Any] = ViTMAEConfig() UpperCAmelCase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**__UpperCamelCase , noise=torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ) ) # verify the logits UpperCAmelCase__ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCamelCase ) , atol=1E-4 ) )
660
0
"""simple docstring""" from sklearn.metrics import recall_score import datasets A__ : Optional[int] = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ A__ : Any = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ A__ : str = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase__ ( self )-> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=1 , __UpperCamelCase="binary" , __UpperCamelCase=None , __UpperCamelCase="warn" , )-> Union[str, Any]: UpperCAmelCase__ : Tuple = recall_score( __UpperCamelCase , __UpperCamelCase , labels=__UpperCamelCase , pos_label=__UpperCamelCase , average=__UpperCamelCase , sample_weight=__UpperCamelCase , zero_division=__UpperCamelCase , ) return {"recall": float(__UpperCamelCase ) if score.size == 1 else score}
705
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _lowercase : '''simple docstring''' _A = 42 # setable values _A = 42 _A = 42 _A = None @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: return cls(common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase ) @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A = [e.name for e in FlaxKarrasDiffusionSchedulers] _A = 42 @property def lowerCAmelCase__ ( self )-> Optional[int]: return True @register_to_config def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = 0.0001 , __UpperCamelCase = 0.02 , __UpperCamelCase = "linear" , __UpperCamelCase = None , __UpperCamelCase = "fixed_small" , __UpperCamelCase = True , __UpperCamelCase = "epsilon" , __UpperCamelCase = jnp.floataa , )-> List[str]: UpperCAmelCase__ : int = dtype def lowerCAmelCase__ ( self , __UpperCamelCase = None )-> DDPMSchedulerState: if common is None: UpperCAmelCase__ : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> jnp.ndarray: return sample def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = () )-> DDPMSchedulerState: UpperCAmelCase__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Optional[int] = (jnp.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : Dict = jnp.clip(__UpperCamelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Tuple = jnp.log(jnp.clip(__UpperCamelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] UpperCAmelCase__ : Optional[int] = (predicted_variance + 1) / 2 UpperCAmelCase__ : Any = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase__ : List[str] = timestep if key is None: UpperCAmelCase__ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = jnp.split(__UpperCamelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : Optional[Any] = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Any = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : List[Any] = jnp.clip(__UpperCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : Any = jax.random.split(__UpperCamelCase , num=1 ) UpperCAmelCase__ : int = jax.random.normal(__UpperCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__UpperCamelCase , __UpperCamelCase , predicted_variance=__UpperCamelCase ) ** 0.5) * noise UpperCAmelCase__ : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase , state=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return add_noise_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return get_velocity_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __len__( self )-> Tuple: return self.config.num_train_timesteps
660
0
def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def a__ ( lowerCAmelCase : int = 100 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : int = 2 for i in range(2 , max_n + 1 ): UpperCAmelCase__ : Optional[int] = pre_numerator UpperCAmelCase__ : Optional[Any] = 2 * i // 3 if i % 3 == 0 else 1 UpperCAmelCase__ : List[Any] = cur_numerator UpperCAmelCase__ : str = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
706
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
0
A__ : Optional[int] = 8.314_4598 def a__ ( lowerCAmelCase : float , lowerCAmelCase : float ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example A__ : List[Any] = 300 A__ : Dict = 28 A__ : Tuple = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
707
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : Dict = logging.get_logger(__name__) def a__ ( lowerCAmelCase : Optional[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase__ : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase__ : int = get_size_dict(__UpperCamelCase , param_name="crop_size" ) UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : List[Any] = do_center_crop UpperCAmelCase__ : str = crop_size UpperCAmelCase__ : Optional[int] = resample UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = offset UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(__UpperCamelCase , size["shortest_edge"] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: UpperCAmelCase__ : Any = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = image.astype(np.floataa ) if offset: UpperCAmelCase__ : Tuple = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = to_numpy_array(__UpperCamelCase ) if do_resize: UpperCAmelCase__ : Union[str, Any] = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: UpperCAmelCase__ : int = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: UpperCAmelCase__ : List[str] = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: UpperCAmelCase__ : List[Any] = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) UpperCAmelCase__ : Dict = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> PIL.Image.Image: UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Optional[int] = offset if offset is not None else self.offset UpperCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Tuple = get_size_dict(__UpperCamelCase , param_name="crop_size" ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ : List[str] = make_batched(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] UpperCAmelCase__ : Dict = {"pixel_values": videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
660
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : Dict = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'blip_text_model' def __init__( self , __UpperCamelCase=3_05_24 , __UpperCamelCase=7_68 , __UpperCamelCase=7_68 , __UpperCamelCase=30_72 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=8 , __UpperCamelCase=5_12 , __UpperCamelCase="gelu" , __UpperCamelCase=1E-12 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=3_05_22 , __UpperCamelCase=2 , __UpperCamelCase=0 , __UpperCamelCase=1_02 , __UpperCamelCase=True , __UpperCamelCase=True , **__UpperCamelCase , )-> Union[str, Any]: super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , sep_token_id=__UpperCamelCase , **__UpperCamelCase , ) UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : List[str] = encoder_hidden_size UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Tuple = projection_dim UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : Tuple = is_decoder UpperCAmelCase__ : str = use_cache @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase__ : Optional[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'blip_vision_model' def __init__( self , __UpperCamelCase=7_68 , __UpperCamelCase=30_72 , __UpperCamelCase=5_12 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3_84 , __UpperCamelCase=16 , __UpperCamelCase="gelu" , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0 , __UpperCamelCase=1E-10 , **__UpperCamelCase , )-> List[str]: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Optional[Any] = projection_dim UpperCAmelCase__ : Any = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = image_size UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Optional[int] = attention_dropout UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : List[str] = hidden_act @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) UpperCAmelCase__ : Tuple = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase__ : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'blip' _A = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=5_12 , __UpperCamelCase=2.6592 , __UpperCamelCase=2_56 , **__UpperCamelCase , )-> Optional[Any]: super().__init__(**__UpperCamelCase ) if text_config is None: UpperCAmelCase__ : Dict = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: UpperCAmelCase__ : Tuple = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) UpperCAmelCase__ : Dict = BlipTextConfig(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = BlipVisionConfig(**__UpperCamelCase ) UpperCAmelCase__ : Tuple = self.vision_config.hidden_size UpperCAmelCase__ : Optional[int] = projection_dim UpperCAmelCase__ : List[Any] = logit_scale_init_value UpperCAmelCase__ : Tuple = 1.0 UpperCAmelCase__ : List[Any] = 0.02 UpperCAmelCase__ : List[Any] = image_text_hidden_size @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase )-> Optional[int]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : str = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : Optional[Any] = self.text_config.to_dict() UpperCAmelCase__ : Any = self.vision_config.to_dict() UpperCAmelCase__ : Optional[int] = self.__class__.model_type return output
708
"""simple docstring""" def a__ ( lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(lowerCAmelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _lowercase : '''simple docstring''' _A = 42 # setable values _A = 42 _A = 42 _A = None @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: return cls(common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase ) @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A = [e.name for e in FlaxKarrasDiffusionSchedulers] _A = 42 @property def lowerCAmelCase__ ( self )-> Optional[int]: return True @register_to_config def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = 0.0001 , __UpperCamelCase = 0.02 , __UpperCamelCase = "linear" , __UpperCamelCase = None , __UpperCamelCase = "fixed_small" , __UpperCamelCase = True , __UpperCamelCase = "epsilon" , __UpperCamelCase = jnp.floataa , )-> List[str]: UpperCAmelCase__ : int = dtype def lowerCAmelCase__ ( self , __UpperCamelCase = None )-> DDPMSchedulerState: if common is None: UpperCAmelCase__ : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> jnp.ndarray: return sample def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = () )-> DDPMSchedulerState: UpperCAmelCase__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Optional[int] = (jnp.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : Dict = jnp.clip(__UpperCamelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Tuple = jnp.log(jnp.clip(__UpperCamelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] UpperCAmelCase__ : Optional[int] = (predicted_variance + 1) / 2 UpperCAmelCase__ : Any = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase__ : List[str] = timestep if key is None: UpperCAmelCase__ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ : List[str] = jnp.split(__UpperCamelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : Optional[Any] = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Any = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : List[Any] = jnp.clip(__UpperCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : Any = jax.random.split(__UpperCamelCase , num=1 ) UpperCAmelCase__ : int = jax.random.normal(__UpperCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__UpperCamelCase , __UpperCamelCase , predicted_variance=__UpperCamelCase ) ** 0.5) * noise UpperCAmelCase__ : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase , state=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return add_noise_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return get_velocity_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __len__( self )-> Tuple: return self.config.num_train_timesteps
709
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A__ : Optional[Any] = logging.get_logger(__name__) def a__ ( lowerCAmelCase : bool , lowerCAmelCase : bool ): '''simple docstring''' def run_func(lowerCAmelCase : Dict ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a__ ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Dict = random.Random() UpperCAmelCase__ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = 42 _A = "TensorFlow" @property def lowerCAmelCase__ ( self )-> Optional[int]: return tf.__version__ def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: # initialize GPU on separate process UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Union[str, Any] = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: UpperCAmelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : List[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Any = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Optional[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Optional[int] = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : str = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : Any = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Dict = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : Any = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : int = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Optional[Any] = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Any = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : int = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : int = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : Union[str, Any] = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Dict = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Union[str, Any] = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Any = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients UpperCAmelCase__ : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase__ ( self , __UpperCamelCase )-> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase__ : Optional[Any] = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=10 , ) return min(__UpperCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase__ : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase__ : Optional[int] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) UpperCAmelCase__ : str = meminfo.used UpperCAmelCase__ : int = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase__ : Any = None else: UpperCAmelCase__ : List[Any] = measure_peak_memory_cpu(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase__ : Optional[Any] = stop_memory_tracing(__UpperCamelCase ) if memory is None: UpperCAmelCase__ : Tuple = summary.total else: UpperCAmelCase__ : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
660
0
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , "embed_dim" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , "num_heads" ) ) class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=64 , __UpperCamelCase=3 , __UpperCamelCase=[16, 48, 96] , __UpperCamelCase=[1, 3, 6] , __UpperCamelCase=[1, 2, 10] , __UpperCamelCase=[7, 3, 3] , __UpperCamelCase=[4, 2, 2] , __UpperCamelCase=[2, 1, 1] , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=[False, False, True] , __UpperCamelCase=[0.0, 0.0, 0.0] , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=2 , )-> List[Any]: UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Tuple = patch_sizes UpperCAmelCase__ : List[Any] = patch_stride UpperCAmelCase__ : Union[str, Any] = patch_padding UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : Union[str, Any] = num_labels UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Dict = embed_dim UpperCAmelCase__ : Union[str, Any] = num_heads UpperCAmelCase__ : Union[str, Any] = stride_kv UpperCAmelCase__ : Tuple = depth UpperCAmelCase__ : Any = cls_token UpperCAmelCase__ : Optional[int] = attention_drop_rate UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : int = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self )-> Any: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : Any = CvtModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(__UpperCamelCase ) UpperCAmelCase__ : Any = (self.image_size, self.image_size) UpperCAmelCase__ : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase__ : Dict = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase__ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : List[Any] = CvtForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Tuple = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : int = self.prepare_config_and_inputs() UpperCAmelCase__ : Tuple = config_and_inputs UpperCAmelCase__ : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = (CvtModel, CvtForImageClassification) if is_torch_available() else () _A = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Dict = CvtModelTester(self ) UpperCAmelCase__ : str = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self )-> Union[str, Any]: return @unittest.skip(reason="Cvt does not output attentions" ) def lowerCAmelCase__ ( self )-> Optional[int]: pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> Optional[Any]: pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def lowerCAmelCase__ ( self )-> Optional[int]: pass def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(__UpperCamelCase ) UpperCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> str: def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Tuple = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ : str = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : int = outputs.hidden_states UpperCAmelCase__ : Any = len(self.model_tester.depth ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : str = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self )-> int: pass @slow def lowerCAmelCase__ ( self )-> Optional[int]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : str = CvtModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Tuple = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__UpperCamelCase ) UpperCAmelCase__ : Dict = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Optional[int] = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**__UpperCamelCase ) # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCAmelCase__ : Dict = torch.tensor([0.9285, 0.9015, -0.3150] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
710
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule A__ : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
660
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset A__ : List[Any] = """bert-base-cased""" A__ : Any = """google/pegasus-xsum""" A__ : str = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] A__ : str = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] A__ : str = """patrickvonplaten/t5-tiny-random""" A__ : List[str] = """sshleifer/bart-tiny-random""" A__ : Optional[int] = """sshleifer/tiny-mbart""" A__ : str = """sshleifer/tiny-marian-en-de""" def a__ ( lowerCAmelCase : Path , lowerCAmelCase : list ): '''simple docstring''' UpperCAmelCase__ : str = "\n".join(lowerCAmelCase ) Path(lowerCAmelCase ).open("w" ).writelines(lowerCAmelCase ) def a__ ( lowerCAmelCase : str ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase , F"{split}.source" ) , lowerCAmelCase ) _dump_articles(os.path.join(lowerCAmelCase , F"{split}.target" ) , lowerCAmelCase ) return tmp_dir class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: '''simple docstring''' UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Tuple = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase__ : Optional[Any] = max(len(tokenizer.encode(__UpperCamelCase ) ) for a in ARTICLES ) UpperCAmelCase__ : Tuple = max(len(tokenizer.encode(__UpperCamelCase ) ) for a in SUMMARIES ) UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : Tuple = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCAmelCase__ : List[str] = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. UpperCAmelCase__ : Dict = SeqaSeqDataset( __UpperCamelCase , data_dir=__UpperCamelCase , type_path="train" , max_source_length=__UpperCamelCase , max_target_length=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , ) UpperCAmelCase__ : str = DataLoader(__UpperCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCAmelCase__ : List[Any] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase__ : Union[str, Any] = max(len(tokenizer.encode(__UpperCamelCase ) ) for a in ARTICLES ) UpperCAmelCase__ : Any = max(len(tokenizer.encode(__UpperCamelCase ) ) for a in SUMMARIES ) UpperCAmelCase__ : List[Any] = 4 UpperCAmelCase__ : Tuple = LegacySeqaSeqDataset( __UpperCamelCase , data_dir=__UpperCamelCase , type_path="train" , max_source_length=20 , max_target_length=__UpperCamelCase , ) UpperCAmelCase__ : str = DataLoader(__UpperCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCAmelCase__ ( self )-> Dict: '''simple docstring''' UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) UpperCAmelCase__ : str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCAmelCase__ : Dict = tmp_dir.joinpath("train.source" ).open().readlines() UpperCAmelCase__ : Tuple = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__UpperCamelCase , __UpperCamelCase , 1_28 , __UpperCamelCase ) UpperCAmelCase__ : Dict = {x.name for x in tmp_dir.iterdir()} UpperCAmelCase__ : Any = {x.name for x in save_dir.iterdir()} UpperCAmelCase__ : Dict = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__UpperCamelCase ) < len(__UpperCamelCase ) assert len(__UpperCamelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__UpperCamelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def lowerCAmelCase__ ( self )-> Optional[int]: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return UpperCAmelCase__ : Tuple = self._get_dataset(max_len=64 ) UpperCAmelCase__ : List[str] = 64 UpperCAmelCase__ : Optional[int] = ds.make_dynamic_sampler(__UpperCamelCase , required_batch_size_multiple=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = [len(__UpperCamelCase ) for x in batch_sampler] assert len(set(__UpperCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__UpperCamelCase ) == len(__UpperCamelCase ) # no dropped or added examples UpperCAmelCase__ : str = DataLoader(__UpperCamelCase , batch_sampler=__UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : str = [] for batch in data_loader: UpperCAmelCase__ : Optional[int] = batch["input_ids"].shape UpperCAmelCase__ : List[str] = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCAmelCase__ : List[Any] = np.product(batch["input_ids"].shape ) num_src_per_batch.append(__UpperCamelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__UpperCamelCase ) assert num_src_per_batch[0] == max(__UpperCamelCase ) if failures: raise AssertionError(F"too many tokens in {len(__UpperCamelCase )} batches" ) def lowerCAmelCase__ ( self )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self._get_dataset(max_len=5_12 ) UpperCAmelCase__ : Tuple = 2 UpperCAmelCase__ : Optional[Any] = ds.make_sortish_sampler(__UpperCamelCase , shuffle=__UpperCamelCase ) UpperCAmelCase__ : int = DataLoader(__UpperCamelCase , batch_size=__UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase__ : int = DataLoader(__UpperCamelCase , batch_size=__UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__UpperCamelCase ) UpperCAmelCase__ : str = tokenizer.pad_token_id def count_pad_tokens(__UpperCamelCase , __UpperCamelCase="input_ids" ): return [batch[k].eq(__UpperCamelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__UpperCamelCase , k="labels" ) ) < sum(count_pad_tokens(__UpperCamelCase , k="labels" ) ) assert sum(count_pad_tokens(__UpperCamelCase ) ) < sum(count_pad_tokens(__UpperCamelCase ) ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase=10_00 , __UpperCamelCase=1_28 )-> Any: '''simple docstring''' if os.getenv("USE_REAL_DATA" , __UpperCamelCase ): UpperCAmelCase__ : Optional[int] = "examples/seq2seq/wmt_en_ro" UpperCAmelCase__ : Optional[int] = max_len * 2 * 64 if not Path(__UpperCamelCase ).joinpath("train.len" ).exists(): save_len_file(__UpperCamelCase , __UpperCamelCase ) else: UpperCAmelCase__ : List[Any] = "examples/seq2seq/test_data/wmt_en_ro" UpperCAmelCase__ : Any = max_len * 4 save_len_file(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : List[str] = SeqaSeqDataset( __UpperCamelCase , data_dir=__UpperCamelCase , type_path="train" , max_source_length=__UpperCamelCase , max_target_length=__UpperCamelCase , n_obs=__UpperCamelCase , ) return ds, max_tokens, tokenizer def lowerCAmelCase__ ( self )-> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self._get_dataset() UpperCAmelCase__ : Any = set(DistributedSortishSampler(__UpperCamelCase , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__UpperCamelCase ) ) UpperCAmelCase__ : int = set(DistributedSortishSampler(__UpperCamelCase , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__UpperCamelCase ) ) assert idsa.intersection(__UpperCamelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> str: '''simple docstring''' UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(__UpperCamelCase , use_fast=__UpperCamelCase ) if tok_name == MBART_TINY: UpperCAmelCase__ : str = SeqaSeqDataset( __UpperCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) UpperCAmelCase__ : Dict = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCAmelCase__ : Optional[int] = SeqaSeqDataset( __UpperCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) UpperCAmelCase__ : Optional[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__UpperCamelCase ) == 1 if tok_name == BART_TINY else len(__UpperCamelCase ) == 0
711
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCamelCase = 7_68 , )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , )-> Any: UpperCAmelCase__ : Dict = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) UpperCAmelCase__ : Any = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Any = (embeds * self.std) + self.mean return embeds
660
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = StableDiffusionDiffEditPipeline _A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _A = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _A = frozenset([] ) def lowerCAmelCase__ ( self )-> Any: torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , ) UpperCAmelCase__ : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) UpperCAmelCase__ : Optional[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__UpperCamelCase , set_alpha_to_zero=__UpperCamelCase , ) torch.manual_seed(0 ) UpperCAmelCase__ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) UpperCAmelCase__ : Optional[int] = CLIPTextModel(__UpperCamelCase ) UpperCAmelCase__ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : str = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=0 )-> List[Any]: UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith("mps" ): UpperCAmelCase__ : List[Any] = torch.manual_seed(__UpperCamelCase ) else: UpperCAmelCase__ : str = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=0 )-> str: UpperCAmelCase__ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("RGB" ) if str(__UpperCamelCase ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(__UpperCamelCase ) else: UpperCAmelCase__ : Optional[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCAmelCase__ : List[str] = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=0 )-> str: UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) UpperCAmelCase__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Tuple = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("RGB" ) if str(__UpperCamelCase ).startswith("mps" ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(__UpperCamelCase ) else: UpperCAmelCase__ : Optional[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self )-> Union[str, Any]: if not hasattr(self.pipeline_class , "_optional_components" ): return UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : List[str] = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase__ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase ) UpperCAmelCase__ : Tuple = pipe(**__UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = self.pipeline_class.from_pretrained(__UpperCamelCase ) pipe_loaded.to(__UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=__UpperCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__UpperCamelCase , __UpperCamelCase ) is None , F"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase__ : Dict = self.get_dummy_inputs(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = pipe_loaded(**__UpperCamelCase )[0] UpperCAmelCase__ : str = np.abs(output - output_loaded ).max() self.assertLess(__UpperCamelCase , 1E-4 ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : List[Any] = "cpu" UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : Union[str, Any] = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = self.get_dummy_mask_inputs(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = pipe.generate_mask(**__UpperCamelCase ) UpperCAmelCase__ : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase__ : Any = np.array([0] * 9 ) UpperCAmelCase__ : List[Any] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[str] = "cpu" UpperCAmelCase__ : str = self.get_dummy_components() UpperCAmelCase__ : Dict = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = self.get_dummy_inversion_inputs(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = pipe.invert(**__UpperCamelCase ).images UpperCAmelCase__ : int = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase__ : str = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) UpperCAmelCase__ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) def lowerCAmelCase__ ( self )-> Dict: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Union[str, Any] = "cpu" UpperCAmelCase__ : Dict = self.get_dummy_components() UpperCAmelCase__ : List[str] = {"beta_start": 0.0_0085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} UpperCAmelCase__ : Any = DPMSolverMultistepScheduler(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = DPMSolverMultistepInverseScheduler(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = self.get_dummy_inversion_inputs(__UpperCamelCase ) UpperCAmelCase__ : List[str] = pipe.invert(**__UpperCamelCase ).images UpperCAmelCase__ : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase__ : Any = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) UpperCAmelCase__ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__UpperCamelCase , 1E-3 ) @require_torch_gpu @slow class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowerCAmelCase__ ( cls )-> Any: UpperCAmelCase__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) UpperCAmelCase__ : Tuple = raw_image.convert("RGB" ).resize((7_68, 7_68) ) UpperCAmelCase__ : int = raw_image def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Any = torch.manual_seed(0 ) UpperCAmelCase__ : Dict = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) UpperCAmelCase__ : Optional[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase__ : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = "a bowl of fruit" UpperCAmelCase__ : Optional[Any] = "a bowl of pears" UpperCAmelCase__ : Optional[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=__UpperCamelCase , target_prompt=__UpperCamelCase , generator=__UpperCamelCase , ) UpperCAmelCase__ : Union[str, Any] = pipe.invert( prompt=__UpperCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCamelCase ).latents UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , mask_image=__UpperCamelCase , image_latents=__UpperCamelCase , generator=__UpperCamelCase , negative_prompt=__UpperCamelCase , inpaint_strength=0.7 , output_type="numpy" , ).images[0] UpperCAmelCase__ : Tuple = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) UpperCAmelCase__ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase__ : Optional[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : Tuple = "a bowl of fruit" UpperCAmelCase__ : List[Any] = "a bowl of pears" UpperCAmelCase__ : Optional[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=__UpperCamelCase , target_prompt=__UpperCamelCase , generator=__UpperCamelCase , ) UpperCAmelCase__ : Any = pipe.invert( prompt=__UpperCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCamelCase , num_inference_steps=25 , ).latents UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , mask_image=__UpperCamelCase , image_latents=__UpperCamelCase , generator=__UpperCamelCase , negative_prompt=__UpperCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] UpperCAmelCase__ : Optional[Any] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
712
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): '''simple docstring''' # Construct model if gpta_config_file == "": UpperCAmelCase__ : Optional[int] = GPTaConfig() else: UpperCAmelCase__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
660
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : str = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'segformer' def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=[2, 2, 2, 2] , __UpperCamelCase=[8, 4, 2, 1] , __UpperCamelCase=[32, 64, 1_60, 2_56] , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[1, 2, 5, 8] , __UpperCamelCase=[4, 4, 4, 4] , __UpperCamelCase="gelu" , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=0.1 , __UpperCamelCase=1E-6 , __UpperCamelCase=2_56 , __UpperCamelCase=2_55 , **__UpperCamelCase , )-> Optional[int]: super().__init__(**__UpperCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , __UpperCamelCase , ) UpperCAmelCase__ : Optional[int] = num_channels UpperCAmelCase__ : Union[str, Any] = num_encoder_blocks UpperCAmelCase__ : Tuple = depths UpperCAmelCase__ : List[str] = sr_ratios UpperCAmelCase__ : Union[str, Any] = hidden_sizes UpperCAmelCase__ : Any = patch_sizes UpperCAmelCase__ : List[Any] = strides UpperCAmelCase__ : Optional[int] = mlp_ratios UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = classifier_dropout_prob UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Tuple = drop_path_rate UpperCAmelCase__ : Optional[int] = layer_norm_eps UpperCAmelCase__ : List[Any] = decoder_hidden_size UpperCAmelCase__ : int = kwargs.get("reshape_last_stage" , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = semantic_loss_ignore_index class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-4 @property def lowerCAmelCase__ ( self )-> int: return 12
713
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A__ : Optional[int] = ["""small""", """medium""", """large"""] A__ : Optional[int] = """lm_head.decoder.weight""" A__ : Dict = """lm_head.weight""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = d.pop(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) A__ : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: A__ : Tuple = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A__ : str = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
660
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = get_failure_array(lowerCAmelCase ) # 2) Step through text searching for pattern UpperCAmelCase__ : Any = 0, 0 # index into text, pattern while i < len(lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCAmelCase__ : Optional[Any] = failure[j - 1] continue i += 1 return False def a__ ( lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [0] UpperCAmelCase__ : int = 0 UpperCAmelCase__ : List[Any] = 1 while j < len(lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCAmelCase__ : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) A__ : Tuple = """abc1abc12""" A__ : Tuple = """alskfjaldsabc1abc1abc12k23adsfabcabc""" A__ : List[Any] = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) A__ : str = """ABABX""" A__ : List[str] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) A__ : Optional[int] = """AAAB""" A__ : Optional[int] = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) A__ : Union[str, Any] = """abcdabcy""" A__ : Tuple = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) A__ : Tuple = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
714
"""simple docstring""" from math import isqrt def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def a__ ( lowerCAmelCase : int = 10**8 ): '''simple docstring''' UpperCAmelCase__ : Dict = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar A__ : List[str] = TypeVar("""T""") class _lowercase ( Generic[T] ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase )-> None: UpperCAmelCase__ : Any | T = None UpperCAmelCase__ : int = len(__UpperCamelCase ) UpperCAmelCase__ : list[T] = [any_type for _ in range(self.N )] + arr UpperCAmelCase__ : Tuple = fnc self.build() def lowerCAmelCase__ ( self )-> None: for p in range(self.N - 1 , 0 , -1 ): UpperCAmelCase__ : Dict = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> None: p += self.N UpperCAmelCase__ : Any = v while p > 1: UpperCAmelCase__ : str = p // 2 UpperCAmelCase__ : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> T | None: # noqa: E741 UpperCAmelCase__ : Optional[int] = l + self.N, r + self.N UpperCAmelCase__ : T | None = None while l <= r: if l % 2 == 1: UpperCAmelCase__ : Union[str, Any] = self.st[l] if res is None else self.fn(__UpperCamelCase , self.st[l] ) if r % 2 == 0: UpperCAmelCase__ : Any = self.st[r] if res is None else self.fn(__UpperCamelCase , self.st[r] ) UpperCAmelCase__ : Optional[int] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce A__ : Optional[Any] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] A__ : List[str] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } A__ : str = SegmentTree(test_array, min) A__ : Tuple = SegmentTree(test_array, max) A__ : List[str] = SegmentTree(test_array, lambda a, b: a + b) def a__ ( ): '''simple docstring''' for i in range(len(lowerCAmelCase ) ): for j in range(lowerCAmelCase , len(lowerCAmelCase ) ): UpperCAmelCase__ : int = reduce(lowerCAmelCase , test_array[i : j + 1] ) UpperCAmelCase__ : Tuple = reduce(lowerCAmelCase , test_array[i : j + 1] ) UpperCAmelCase__ : List[Any] = reduce(lambda lowerCAmelCase , lowerCAmelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase , lowerCAmelCase ) assert max_range == max_segment_tree.query(lowerCAmelCase , lowerCAmelCase ) assert sum_range == sum_segment_tree.query(lowerCAmelCase , lowerCAmelCase ) test_all_segments() for index, value in test_updates.items(): A__ : int = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
715
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = np.full((len(lowerCAmelCase ), sequence_length, 2) , lowerCAmelCase ) else: UpperCAmelCase__ : Optional[Any] = np.full((len(lowerCAmelCase ), sequence_length) , lowerCAmelCase ) for i, tensor in enumerate(lowerCAmelCase ): if padding_side == "right": if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Dict = tensor[:sequence_length] else: UpperCAmelCase__ : Tuple = tensor[:sequence_length] else: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase__ : int = tensor[:sequence_length] return out_tensor.tolist() def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = ord(lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCAmelCase__ : Optional[Any] = unicodedata.category(lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -100 _A = "pt" def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: import torch UpperCAmelCase__ : Optional[Any] = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase__ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase__ : str = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch UpperCAmelCase__ : Optional[Any] = torch.tensor(batch["entity_ids"] ).shape[1] UpperCAmelCase__ : int = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase__ : int = [ list(__UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) for label in labels ] else: UpperCAmelCase__ : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) + list(__UpperCamelCase ) for label in labels ] UpperCAmelCase__ : Optional[Any] = [feature["ner_tags"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , -1 , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = [feature["original_entity_spans"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , (-1, -1) , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {k: torch.tensor(__UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
660
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , )-> Dict: UpperCAmelCase__ : str = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : str = seq_length UpperCAmelCase__ : int = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : int = use_token_type_ids UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Optional[Any] = type_vocab_size UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : List[str] = num_labels UpperCAmelCase__ : Union[str, Any] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : List[str] = None if self.use_input_mask: UpperCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self )-> List[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCAmelCase__ : Union[str, Any] = LlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> Tuple: UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Dict = LlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : int = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) UpperCAmelCase__ : Any = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) UpperCAmelCase__ : Any = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> Optional[Any]: UpperCAmelCase__ : List[str] = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> int: UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : List[Any] = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass UpperCAmelCase__ : List[Any] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) UpperCAmelCase__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ : str = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase__ : Tuple = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] UpperCAmelCase__ : int = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] # select random slice UpperCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ : str = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Dict = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Any = config_and_inputs UpperCAmelCase__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _A = (LlamaForCausalLM,) if is_torch_available() else () _A = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) _A = False _A = False def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Optional[int] = LlamaModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> int: self.config_tester.run_common_tests() def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : int = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[Any] = 3 UpperCAmelCase__ : int = input_dict["input_ids"] UpperCAmelCase__ : Any = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Any = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[Any] = 3 UpperCAmelCase__ : List[Any] = "single_label_classification" UpperCAmelCase__ : List[Any] = input_dict["input_ids"] UpperCAmelCase__ : str = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Tuple = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : Union[str, Any] = "multi_label_classification" UpperCAmelCase__ : Optional[Any] = input_dict["input_ids"] UpperCAmelCase__ : str = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase__ : int = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def lowerCAmelCase__ ( self )-> int: pass @parameterized.expand([("linear",), ("dynamic",)] ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Optional[Any] = LlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() UpperCAmelCase__ : Optional[Any] = original_model(__UpperCamelCase ).last_hidden_state UpperCAmelCase__ : Dict = original_model(__UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Union[str, Any] = {"type": scaling_type, "factor": 10.0} UpperCAmelCase__ : Union[str, Any] = LlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() UpperCAmelCase__ : Tuple = scaled_model(__UpperCamelCase ).last_hidden_state UpperCAmelCase__ : Any = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-5 ) ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] UpperCAmelCase__ : List[str] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) UpperCAmelCase__ : List[Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCAmelCase__ : int = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase__ : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : str = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] UpperCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) UpperCAmelCase__ : List[str] = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 UpperCAmelCase__ : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase__ : str = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : int = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] UpperCAmelCase__ : int = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) UpperCAmelCase__ : Union[str, Any] = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 UpperCAmelCase__ : Optional[Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Optional[int] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] UpperCAmelCase__ : Union[str, Any] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) UpperCAmelCase__ : Optional[int] = model(torch.tensor(__UpperCamelCase ) ) UpperCAmelCase__ : List[str] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off UpperCAmelCase__ : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("Model is curently gated" ) @slow def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Dict = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" UpperCAmelCase__ : int = "Simply put, the theory of relativity states that " UpperCAmelCase__ : List[str] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) UpperCAmelCase__ : Any = tokenizer.encode(__UpperCamelCase , return_tensors="pt" ) UpperCAmelCase__ : Tuple = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__UpperCamelCase ) # greedy generation outputs UpperCAmelCase__ : List[str] = model.generate(__UpperCamelCase , max_new_tokens=64 , top_p=__UpperCamelCase , temperature=1 , do_sample=__UpperCamelCase ) UpperCAmelCase__ : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
716
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
660
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : str = logging.get_logger(__name__) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'timm_backbone' def __init__( self , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , )-> Union[str, Any]: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : int = backbone UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : List[Any] = features_only UpperCAmelCase__ : str = use_pretrained_backbone UpperCAmelCase__ : Any = True UpperCAmelCase__ : List[str] = out_indices if out_indices is not None else (-1,)
717
"""simple docstring""" from manim import * class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : str = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[Any] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : int = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("CPU" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Union[str, Any] = Text("GPU" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Model" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): rect.set_stroke(__UpperCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase__ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCamelCase , buff=0.0 ) self.add(__UpperCamelCase ) cpu_targs.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Any = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , aligned_edge=__UpperCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : str = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase__ : Optional[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.play(Write(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = fill.copy().set_fill(__UpperCamelCase , opacity=0.7 ) target.move_to(__UpperCamelCase ) first_animations.append(GrowFromCenter(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
660
0
"""simple docstring""" def a__ ( lowerCAmelCase : dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = set() # edges = list of graph's edges UpperCAmelCase__ : Tuple = get_edges(lowerCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase__ : int = edges.pop() chosen_vertices.add(lowerCAmelCase ) chosen_vertices.add(lowerCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowerCAmelCase ) return chosen_vertices def a__ ( lowerCAmelCase : dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
718
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : nn.ModuleList , lowerCAmelCase : nn.ModuleList , lowerCAmelCase : List[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F"{len(lowerCAmelCase )} != {len(lowerCAmelCase )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): '''simple docstring''' try: UpperCAmelCase__ : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : int , lowerCAmelCase : Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( lowerCAmelCase : Union[str, PreTrainedModel] , lowerCAmelCase : Union[str, Path] = "student" , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"teacher must be a model or string got type {type(lowerCAmelCase )}" UpperCAmelCase__ : int = teacher.config.to_diff_dict() try: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ : Tuple = teacher_e if d is None: UpperCAmelCase__ : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ : Optional[Any] = teacher_e if d is None: UpperCAmelCase__ : Optional[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights UpperCAmelCase__ : Tuple = teacher.config_class(**lowerCAmelCase ) UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ : Optional[int] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ , UpperCAmelCase__ : int = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) UpperCAmelCase__ : int = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
660
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A__ : Optional[int] = logging.get_logger(__name__) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = 8 , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : List[str] = do_rescale UpperCAmelCase__ : List[Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = do_pad UpperCAmelCase__ : Tuple = pad_size def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase )-> np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> Optional[int]: UpperCAmelCase__ : List[Any] = get_image_size(__UpperCamelCase ) UpperCAmelCase__ : Dict = (old_height // size + 1) * size - old_height UpperCAmelCase__ : Optional[int] = (old_width // size + 1) * size - old_width return pad(__UpperCamelCase , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Union[str, Any] = do_pad if do_pad is not None else self.do_pad UpperCAmelCase__ : List[Any] = pad_size if pad_size is not None else self.pad_size UpperCAmelCase__ : str = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Union[str, Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ : List[Any] = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_pad: UpperCAmelCase__ : Optional[int] = [self.pad(__UpperCamelCase , size=__UpperCamelCase ) for image in images] UpperCAmelCase__ : Dict = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] UpperCAmelCase__ : List[str] = {"pixel_values": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
719
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Tuple = ort.SessionOptions() UpperCAmelCase__ : List[str] = False return options def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : Tuple = np.random.RandomState(0 ) UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images UpperCAmelCase__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : List[str] = np.random.RandomState(0 ) UpperCAmelCase__ : str = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : int = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
660
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
720
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'table-transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=1_00 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , )-> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : int = backbone_config.get("model_type" ) UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : int = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = None, None, None UpperCAmelCase__ : Optional[int] = use_timm_backbone UpperCAmelCase__ : Dict = backbone_config UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : int = d_model UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : str = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = auxiliary_loss UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[str] = backbone UpperCAmelCase__ : List[Any] = use_pretrained_backbone UpperCAmelCase__ : List[str] = dilation # Hungarian matcher UpperCAmelCase__ : Dict = class_cost UpperCAmelCase__ : Any = bbox_cost UpperCAmelCase__ : Tuple = giou_cost # Loss coefficients UpperCAmelCase__ : Any = mask_loss_coefficient UpperCAmelCase__ : Dict = dice_loss_coefficient UpperCAmelCase__ : Any = bbox_loss_coefficient UpperCAmelCase__ : Tuple = giou_loss_coefficient UpperCAmelCase__ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> int: return self.encoder_attention_heads @property def lowerCAmelCase__ ( self )-> int: return self.d_model class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-5 @property def lowerCAmelCase__ ( self )-> int: return 12
660
0
"""simple docstring""" def a__ ( lowerCAmelCase : List[str]): '''simple docstring''' UpperCAmelCase__ : Dict = [0] * len(lowerCAmelCase) UpperCAmelCase__ : Any = [] UpperCAmelCase__ : str = [1] * len(lowerCAmelCase) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase)): if indegree[i] == 0: queue.append(lowerCAmelCase) while queue: UpperCAmelCase__ : Union[str, Any] = queue.pop(0) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase__ : Dict = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCAmelCase) print(max(lowerCAmelCase)) # Adjacency list of Graph A__ : Optional[Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
721
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) A__ : int = getLogger(__name__) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 1024 , lowerCAmelCase : List[Any]="val" , lowerCAmelCase : str=None , lowerCAmelCase : int=False , lowerCAmelCase : Dict="summarization" , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict = None , lowerCAmelCase : List[str]="" , **lowerCAmelCase : int , ): '''simple docstring''' UpperCAmelCase__ : Dict = str(lowerCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=lowerCAmelCase ) UpperCAmelCase__ : List[str] = Path(lowerCAmelCase ) UpperCAmelCase__ : str = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).cuda() if fpaa: UpperCAmelCase__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase , lowerCAmelCase ) # update config with task specific params UpperCAmelCase__ : List[Any] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase__ : Any = num_return_sequences UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase__ : int = tokenizer.model_max_length if prefix is None: UpperCAmelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase__ : str = SeqaSeqDataset( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , max_target_length=1024 , type_path=lowerCAmelCase , n_obs=lowerCAmelCase , prefix=lowerCAmelCase , **lowerCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase__ : Union[str, Any] = ds.make_sortish_sampler(lowerCAmelCase , distributed=lowerCAmelCase , add_extra_examples=lowerCAmelCase , shuffle=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = DataLoader(lowerCAmelCase , sampler=lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn ) UpperCAmelCase__ : str = [] for batch in tqdm(lowerCAmelCase ): UpperCAmelCase__ : Dict = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=lowerCAmelCase , num_beams=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase__ : int = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) UpperCAmelCase__ : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase__ : str = chunks(lowerCAmelCase , lowerCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(lowerCAmelCase , lowerCAmelCase ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' UpperCAmelCase__ : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=lowerCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument( "--type_path" , type=lowerCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowerCAmelCase , default=8 , required=lowerCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=lowerCAmelCase , default=1 , required=lowerCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=lowerCAmelCase , default=600 , required=lowerCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument( "--prefix" , type=lowerCAmelCase , required=lowerCAmelCase , default=lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_known_args() UpperCAmelCase__ : int = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase__ : Dict = Path(args.save_dir + "_tmp" ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) # this handles locking. UpperCAmelCase__ : List[str] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase__ : List[str] = {} if args.src_lang is not None: UpperCAmelCase__ : str = args.src_lang if args.tgt_lang is not None: UpperCAmelCase__ : List[str] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = eval_data_dir( args.data_dir , lowerCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase , **lowerCAmelCase , ) if args.local_rank <= 0: UpperCAmelCase__ : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ : Tuple = gather_results_from_each_node(lowerCAmelCase , lowerCAmelCase , args.sync_timeout ) UpperCAmelCase__ : Union[str, Any] = combine_partial_results(lowerCAmelCase ) if args.num_return_sequences > 1: UpperCAmelCase__ : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase , lowerCAmelCase ) return UpperCAmelCase__ : Optional[Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(lowerCAmelCase ) as f: UpperCAmelCase__ : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase__ : List[Any] = "translation" in args.task UpperCAmelCase__ : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase__ : Optional[Any] = "bleu" if calc_bleu else "rouge" UpperCAmelCase__ : Dict = score_fn(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = time.time() - start_time UpperCAmelCase__ : Optional[int] = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase__ : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) print(lowerCAmelCase ) write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase ) def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = [] for partial_result in partial_results: records.extend(lowerCAmelCase ) UpperCAmelCase__ : Dict = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["id"] ) UpperCAmelCase__ : List[str] = [x["pred"] for x in records] return preds def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): '''simple docstring''' # WAIT FOR lots of .json files UpperCAmelCase__ : int = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase__ : Dict = None while (time.time() - start_wait) < timeout: UpperCAmelCase__ : str = list(save_dir.glob("rank_*.json" ) ) if len(lowerCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase__ : Union[str, Any] = lmap(lowerCAmelCase , lowerCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
660
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A__ : str = logging.get_logger(__name__) A__ : List[Any] = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A = 'resnet' _A = ['basic', 'bottleneck'] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="bottleneck" , __UpperCamelCase="relu" , __UpperCamelCase=False , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , )-> Union[str, Any]: super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : str = embedding_size UpperCAmelCase__ : Optional[int] = hidden_sizes UpperCAmelCase__ : str = depths UpperCAmelCase__ : Optional[int] = layer_type UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Tuple = downsample_in_first_stage UpperCAmelCase__ : str = ["stem"] + [F"stage{idx}" for idx in range(1 , len(__UpperCamelCase ) + 1 )] UpperCAmelCase__ : Any = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-3
700
"""simple docstring""" from timeit import timeit def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): '''simple docstring''' def do_benchmark(lowerCAmelCase : int ) -> None: UpperCAmelCase__ : Dict = "import __main__ as z" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Any = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
660
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : Dict = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys A__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowercase ( unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Optional[Any] = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase__ : List[str] = load_tool("text-classification" , remote=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Dict = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Any = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : str = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" )
660
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A__ : Dict = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'albert' def __init__( self , __UpperCamelCase=3_00_00 , __UpperCamelCase=1_28 , __UpperCamelCase=40_96 , __UpperCamelCase=12 , __UpperCamelCase=1 , __UpperCamelCase=64 , __UpperCamelCase=1_63_84 , __UpperCamelCase=1 , __UpperCamelCase="gelu_new" , __UpperCamelCase=0 , __UpperCamelCase=0 , __UpperCamelCase=5_12 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0.1 , __UpperCamelCase="absolute" , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=3 , **__UpperCamelCase , )-> int: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Tuple = embedding_size UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Any = num_hidden_groups UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : str = inner_group_num UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = classifier_dropout_prob UpperCAmelCase__ : int = position_embedding_type class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
702
"""simple docstring""" def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase , lowerCAmelCase ) ) ) def a__ ( lowerCAmelCase : list[float] ): '''simple docstring''' if point: if isinstance(lowerCAmelCase , lowerCAmelCase ): for item in point: if not isinstance(lowerCAmelCase , (int, float) ): UpperCAmelCase__ : Tuple = ( "Expected a list of numbers as input, found " F"{type(lowerCAmelCase ).__name__}" ) raise TypeError(lowerCAmelCase ) else: UpperCAmelCase__ : Dict = F"Expected a list of numbers as input, found {type(lowerCAmelCase ).__name__}" raise TypeError(lowerCAmelCase ) else: raise ValueError("Missing an input" ) def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase , lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
A__ : Union[str, Any] = {"""a""": ["""c""", """b"""], """b""": ["""d""", """e"""], """c""": [], """d""": [], """e""": []} A__ : Union[str, Any] = ["""a""", """b""", """c""", """d""", """e"""] def a__ ( lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Dict ): '''simple docstring''' UpperCAmelCase__ : str = start # add current to visited visited.append(lowerCAmelCase ) UpperCAmelCase__ : List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCAmelCase__ : List[Any] = topological_sort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # if all neighbors visited add current to sort sort.append(lowerCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(lowerCAmelCase ) != len(lowerCAmelCase ): for vertice in vertices: if vertice not in visited: UpperCAmelCase__ : Optional[int] = topological_sort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # return sort return sort if __name__ == "__main__": A__ : List[str] = topological_sort("""a""", [], []) print(sort)
703
"""simple docstring""" import math def a__ ( lowerCAmelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( lowerCAmelCase : int = 1_0001 ): '''simple docstring''' try: UpperCAmelCase__ : List[str] = int(lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : str = 2 while len(lowerCAmelCase ) < nth: if is_prime(lowerCAmelCase ): primes.append(lowerCAmelCase ) num += 1 else: num += 1 return primes[len(lowerCAmelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() A__ : Union[str, Any] = logging.get_logger(__name__) A__ : int = """Hello, World!""" A__ : Any = """en_XX""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : bool ): '''simple docstring''' UpperCAmelCase__ : Any = Path("data_bin" ) UpperCAmelCase__ : Optional[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowerCAmelCase ).parent ) , checkpoint_file=Path(lowerCAmelCase ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(lowerCAmelCase ) , bpe="sentencepiece" , sentencepiece_model=str(Path(lowerCAmelCase ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(lowerCAmelCase ) UpperCAmelCase__ : Dict = xmod.model.encoder.sentence_encoder UpperCAmelCase__ : int = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCAmelCase__ : str = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = XmodForSequenceClassification(lowerCAmelCase ) if classification_head else XmodForMaskedLM(lowerCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase__ : List[Any] = xmod_sent_encoder.embed_tokens.weight UpperCAmelCase__ : Optional[int] = xmod_sent_encoder.embed_positions.weight UpperCAmelCase__ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCAmelCase__ : Any = xmod_sent_encoder.layernorm_embedding.weight UpperCAmelCase__ : Tuple = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase__ : int = model.roberta.encoder.layer[i] UpperCAmelCase__ : Tuple = xmod_sent_encoder.layers[i] # self attention UpperCAmelCase__ : Union[str, Any] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) UpperCAmelCase__ : Any = xmod_layer.self_attn.q_proj.weight UpperCAmelCase__ : Tuple = xmod_layer.self_attn.q_proj.bias UpperCAmelCase__ : List[Any] = xmod_layer.self_attn.k_proj.weight UpperCAmelCase__ : Any = xmod_layer.self_attn.k_proj.bias UpperCAmelCase__ : List[Any] = xmod_layer.self_attn.v_proj.weight UpperCAmelCase__ : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase__ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) UpperCAmelCase__ : List[Any] = xmod_layer.self_attn.out_proj.weight UpperCAmelCase__ : Any = xmod_layer.self_attn.out_proj.bias UpperCAmelCase__ : Union[str, Any] = xmod_layer.self_attn_layer_norm.weight UpperCAmelCase__ : Optional[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCAmelCase__ : List[str] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) UpperCAmelCase__ : Optional[int] = xmod_layer.fca.weight UpperCAmelCase__ : str = xmod_layer.fca.bias # output UpperCAmelCase__ : Union[str, Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) UpperCAmelCase__ : str = xmod_layer.fca.weight UpperCAmelCase__ : List[Any] = xmod_layer.fca.bias UpperCAmelCase__ : Any = xmod_layer.final_layer_norm.weight UpperCAmelCase__ : Tuple = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCAmelCase__ : List[str] = xmod_layer.adapter_layer_norm.weight UpperCAmelCase__ : Any = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCAmelCase__ : Any = bert_output.adapter_modules[lang_code] UpperCAmelCase__ : Dict = xmod_layer.adapter_modules[lang_code] UpperCAmelCase__ : Optional[Any] = from_adapter.fca.weight UpperCAmelCase__ : Dict = from_adapter.fca.bias UpperCAmelCase__ : Optional[int] = from_adapter.fca.weight UpperCAmelCase__ : str = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCAmelCase__ : str = xmod_sent_encoder.layer_norm.weight UpperCAmelCase__ : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCAmelCase__ : Dict = xmod.model.classification_heads["mnli"].dense.weight UpperCAmelCase__ : Optional[int] = xmod.model.classification_heads["mnli"].dense.bias UpperCAmelCase__ : Optional[Any] = xmod.model.classification_heads["mnli"].out_proj.weight UpperCAmelCase__ : Optional[int] = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head UpperCAmelCase__ : List[Any] = xmod.model.encoder.lm_head.dense.weight UpperCAmelCase__ : Dict = xmod.model.encoder.lm_head.dense.bias UpperCAmelCase__ : Union[str, Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCAmelCase__ : Dict = xmod.model.encoder.lm_head.layer_norm.bias UpperCAmelCase__ : Dict = xmod.model.encoder.lm_head.weight UpperCAmelCase__ : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase__ : Dict = xmod.encode(lowerCAmelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowerCAmelCase ) UpperCAmelCase__ : Dict = model(lowerCAmelCase )[0] if classification_head: UpperCAmelCase__ : Any = xmod.model.classification_heads["mnli"](xmod.extract_features(lowerCAmelCase ) ) else: UpperCAmelCase__ : Dict = xmod.model(lowerCAmelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase__ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 UpperCAmelCase__ : Optional[int] = torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(lowerCAmelCase ).mkdir(parents=lowerCAmelCase , exist_ok=lowerCAmelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) A__ : int = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
704
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=0.6 , __UpperCamelCase=None , )-> List[Any]: UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : int = mask_ratio UpperCAmelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self )-> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = ViTMAEModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _A = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} _A = False _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Any = ViTMAEModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> Dict: pass def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Dict: # make masks reproducible np.random.seed(2 ) UpperCAmelCase__ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : str = torch.from_numpy(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Optional[Any] = pt_noise super().check_pt_tf_models(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = outputs[0].cpu().numpy() UpperCAmelCase__ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model_class.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) # Make sure we don't have nans UpperCAmelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> List[str]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Any: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self )-> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self )-> Union[str, Any]: pass @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ViTMAEModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> List[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self )-> Optional[int]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase__ : Any = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCamelCase ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : List[Any] = ViTMAEConfig() UpperCAmelCase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**__UpperCamelCase , noise=torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ) ) # verify the logits UpperCAmelCase__ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCamelCase ) , atol=1E-4 ) )
660
0
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A__ : Optional[int] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A__ : Dict = typing.Union[np.floataa, int, float] # noqa: UP007 def a__ ( lowerCAmelCase : Vector , lowerCAmelCase : Vector ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(lowerCAmelCase ) - np.asarray(lowerCAmelCase )) ** 2 ) ) def a__ ( lowerCAmelCase : Vector , lowerCAmelCase : Vector ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase , lowerCAmelCase ) ) ** (1 / 2) if __name__ == "__main__": def a__ ( ): '''simple docstring''' from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0000 , globals=globals() , ) ) benchmark()
705
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _lowercase : '''simple docstring''' _A = 42 # setable values _A = 42 _A = 42 _A = None @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: return cls(common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase ) @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A = [e.name for e in FlaxKarrasDiffusionSchedulers] _A = 42 @property def lowerCAmelCase__ ( self )-> Optional[int]: return True @register_to_config def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = 0.0001 , __UpperCamelCase = 0.02 , __UpperCamelCase = "linear" , __UpperCamelCase = None , __UpperCamelCase = "fixed_small" , __UpperCamelCase = True , __UpperCamelCase = "epsilon" , __UpperCamelCase = jnp.floataa , )-> List[str]: UpperCAmelCase__ : int = dtype def lowerCAmelCase__ ( self , __UpperCamelCase = None )-> DDPMSchedulerState: if common is None: UpperCAmelCase__ : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> jnp.ndarray: return sample def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = () )-> DDPMSchedulerState: UpperCAmelCase__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Optional[int] = (jnp.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : Dict = jnp.clip(__UpperCamelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Tuple = jnp.log(jnp.clip(__UpperCamelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] UpperCAmelCase__ : Optional[int] = (predicted_variance + 1) / 2 UpperCAmelCase__ : Any = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase__ : List[str] = timestep if key is None: UpperCAmelCase__ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = jnp.split(__UpperCamelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : Optional[Any] = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Any = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : List[Any] = jnp.clip(__UpperCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : Any = jax.random.split(__UpperCamelCase , num=1 ) UpperCAmelCase__ : int = jax.random.normal(__UpperCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__UpperCamelCase , __UpperCamelCase , predicted_variance=__UpperCamelCase ) ** 0.5) * noise UpperCAmelCase__ : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase , state=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return add_noise_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return get_velocity_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __len__( self )-> Tuple: return self.config.num_train_timesteps
660
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A__ : Any = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A__ : Optional[int] = 250_004 A__ : Tuple = 250_020 @require_sentencepiece @require_tokenizers class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = MBartTokenizer _A = MBartTokenizerFast _A = True _A = True def lowerCAmelCase__ ( self )-> Any: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Dict = MBartTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Any = MBartTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ : int = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : str = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowerCAmelCase__ ( self )-> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : str = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase__ : int = tempfile.mkdtemp() UpperCAmelCase__ : str = tokenizer_r.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : int = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way UpperCAmelCase__ : int = tokenizer_r.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : str = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Optional[Any] = tokenizer_r.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : int = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Any = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): '''simple docstring''' _A = 'facebook/mbart-large-en-ro' _A = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _A = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _A = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def lowerCAmelCase__ ( cls )-> List[Any]: UpperCAmelCase__ : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCAmelCase__ : Any = 1 return cls def lowerCAmelCase__ ( self )-> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_00_20 ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Tuple: self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids ) UpperCAmelCase__ : Dict = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] UpperCAmelCase__ : List[str] = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) UpperCAmelCase__ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : Optional[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = 10 UpperCAmelCase__ : Optional[Any] = self.tokenizer(__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __UpperCamelCase ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_00_26, 25_00_01] ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Tuple = MBartTokenizer.from_pretrained(__UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCamelCase ) @require_torch def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , return_tensors="pt" ) UpperCAmelCase__ : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : List[str] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase__ : Any = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase__ : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Dict = self.tokenizer(self.src_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase__ : Dict = self.tokenizer( text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase__ : Dict = targets["input_ids"] UpperCAmelCase__ : List[Any] = shift_tokens_right(__UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[Any] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { # A, test, EOS, en_XX "input_ids": [[62, 30_34, 2, 25_00_04]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_00_01, } , )
706
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
0
def a__ ( lowerCAmelCase : int = 10**9 ): '''simple docstring''' UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : Tuple = 2 UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : List[str] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value UpperCAmelCase__ : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
707
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : Dict = logging.get_logger(__name__) def a__ ( lowerCAmelCase : Optional[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase__ : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase__ : int = get_size_dict(__UpperCamelCase , param_name="crop_size" ) UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : List[Any] = do_center_crop UpperCAmelCase__ : str = crop_size UpperCAmelCase__ : Optional[int] = resample UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = offset UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(__UpperCamelCase , size["shortest_edge"] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: UpperCAmelCase__ : Any = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = image.astype(np.floataa ) if offset: UpperCAmelCase__ : Tuple = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = to_numpy_array(__UpperCamelCase ) if do_resize: UpperCAmelCase__ : Union[str, Any] = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: UpperCAmelCase__ : int = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: UpperCAmelCase__ : List[str] = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: UpperCAmelCase__ : List[Any] = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) UpperCAmelCase__ : Dict = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> PIL.Image.Image: UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Optional[int] = offset if offset is not None else self.offset UpperCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Tuple = get_size_dict(__UpperCamelCase , param_name="crop_size" ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ : List[str] = make_batched(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] UpperCAmelCase__ : Dict = {"pixel_values": videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
660
0
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A__ : Optional[Any] = logging.get_logger(__name__) def a__ ( lowerCAmelCase : bool , lowerCAmelCase : bool ): '''simple docstring''' def run_func(lowerCAmelCase : Dict ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a__ ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Dict = random.Random() UpperCAmelCase__ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = 42 _A = 'TensorFlow' @property def lowerCAmelCase__ ( self )-> Optional[int]: return tf.__version__ def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: # initialize GPU on separate process UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Union[str, Any] = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: UpperCAmelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : List[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Any = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Optional[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Optional[int] = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : str = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : Any = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Dict = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : Any = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : int = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Optional[Any] = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Any = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : int = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : int = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : Union[str, Any] = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Dict = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Union[str, Any] = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Any = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients UpperCAmelCase__ : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase__ ( self , __UpperCamelCase )-> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase__ : Optional[Any] = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=10 , ) return min(__UpperCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase__ : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase__ : Optional[int] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) UpperCAmelCase__ : str = meminfo.used UpperCAmelCase__ : int = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase__ : Any = None else: UpperCAmelCase__ : List[Any] = measure_peak_memory_cpu(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase__ : Optional[Any] = stop_memory_tracing(__UpperCamelCase ) if memory is None: UpperCAmelCase__ : Tuple = summary.total else: UpperCAmelCase__ : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
708
"""simple docstring""" def a__ ( lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(lowerCAmelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
"""simple docstring""" def a__ ( lowerCAmelCase : int = 100_0000 ): '''simple docstring''' UpperCAmelCase__ : List[str] = set(range(3 , lowerCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase , lowerCAmelCase ) ) ) UpperCAmelCase__ : int = [float(lowerCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase , limit + 1 , lowerCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
709
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A__ : Optional[Any] = logging.get_logger(__name__) def a__ ( lowerCAmelCase : bool , lowerCAmelCase : bool ): '''simple docstring''' def run_func(lowerCAmelCase : Dict ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a__ ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Dict = random.Random() UpperCAmelCase__ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = 42 _A = "TensorFlow" @property def lowerCAmelCase__ ( self )-> Optional[int]: return tf.__version__ def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: # initialize GPU on separate process UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Union[str, Any] = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: UpperCAmelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : List[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Any = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Optional[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Optional[int] = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : str = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : Any = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Dict = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : Any = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : int = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Optional[Any] = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Any = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : int = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : int = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : Union[str, Any] = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Dict = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Union[str, Any] = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Any = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients UpperCAmelCase__ : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase__ ( self , __UpperCamelCase )-> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase__ : Optional[Any] = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=10 , ) return min(__UpperCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase__ : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase__ : Optional[int] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) UpperCAmelCase__ : str = meminfo.used UpperCAmelCase__ : int = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase__ : Any = None else: UpperCAmelCase__ : List[Any] = measure_peak_memory_cpu(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase__ : Optional[Any] = stop_memory_tracing(__UpperCamelCase ) if memory is None: UpperCAmelCase__ : Tuple = summary.total else: UpperCAmelCase__ : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
660
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : Dict = logging.get_logger(__name__) def a__ ( lowerCAmelCase : Optional[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase__ : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase__ : int = get_size_dict(__UpperCamelCase , param_name="crop_size" ) UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : List[Any] = do_center_crop UpperCAmelCase__ : str = crop_size UpperCAmelCase__ : Optional[int] = resample UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = offset UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(__UpperCamelCase , size["shortest_edge"] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: UpperCAmelCase__ : Any = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = image.astype(np.floataa ) if offset: UpperCAmelCase__ : Tuple = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = to_numpy_array(__UpperCamelCase ) if do_resize: UpperCAmelCase__ : Union[str, Any] = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: UpperCAmelCase__ : int = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: UpperCAmelCase__ : List[str] = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: UpperCAmelCase__ : List[Any] = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) UpperCAmelCase__ : Dict = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> PIL.Image.Image: UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Optional[int] = offset if offset is not None else self.offset UpperCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Tuple = get_size_dict(__UpperCamelCase , param_name="crop_size" ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ : List[str] = make_batched(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] UpperCAmelCase__ : Dict = {"pixel_values": videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
710
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule A__ : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
660
0
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() A__ : str = logging.get_logger("""transformers.models.speecht5""") A__ : List[str] = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } A__ : Union[str, Any] = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } A__ : str = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } A__ : Optional[int] = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } A__ : Tuple = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } A__ : int = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } A__ : int = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } A__ : List[Any] = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } A__ : List[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } A__ : Tuple = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A__ : int = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } A__ : List[Any] = [] A__ : int = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] A__ : Any = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] A__ : Tuple = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] A__ : Union[str, Any] = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ : Union[str, Any] = getattr(lowerCAmelCase , lowerCAmelCase ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase , lowerCAmelCase ).shape else: UpperCAmelCase__ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Optional[int] = value elif weight_type == "weight_v": UpperCAmelCase__ : str = value elif weight_type == "bias": UpperCAmelCase__ : str = value elif weight_type == "running_mean": UpperCAmelCase__ : Tuple = value elif weight_type == "running_var": UpperCAmelCase__ : Dict = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : int = value else: UpperCAmelCase__ : Any = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def a__ ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ : Dict = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] if task == "s2t": UpperCAmelCase__ : int = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Union[str, Any] = MAPPING_S2T UpperCAmelCase__ : str = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[Any] = MAPPING_T2S UpperCAmelCase__ : Any = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : str = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : int = MAPPING_S2S UpperCAmelCase__ : Tuple = IGNORE_KEYS_S2S else: raise ValueError(F"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase , lowerCAmelCase ): logger.info(F"{name} was ignored" ) continue UpperCAmelCase__ : str = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase__ : Any = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ : List[Any] = key.split(".*." ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : str = True if "*" in mapped_key: UpperCAmelCase__ : List[Any] = name.split(lowerCAmelCase )[0].split("." )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace("*" , lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase__ : Optional[int] = "weight_g" elif "weight_v" in name: UpperCAmelCase__ : str = "weight_v" elif "bias" in name: UpperCAmelCase__ : Union[str, Any] = "bias" elif "weight" in name: UpperCAmelCase__ : List[Any] = "weight" elif "running_mean" in name: UpperCAmelCase__ : int = "running_mean" elif "running_var" in name: UpperCAmelCase__ : str = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = "num_batches_tracked" else: UpperCAmelCase__ : Dict = None set_recursively(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = full_name.split("conv_layers." )[-1] UpperCAmelCase__ : List[Any] = name.split("." ) UpperCAmelCase__ : List[str] = int(items[0] ) UpperCAmelCase__ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCAmelCase__ : Any = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCAmelCase__ : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) UpperCAmelCase__ : Any = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def a__ ( lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , ): '''simple docstring''' if config_path is not None: UpperCAmelCase__ : Any = SpeechTaConfig.from_pretrained(lowerCAmelCase ) else: UpperCAmelCase__ : Any = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : Optional[int] = config.max_text_positions UpperCAmelCase__ : str = SpeechTaForSpeechToText(lowerCAmelCase ) elif task == "t2s": UpperCAmelCase__ : Dict = 1876 UpperCAmelCase__ : int = 600 UpperCAmelCase__ : Tuple = config.max_speech_positions UpperCAmelCase__ : str = SpeechTaForTextToSpeech(lowerCAmelCase ) elif task == "s2s": UpperCAmelCase__ : List[str] = 1876 UpperCAmelCase__ : int = config.max_speech_positions UpperCAmelCase__ : Union[str, Any] = SpeechTaForSpeechToSpeech(lowerCAmelCase ) else: raise ValueError(F"Unknown task name: {task}" ) if vocab_path: UpperCAmelCase__ : List[Any] = SpeechTaTokenizer(lowerCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : List[Any] = AddedToken("<mask>" , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) UpperCAmelCase__ : Tuple = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) UpperCAmelCase__ : Optional[int] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Union[str, Any] = SpeechTaProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase ) processor.save_pretrained(lowerCAmelCase ) UpperCAmelCase__ : int = torch.load(lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , lowerCAmelCase , lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(lowerCAmelCase ) model.push_to_hub(lowerCAmelCase ) if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) A__ : Any = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
711
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCamelCase = 7_68 , )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , )-> Any: UpperCAmelCase__ : Dict = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) UpperCAmelCase__ : Any = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Any = (embeds * self.std) + self.mean return embeds
660
0
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): '''simple docstring''' # Construct model if gpta_config_file == "": UpperCAmelCase__ : Optional[int] = GPTaConfig() else: UpperCAmelCase__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
712
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): '''simple docstring''' # Construct model if gpta_config_file == "": UpperCAmelCase__ : Optional[int] = GPTaConfig() else: UpperCAmelCase__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
660
0
"""simple docstring""" A__ : str = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ A__ : str = [{"""type""": """code""", """content""": INSTALL_CONTENT}] A__ : Any = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
713
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A__ : Optional[int] = ["""small""", """medium""", """large"""] A__ : Optional[int] = """lm_head.decoder.weight""" A__ : Dict = """lm_head.weight""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = d.pop(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) A__ : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: A__ : Tuple = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A__ : str = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
660
0
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) A__ : Optional[int] = _symbol_database.Default() A__ : int = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) A__ : str = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: A__ : Dict = None A__ : List[str] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" A__ : Tuple = 45 A__ : List[Any] = 1_581 A__ : int = 1_517 A__ : str = 1_570 A__ : Union[str, Any] = 1_584 A__ : List[str] = 1_793 A__ : List[str] = 1_795 A__ : List[Any] = 1_916 A__ : Optional[Any] = 1_864 A__ : str = 1_905 A__ : Optional[Any] = 1_919 A__ : Optional[int] = 2_429 A__ : int = 2_208 A__ : int = 2_418 A__ : Union[str, Any] = 2_323 A__ : Dict = 2_407 # @@protoc_insertion_point(module_scope)
714
"""simple docstring""" from math import isqrt def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def a__ ( lowerCAmelCase : int = 10**8 ): '''simple docstring''' UpperCAmelCase__ : Dict = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Optional[Any] = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = np.full((len(lowerCAmelCase ), sequence_length, 2) , lowerCAmelCase ) else: UpperCAmelCase__ : Optional[Any] = np.full((len(lowerCAmelCase ), sequence_length) , lowerCAmelCase ) for i, tensor in enumerate(lowerCAmelCase ): if padding_side == "right": if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Dict = tensor[:sequence_length] else: UpperCAmelCase__ : Tuple = tensor[:sequence_length] else: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase__ : int = tensor[:sequence_length] return out_tensor.tolist() def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = ord(lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCAmelCase__ : Optional[Any] = unicodedata.category(lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -100 _A = "pt" def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: import torch UpperCAmelCase__ : Optional[Any] = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase__ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase__ : str = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch UpperCAmelCase__ : Optional[Any] = torch.tensor(batch["entity_ids"] ).shape[1] UpperCAmelCase__ : int = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase__ : int = [ list(__UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) for label in labels ] else: UpperCAmelCase__ : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) + list(__UpperCamelCase ) for label in labels ] UpperCAmelCase__ : Optional[Any] = [feature["ner_tags"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , -1 , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = [feature["original_entity_spans"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , (-1, -1) , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {k: torch.tensor(__UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
660
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : str = logging.get_logger(__name__) A__ : Any = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} A__ : int = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } A__ : Dict = { """abeja/gpt-neox-japanese-2.7b""": 2_048, } def a__ ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): '''simple docstring''' with open(lowerCAmelCase , "r" , encoding="utf-8" ) as f: UpperCAmelCase__ : Optional[Any] = json.loads(f.read() ) UpperCAmelCase__ : Optional[int] = collections.OrderedDict() UpperCAmelCase__ : List[str] = collections.OrderedDict() UpperCAmelCase__ : int = collections.OrderedDict() with open(lowerCAmelCase , "r" , encoding="utf-8" ) as f: UpperCAmelCase__ : Dict = f.readlines() UpperCAmelCase__ : List[str] = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowerCAmelCase ): UpperCAmelCase__ : List[Any] = b UpperCAmelCase__ : str = idx for wd in b: UpperCAmelCase__ : str = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|startoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase=False , **__UpperCamelCase , )-> Dict: super().__init__( unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , do_clean_text=__UpperCamelCase , **__UpperCamelCase , ) if not os.path.isfile(__UpperCamelCase ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__UpperCamelCase ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) UpperCAmelCase__ : List[Any] = do_clean_text UpperCAmelCase__ : int = load_vocab_and_emoji(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Tuple = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCAmelCase__ ( self )-> Union[str, Any]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowerCAmelCase__ ( self )-> Optional[Any]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: return self.subword_tokenizer.tokenize(__UpperCamelCase , clean=self.do_clean_text ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[int]: return self.vocab.get(__UpperCamelCase , self.vocab.get(self.unk_token ) ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: return self.subword_tokenizer.convert_id_to_token(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : str = "".join(__UpperCamelCase ).strip() return out_string def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[int]: UpperCAmelCase__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: UpperCAmelCase__ : List[str] = input_ids[-self.model_max_length :] return input_ids def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: UpperCAmelCase__ : Any = 0 if os.path.isdir(__UpperCamelCase ): UpperCAmelCase__ : Optional[int] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Any = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: UpperCAmelCase__ : Tuple = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : List[str] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase__ : str = token_index writer.write(",".join(__UpperCamelCase ) + "\n" ) index += 1 with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , __UpperCamelCase ) return vocab_file, emoji_file class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : Dict = vocab # same as swe UpperCAmelCase__ : Optional[int] = ids_to_tokens # same as bpe UpperCAmelCase__ : str = emoji UpperCAmelCase__ : List[Any] = np.max([len(__UpperCamelCase ) for w in self.vocab.keys()] ) UpperCAmelCase__ : Tuple = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) UpperCAmelCase__ : Optional[int] = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) UpperCAmelCase__ : List[str] = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) UpperCAmelCase__ : Any = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase__ : List[str] = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) UpperCAmelCase__ : int = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) UpperCAmelCase__ : List[str] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" UpperCAmelCase__ : Tuple = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" UpperCAmelCase__ : Optional[int] = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self )-> List[Any]: return len(self.ids_to_tokens ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: UpperCAmelCase__ : Optional[int] = self.content_repattera.sub("<URL>" , __UpperCamelCase ) UpperCAmelCase__ : Any = self.content_repattera.sub("<EMAIL>" , __UpperCamelCase ) UpperCAmelCase__ : str = self.content_repattera.sub("<TEL>" , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = self.content_repattera.sub("<DATE>" , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = self.content_repattera.sub("<DATE>" , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = self.content_repattera.sub("<PRICE>" , __UpperCamelCase ) UpperCAmelCase__ : List[str] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCAmelCase__ : Union[str, Any] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False )-> List[Any]: UpperCAmelCase__ : Optional[int] = text.replace(" " , "<SP>" ) UpperCAmelCase__ : Any = text.replace(" " , "<SP>" ) UpperCAmelCase__ : Union[str, Any] = text.replace("\r\n" , "<BR>" ) UpperCAmelCase__ : List[str] = text.replace("\n" , "<BR>" ) UpperCAmelCase__ : Any = text.replace("\r" , "<BR>" ) UpperCAmelCase__ : int = text.replace("\t" , "<TAB>" ) UpperCAmelCase__ : str = text.replace("—" , "ー" ) UpperCAmelCase__ : Optional[Any] = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCAmelCase__ : Any = text.replace(__UpperCamelCase , __UpperCamelCase ) if clean: UpperCAmelCase__ : Any = self.clean_text(__UpperCamelCase ) def check_simbol(__UpperCamelCase ): UpperCAmelCase__ : Dict = x.encode() if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 2: UpperCAmelCase__ : Optional[Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(__UpperCamelCase ): UpperCAmelCase__ : Any = x.encode() if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 3: UpperCAmelCase__ : Optional[int] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe2_8080 and c <= 0Xe2_b07f: return True return False UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : str = [] while pos < len(__UpperCamelCase ): UpperCAmelCase__ : Any = min(len(__UpperCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 UpperCAmelCase__ : Any = [] # (token_id, token, pos) for e in range(__UpperCamelCase , __UpperCamelCase , -1 ): UpperCAmelCase__ : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__UpperCamelCase ) > 2: UpperCAmelCase__ : Optional[int] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__UpperCamelCase ) > 0: # the smallest token_id is adopted UpperCAmelCase__ : List[str] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[0] )[0] result.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = e else: UpperCAmelCase__ : Union[str, Any] = pos + 1 UpperCAmelCase__ : Optional[int] = text[pos:end] if check_simbol(__UpperCamelCase ): result.append("<KIGOU>" ) elif checkuae(__UpperCamelCase ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) UpperCAmelCase__ : List[Any] = end return result def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase="\n" )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : str = [] UpperCAmelCase__ : List[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__UpperCamelCase ) > 0: words.append(bytearray(__UpperCamelCase ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase__ : Dict = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__UpperCamelCase ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: words.append(bytearray(__UpperCamelCase ).decode("utf-8" , errors="replace" ) ) UpperCAmelCase__ : str = "".join(__UpperCamelCase ) return text
716
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
660
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy A__ : List[Any] = logging.get_logger(__name__) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : str = feature_size UpperCAmelCase__ : List[str] = sampling_rate UpperCAmelCase__ : List[str] = padding_value UpperCAmelCase__ : Dict = kwargs.pop("padding_side" , "right" ) UpperCAmelCase__ : Optional[int] = kwargs.pop("return_attention_mask" , __UpperCamelCase ) super().__init__(**__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , )-> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase__ : Any = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F" to this method that includes {self.model_input_names[0]}, but you provided" F" {list(processed_features.keys() )}" ) UpperCAmelCase__ : Optional[Any] = processed_features[self.model_input_names[0]] UpperCAmelCase__ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__UpperCamelCase ) == 0: if return_attention_mask: UpperCAmelCase__ : Optional[int] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase__ : Union[str, Any] = required_input[0] if isinstance(__UpperCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase__ : Tuple = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(__UpperCamelCase ): UpperCAmelCase__ : int = "tf" elif is_torch_tensor(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = "pt" elif isinstance(__UpperCamelCase , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase__ : Optional[int] = "np" else: raise ValueError( F"type of {first_element} unknown: {type(__UpperCamelCase )}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase__ : List[Any] = to_numpy(__UpperCamelCase ) else: UpperCAmelCase__ : Tuple = [to_numpy(__UpperCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase__ : str = self._get_padding_strategies(padding=__UpperCamelCase , max_length=__UpperCamelCase ) UpperCAmelCase__ : Tuple = processed_features[self.model_input_names[0]] UpperCAmelCase__ : Optional[int] = len(__UpperCamelCase ) if not all(len(__UpperCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) UpperCAmelCase__ : str = [] for i in range(__UpperCamelCase ): UpperCAmelCase__ : List[str] = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase__ : Tuple = self._truncate( __UpperCamelCase , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , truncation=__UpperCamelCase , ) truncated_inputs.append(__UpperCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase__ : List[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase__ : Tuple = PaddingStrategy.MAX_LENGTH UpperCAmelCase__ : List[str] = {} for i in range(__UpperCamelCase ): # padding UpperCAmelCase__ : int = self._pad( truncated_inputs[i] , max_length=__UpperCamelCase , padding_strategy=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase__ : List[str] = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : List[str] = value.astype(np.floataa ) batch_outputs[key].append(__UpperCamelCase ) return BatchFeature(__UpperCamelCase , tensor_type=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = PaddingStrategy.DO_NOT_PAD , __UpperCamelCase = None , __UpperCamelCase = None , )-> dict: UpperCAmelCase__ : str = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase__ : Dict = len(__UpperCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase__ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase__ : List[str] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__UpperCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase__ : List[str] = np.ones(len(__UpperCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase__ : List[Any] = max_length - len(__UpperCamelCase ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase__ : Optional[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) UpperCAmelCase__ : Any = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase__ : List[Any] = np.pad( __UpperCamelCase , __UpperCamelCase , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase__ : List[str] = np.pad( processed_features["attention_mask"] , (difference, 0) ) UpperCAmelCase__ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase__ : List[Any] = np.pad( __UpperCamelCase , __UpperCamelCase , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , )-> Optional[Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) UpperCAmelCase__ : Optional[int] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase__ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase__ : Optional[Any] = len(__UpperCamelCase ) > max_length if needs_to_be_truncated: UpperCAmelCase__ : Dict = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase__ : int = processed_features["attention_mask"][:max_length] return processed_features def lowerCAmelCase__ ( self , __UpperCamelCase=False , __UpperCamelCase=None )-> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase__ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Union[str, Any] = PaddingStrategy(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Tuple = padding else: UpperCAmelCase__ : Union[str, Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
717
"""simple docstring""" from manim import * class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : str = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[Any] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : int = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("CPU" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Union[str, Any] = Text("GPU" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Model" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): rect.set_stroke(__UpperCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase__ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCamelCase , buff=0.0 ) self.add(__UpperCamelCase ) cpu_targs.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Any = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , aligned_edge=__UpperCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : str = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase__ : Optional[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.play(Write(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = fill.copy().set_fill(__UpperCamelCase , opacity=0.7 ) target.move_to(__UpperCamelCase ) first_animations.append(GrowFromCenter(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
660
0
"""simple docstring""" import argparse import os import re A__ : int = """src/diffusers""" # Pattern that looks at the indentation in a line. A__ : Optional[int] = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. A__ : Tuple = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : Union[str, Any] = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. A__ : List[Any] = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : Any = re.compile(R"""\[([^\]]+)\]""") def a__ ( lowerCAmelCase : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = _re_indent.search(lowerCAmelCase ) return "" if search is None else search.groups()[0] def a__ ( lowerCAmelCase : Any , lowerCAmelCase : List[str]="" , lowerCAmelCase : str=None , lowerCAmelCase : int=None ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase ): index += 1 UpperCAmelCase__ : str = ["\n".join(lines[:index] )] else: UpperCAmelCase__ : List[Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCAmelCase__ : str = [lines[index]] index += 1 while index < len(lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(lowerCAmelCase ) ) if index < len(lowerCAmelCase ) - 1: UpperCAmelCase__ : Union[str, Any] = [lines[index + 1]] index += 1 else: UpperCAmelCase__ : Optional[Any] = [] else: blocks.append("\n".join(lowerCAmelCase ) ) UpperCAmelCase__ : Union[str, Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase ) > 0: blocks.append("\n".join(lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( lowerCAmelCase : str ): '''simple docstring''' def _inner(lowerCAmelCase : Dict ): return key(lowerCAmelCase ).lower().replace("_" , "" ) return _inner def a__ ( lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(lowerCAmelCase : Dict ): return x if key is None: UpperCAmelCase__ : Dict = noop # Constants are all uppercase, they go first. UpperCAmelCase__ : Dict = [obj for obj in objects if key(lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCAmelCase__ : Tuple = [obj for obj in objects if key(lowerCAmelCase )[0].isupper() and not key(lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. UpperCAmelCase__ : Tuple = [obj for obj in objects if not key(lowerCAmelCase )[0].isupper()] UpperCAmelCase__ : Union[str, Any] = ignore_underscore(lowerCAmelCase ) return sorted(lowerCAmelCase , key=lowerCAmelCase ) + sorted(lowerCAmelCase , key=lowerCAmelCase ) + sorted(lowerCAmelCase , key=lowerCAmelCase ) def a__ ( lowerCAmelCase : Union[str, Any] ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(lowerCAmelCase : List[Any] ): UpperCAmelCase__ : int = match.groups()[0] if "," not in imports: return F"[{imports}]" UpperCAmelCase__ : str = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase__ : Dict = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(lowerCAmelCase )] ) + "]" UpperCAmelCase__ : List[Any] = import_statement.split("\n" ) if len(lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCAmelCase__ : str = 2 if lines[1].strip() == "[" else 1 UpperCAmelCase__ : int = [(i, _re_strip_line.search(lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCAmelCase__ : int = sort_objects(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] ) UpperCAmelCase__ : str = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCAmelCase__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCAmelCase__ : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase__ : Tuple = keys[:-1] UpperCAmelCase__ : Union[str, Any] = get_indent(lines[1] ) + ", ".join([F"\"{k}\"" for k in sort_objects(lowerCAmelCase )] ) return "\n".join(lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line UpperCAmelCase__ : Any = _re_bracket_content.sub(_replace , lowerCAmelCase ) return import_statement def a__ ( lowerCAmelCase : int , lowerCAmelCase : Union[str, Any]=True ): '''simple docstring''' with open(lowerCAmelCase , "r" ) as f: UpperCAmelCase__ : List[str] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCAmelCase__ : Tuple = split_code_in_indented_blocks( lowerCAmelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCAmelCase__ : Optional[int] = main_blocks[block_idx] UpperCAmelCase__ : Any = block.split("\n" ) # Get to the start of the imports. UpperCAmelCase__ : Tuple = 0 while line_idx < len(lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. UpperCAmelCase__ : Dict = "\n".join(block_lines[line_idx:-1] ) UpperCAmelCase__ : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCAmelCase__ : Union[str, Any] = split_code_in_indented_blocks(lowerCAmelCase , indent_level=lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCAmelCase__ : str = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCAmelCase__ : Optional[int] = [(pattern.search(lowerCAmelCase ).groups()[0] if pattern.search(lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCAmelCase__ : Optional[int] = [(i, key) for i, key in enumerate(lowerCAmelCase ) if key is not None] UpperCAmelCase__ : str = [x[0] for x in sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Union[str, Any] = [] for i in range(len(lowerCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCAmelCase__ : int = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. UpperCAmelCase__ : Dict = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase ): if check_only: return True else: print(F"Overwriting {file}." ) with open(lowerCAmelCase , "w" ) as f: f.write("\n".join(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : Optional[Any]=True ): '''simple docstring''' UpperCAmelCase__ : int = [] for root, _, files in os.walk(lowerCAmelCase ): if "__init__.py" in files: UpperCAmelCase__ : Tuple = sort_imports(os.path.join(lowerCAmelCase , "__init__.py" ) , check_only=lowerCAmelCase ) if result: UpperCAmelCase__ : List[Any] = [os.path.join(lowerCAmelCase , "__init__.py" )] if len(lowerCAmelCase ) > 0: raise ValueError(F"Would overwrite {len(lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") A__ : List[Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
718
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : nn.ModuleList , lowerCAmelCase : nn.ModuleList , lowerCAmelCase : List[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F"{len(lowerCAmelCase )} != {len(lowerCAmelCase )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): '''simple docstring''' try: UpperCAmelCase__ : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : int , lowerCAmelCase : Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( lowerCAmelCase : Union[str, PreTrainedModel] , lowerCAmelCase : Union[str, Path] = "student" , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"teacher must be a model or string got type {type(lowerCAmelCase )}" UpperCAmelCase__ : int = teacher.config.to_diff_dict() try: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ : Tuple = teacher_e if d is None: UpperCAmelCase__ : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ : Optional[Any] = teacher_e if d is None: UpperCAmelCase__ : Optional[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights UpperCAmelCase__ : Tuple = teacher.config_class(**lowerCAmelCase ) UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ : Optional[int] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ , UpperCAmelCase__ : int = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) UpperCAmelCase__ : int = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
660
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip A__ : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a__ ( lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' return max(metric_fn(lowerCAmelCase , lowerCAmelCase ) for gt in ground_truths ) def a__ ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [line.strip() for line in open(lowerCAmelCase , "r" ).readlines()] UpperCAmelCase__ : Tuple = [] if args.gold_data_mode == "qa": UpperCAmelCase__ : int = pd.read_csv(lowerCAmelCase , sep="\t" , header=lowerCAmelCase ) for answer_list in data[1]: UpperCAmelCase__ : List[str] = ast.literal_eval(lowerCAmelCase ) answers.append(lowerCAmelCase ) else: UpperCAmelCase__ : Tuple = [line.strip() for line in open(lowerCAmelCase , "r" ).readlines()] UpperCAmelCase__ : Dict = [[reference] for reference in references] UpperCAmelCase__ : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase , lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) fa += metric_max_over_ground_truths(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = 100.0 * em / total UpperCAmelCase__ : List[Any] = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Dict = args.k UpperCAmelCase__ : Optional[int] = [line.strip() for line in open(lowerCAmelCase , "r" ).readlines()] UpperCAmelCase__ : List[Any] = [line.strip() for line in open(lowerCAmelCase , "r" ).readlines()] UpperCAmelCase__ : Optional[int] = 0 for hypo, reference in zip(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = set(hypo.split("\t" )[:k] ) UpperCAmelCase__ : Optional[Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase__ : int = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def a__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] ): '''simple docstring''' def strip_title(lowerCAmelCase : List[str] ): if title.startswith("\"" ): UpperCAmelCase__ : Any = title[1:] if title.endswith("\"" ): UpperCAmelCase__ : Union[str, Any] = title[:-1] return title UpperCAmelCase__ : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase , return_tensors="pt" , padding=lowerCAmelCase , truncation=lowerCAmelCase , )["input_ids"].to(args.device ) UpperCAmelCase__ : Any = rag_model.rag.question_encoder(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = question_enc_outputs[0] UpperCAmelCase__ : List[str] = rag_model.retriever( lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) UpperCAmelCase__ : str = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase__ : List[Any] = [] for docs in all_docs: UpperCAmelCase__ : Union[str, Any] = [strip_title(lowerCAmelCase ) for title in docs["title"]] provenance_strings.append("\t".join(lowerCAmelCase ) ) return provenance_strings def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase , return_tensors="pt" , padding=lowerCAmelCase , truncation=lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = inputs_dict.input_ids.to(args.device ) UpperCAmelCase__ : Any = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase__ : Tuple = rag_model.generate( # rag_model overwrites generate lowerCAmelCase , attention_mask=lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCAmelCase__ : Any = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) if args.print_predictions: for q, a in zip(lowerCAmelCase , lowerCAmelCase ): logger.info("Q: {} - A: {}".format(lowerCAmelCase , lowerCAmelCase ) ) return answers def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=lowerCAmelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=lowerCAmelCase , choices=["exact", "compressed", "legacy"] , type=lowerCAmelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=lowerCAmelCase , type=lowerCAmelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=lowerCAmelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=lowerCAmelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=lowerCAmelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=lowerCAmelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=lowerCAmelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=lowerCAmelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=lowerCAmelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=lowerCAmelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=lowerCAmelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) UpperCAmelCase__ : Optional[Any] = parser.parse_args() UpperCAmelCase__ : List[str] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def a__ ( lowerCAmelCase : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = {} if args.model_type is None: UpperCAmelCase__ : Optional[int] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCAmelCase__ : List[str] = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCAmelCase__ : Any = args.n_docs if args.index_name is not None: UpperCAmelCase__ : Union[str, Any] = args.index_name if args.index_path is not None: UpperCAmelCase__ : Optional[Any] = args.index_path else: UpperCAmelCase__ : Optional[int] = BartForConditionalGeneration UpperCAmelCase__ : Union[str, Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCAmelCase__ : Any = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(lowerCAmelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCAmelCase__ : Tuple = RagRetriever.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : int = model_class.from_pretrained(lowerCAmelCase , retriever=lowerCAmelCase , **lowerCAmelCase ) model.retriever.init_retrieval() else: UpperCAmelCase__ : int = model_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: UpperCAmelCase__ : str = [] for line in tqdm(lowerCAmelCase ): questions.append(line.strip() ) if len(lowerCAmelCase ) == args.eval_batch_size: UpperCAmelCase__ : str = evaluate_batch_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) preds_file.write("\n".join(lowerCAmelCase ) + "\n" ) preds_file.flush() UpperCAmelCase__ : Optional[int] = [] if len(lowerCAmelCase ) > 0: UpperCAmelCase__ : Optional[int] = evaluate_batch_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) preds_file.write("\n".join(lowerCAmelCase ) ) preds_file.flush() score_fn(lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": A__ : List[Any] = get_args() main(args)
719
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Tuple = ort.SessionOptions() UpperCAmelCase__ : List[str] = False return options def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : Tuple = np.random.RandomState(0 ) UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images UpperCAmelCase__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : List[str] = np.random.RandomState(0 ) UpperCAmelCase__ : str = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : int = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
660
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): _A = 'table-transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=1_00 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , )-> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : int = backbone_config.get("model_type" ) UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : int = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None UpperCAmelCase__ : List[str] = None, None, None UpperCAmelCase__ : Optional[int] = use_timm_backbone UpperCAmelCase__ : Dict = backbone_config UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : int = d_model UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : str = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = auxiliary_loss UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[str] = backbone UpperCAmelCase__ : List[Any] = use_pretrained_backbone UpperCAmelCase__ : List[str] = dilation # Hungarian matcher UpperCAmelCase__ : Dict = class_cost UpperCAmelCase__ : Any = bbox_cost UpperCAmelCase__ : Tuple = giou_cost # Loss coefficients UpperCAmelCase__ : Any = mask_loss_coefficient UpperCAmelCase__ : Dict = dice_loss_coefficient UpperCAmelCase__ : Any = bbox_loss_coefficient UpperCAmelCase__ : Tuple = giou_loss_coefficient UpperCAmelCase__ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> int: return self.encoder_attention_heads @property def lowerCAmelCase__ ( self )-> int: return self.d_model class _lowercase ( lowerCAmelCase_ ): _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-5 @property def lowerCAmelCase__ ( self )-> int: return 12
720
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'table-transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=1_00 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , )-> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : int = backbone_config.get("model_type" ) UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : int = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = None, None, None UpperCAmelCase__ : Optional[int] = use_timm_backbone UpperCAmelCase__ : Dict = backbone_config UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : int = d_model UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : str = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = auxiliary_loss UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[str] = backbone UpperCAmelCase__ : List[Any] = use_pretrained_backbone UpperCAmelCase__ : List[str] = dilation # Hungarian matcher UpperCAmelCase__ : Dict = class_cost UpperCAmelCase__ : Any = bbox_cost UpperCAmelCase__ : Tuple = giou_cost # Loss coefficients UpperCAmelCase__ : Any = mask_loss_coefficient UpperCAmelCase__ : Dict = dice_loss_coefficient UpperCAmelCase__ : Any = bbox_loss_coefficient UpperCAmelCase__ : Tuple = giou_loss_coefficient UpperCAmelCase__ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> int: return self.encoder_attention_heads @property def lowerCAmelCase__ ( self )-> int: return self.d_model class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-5 @property def lowerCAmelCase__ ( self )-> int: return 12
660
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A__ : Union[str, Any] = logging.get_logger(__name__) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , *__UpperCamelCase , **__UpperCamelCase )-> None: warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead." , __UpperCamelCase , ) super().__init__(*__UpperCamelCase , **__UpperCamelCase )
721
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) A__ : int = getLogger(__name__) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 1024 , lowerCAmelCase : List[Any]="val" , lowerCAmelCase : str=None , lowerCAmelCase : int=False , lowerCAmelCase : Dict="summarization" , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict = None , lowerCAmelCase : List[str]="" , **lowerCAmelCase : int , ): '''simple docstring''' UpperCAmelCase__ : Dict = str(lowerCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=lowerCAmelCase ) UpperCAmelCase__ : List[str] = Path(lowerCAmelCase ) UpperCAmelCase__ : str = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).cuda() if fpaa: UpperCAmelCase__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase , lowerCAmelCase ) # update config with task specific params UpperCAmelCase__ : List[Any] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase__ : Any = num_return_sequences UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase__ : int = tokenizer.model_max_length if prefix is None: UpperCAmelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase__ : str = SeqaSeqDataset( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , max_target_length=1024 , type_path=lowerCAmelCase , n_obs=lowerCAmelCase , prefix=lowerCAmelCase , **lowerCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase__ : Union[str, Any] = ds.make_sortish_sampler(lowerCAmelCase , distributed=lowerCAmelCase , add_extra_examples=lowerCAmelCase , shuffle=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = DataLoader(lowerCAmelCase , sampler=lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn ) UpperCAmelCase__ : str = [] for batch in tqdm(lowerCAmelCase ): UpperCAmelCase__ : Dict = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=lowerCAmelCase , num_beams=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase__ : int = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) UpperCAmelCase__ : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase__ : str = chunks(lowerCAmelCase , lowerCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(lowerCAmelCase , lowerCAmelCase ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' UpperCAmelCase__ : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=lowerCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument( "--type_path" , type=lowerCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowerCAmelCase , default=8 , required=lowerCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=lowerCAmelCase , default=1 , required=lowerCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=lowerCAmelCase , default=600 , required=lowerCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument( "--prefix" , type=lowerCAmelCase , required=lowerCAmelCase , default=lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_known_args() UpperCAmelCase__ : int = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase__ : Dict = Path(args.save_dir + "_tmp" ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) # this handles locking. UpperCAmelCase__ : List[str] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase__ : List[str] = {} if args.src_lang is not None: UpperCAmelCase__ : str = args.src_lang if args.tgt_lang is not None: UpperCAmelCase__ : List[str] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = eval_data_dir( args.data_dir , lowerCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase , **lowerCAmelCase , ) if args.local_rank <= 0: UpperCAmelCase__ : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ : Tuple = gather_results_from_each_node(lowerCAmelCase , lowerCAmelCase , args.sync_timeout ) UpperCAmelCase__ : Union[str, Any] = combine_partial_results(lowerCAmelCase ) if args.num_return_sequences > 1: UpperCAmelCase__ : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase , lowerCAmelCase ) return UpperCAmelCase__ : Optional[Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(lowerCAmelCase ) as f: UpperCAmelCase__ : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase__ : List[Any] = "translation" in args.task UpperCAmelCase__ : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase__ : Optional[Any] = "bleu" if calc_bleu else "rouge" UpperCAmelCase__ : Dict = score_fn(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = time.time() - start_time UpperCAmelCase__ : Optional[int] = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase__ : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) print(lowerCAmelCase ) write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase ) def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = [] for partial_result in partial_results: records.extend(lowerCAmelCase ) UpperCAmelCase__ : Dict = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["id"] ) UpperCAmelCase__ : List[str] = [x["pred"] for x in records] return preds def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): '''simple docstring''' # WAIT FOR lots of .json files UpperCAmelCase__ : int = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase__ : Dict = None while (time.time() - start_wait) < timeout: UpperCAmelCase__ : str = list(save_dir.glob("rank_*.json" ) ) if len(lowerCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase__ : Union[str, Any] = lmap(lowerCAmelCase , lowerCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
660
0
"""simple docstring""" def a__ ( lowerCAmelCase : int ): '''simple docstring''' if num < 0: return False UpperCAmelCase__ : int = num UpperCAmelCase__ : int = 0 while num > 0: UpperCAmelCase__ : Any = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" from timeit import timeit def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): '''simple docstring''' def do_benchmark(lowerCAmelCase : int ) -> None: UpperCAmelCase__ : Dict = "import __main__ as z" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Any = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
660
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Tuple = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'umt5' _A = ['past_key_values'] def __init__( self , __UpperCamelCase=25_01_12 , __UpperCamelCase=5_12 , __UpperCamelCase=64 , __UpperCamelCase=10_24 , __UpperCamelCase=8 , __UpperCamelCase=None , __UpperCamelCase=6 , __UpperCamelCase=32 , __UpperCamelCase=1_28 , __UpperCamelCase=0.1 , __UpperCamelCase=1E-6 , __UpperCamelCase=1.0 , __UpperCamelCase="gated-gelu" , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="T5Tokenizer" , __UpperCamelCase=True , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=0 , **__UpperCamelCase , )-> str: super().__init__( is_encoder_decoder=__UpperCamelCase , tokenizer_class=__UpperCamelCase , tie_word_embeddings=__UpperCamelCase , pad_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , **__UpperCamelCase , ) UpperCAmelCase__ : Any = vocab_size UpperCAmelCase__ : str = d_model UpperCAmelCase__ : Dict = d_kv UpperCAmelCase__ : List[str] = d_ff UpperCAmelCase__ : Tuple = num_layers UpperCAmelCase__ : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase__ : Optional[int] = num_heads UpperCAmelCase__ : Dict = relative_attention_num_buckets UpperCAmelCase__ : Any = relative_attention_max_distance UpperCAmelCase__ : int = dropout_rate UpperCAmelCase__ : Optional[Any] = layer_norm_epsilon UpperCAmelCase__ : Tuple = initializer_factor UpperCAmelCase__ : Optional[Any] = feed_forward_proj UpperCAmelCase__ : Optional[int] = use_cache UpperCAmelCase__ : str = self.feed_forward_proj.split("-" ) UpperCAmelCase__ : List[str] = act_info[-1] UpperCAmelCase__ : Optional[Any] = act_info[0] == "gated" if len(__UpperCamelCase ) > 1 and act_info[0] != "gated" or len(__UpperCamelCase ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": UpperCAmelCase__ : Union[str, Any] = "gelu_new" @property def lowerCAmelCase__ ( self )-> Optional[Any]: return self.d_model @property def lowerCAmelCase__ ( self )-> Dict: return self.num_heads @property def lowerCAmelCase__ ( self )-> int: return self.num_layers class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: UpperCAmelCase__ : Any = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: UpperCAmelCase__ : Optional[int] = "past_encoder_sequence + sequence" UpperCAmelCase__ : List[str] = {0: "batch"} UpperCAmelCase__ : Dict = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase__ : Optional[Any] = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase__ : Dict = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowerCAmelCase__ ( self )-> int: return 13 @property def lowerCAmelCase__ ( self )-> float: return 5E-4
701
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowercase ( unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Optional[Any] = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase__ : List[str] = load_tool("text-classification" , remote=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Dict = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Any = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : str = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" )
660
0
"""simple docstring""" from __future__ import annotations from collections import deque class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase )-> str: UpperCAmelCase__ : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__UpperCamelCase ) self.set_fail_transitions() def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowerCAmelCase__ ( self , __UpperCamelCase )-> None: UpperCAmelCase__ : Optional[Any] = 0 for character in keyword: UpperCAmelCase__ : Tuple = self.find_next_state(__UpperCamelCase , __UpperCamelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase__ : List[Any] = len(self.adlist ) - 1 else: UpperCAmelCase__ : List[Any] = next_state self.adlist[current_state]["output"].append(__UpperCamelCase ) def lowerCAmelCase__ ( self )-> None: UpperCAmelCase__ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCamelCase ) UpperCAmelCase__ : Dict = 0 while q: UpperCAmelCase__ : Union[str, Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = self.adlist[r]["fail_state"] while ( self.find_next_state(__UpperCamelCase , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase__ : Tuple = self.adlist[state]["fail_state"] UpperCAmelCase__ : Optional[Any] = self.find_next_state( __UpperCamelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Any = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> dict[str, list[int]]: UpperCAmelCase__ : dict = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase__ : int = 0 for i in range(len(__UpperCamelCase ) ): while ( self.find_next_state(__UpperCamelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase__ : Dict = self.adlist[current_state]["fail_state"] UpperCAmelCase__ : Optional[Any] = self.find_next_state(__UpperCamelCase , string[i] ) if next_state is None: UpperCAmelCase__ : List[Any] = 0 else: UpperCAmelCase__ : Optional[Any] = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase__ : Any = [] result[key].append(i - len(__UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase , lowerCAmelCase ) ) ) def a__ ( lowerCAmelCase : list[float] ): '''simple docstring''' if point: if isinstance(lowerCAmelCase , lowerCAmelCase ): for item in point: if not isinstance(lowerCAmelCase , (int, float) ): UpperCAmelCase__ : Tuple = ( "Expected a list of numbers as input, found " F"{type(lowerCAmelCase ).__name__}" ) raise TypeError(lowerCAmelCase ) else: UpperCAmelCase__ : Dict = F"Expected a list of numbers as input, found {type(lowerCAmelCase ).__name__}" raise TypeError(lowerCAmelCase ) else: raise ValueError("Missing an input" ) def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase , lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( lowerCAmelCase : str ): '''simple docstring''' return x + 2 class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : Dict = "x = 3" UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : int = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3} ) UpperCAmelCase__ : Optional[Any] = "x = y" UpperCAmelCase__ : Optional[int] = {"y": 5} UpperCAmelCase__ : Any = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 5, "y": 5} ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : Optional[Any] = "y = add_two(x)" UpperCAmelCase__ : List[str] = {"x": 3} UpperCAmelCase__ : Tuple = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCAmelCase__ : Any = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = "x = 3" UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : Dict = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3} ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : List[str] = "test_dict = {'x': x, 'y': add_two(x)}" UpperCAmelCase__ : Optional[Any] = {"x": 3} UpperCAmelCase__ : int = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Optional[int] = "x = 3\ny = 5" UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : List[str] = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 5} ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Union[str, Any] = "text = f'This is x: {x}.'" UpperCAmelCase__ : Any = {"x": 3} UpperCAmelCase__ : Union[str, Any] = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__UpperCamelCase , {"x": 3, "text": "This is x: 3."} ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : Union[str, Any] = "if x <= 3:\n y = 2\nelse:\n y = 5" UpperCAmelCase__ : str = {"x": 3} UpperCAmelCase__ : Union[str, Any] = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 2} ) UpperCAmelCase__ : Tuple = {"x": 8} UpperCAmelCase__ : str = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 8, "y": 5} ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Optional[int] = "test_list = [x, add_two(x)]" UpperCAmelCase__ : str = {"x": 3} UpperCAmelCase__ : Tuple = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , [3, 5] ) self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_list": [3, 5]} ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : int = "y = x" UpperCAmelCase__ : Optional[int] = {"x": 3} UpperCAmelCase__ : Optional[int] = evaluate(__UpperCamelCase , {} , state=__UpperCamelCase ) assert result == 3 self.assertDictEqual(__UpperCamelCase , {"x": 3, "y": 3} ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Any = "test_list = [x, add_two(x)]\ntest_list[1]" UpperCAmelCase__ : Tuple = {"x": 3} UpperCAmelCase__ : str = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_list": [3, 5]} ) UpperCAmelCase__ : List[Any] = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" UpperCAmelCase__ : Union[str, Any] = {"x": 3} UpperCAmelCase__ : Optional[int] = evaluate(__UpperCamelCase , {"add_two": add_two} , state=__UpperCamelCase ) assert result == 5 self.assertDictEqual(__UpperCamelCase , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Any = "x = 0\nfor i in range(3):\n x = i" UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : str = evaluate(__UpperCamelCase , {"range": range} , state=__UpperCamelCase ) assert result == 2 self.assertDictEqual(__UpperCamelCase , {"x": 2, "i": 2} )
703
"""simple docstring""" import math def a__ ( lowerCAmelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( lowerCAmelCase : int = 1_0001 ): '''simple docstring''' try: UpperCAmelCase__ : List[str] = int(lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : str = 2 while len(lowerCAmelCase ) < nth: if is_prime(lowerCAmelCase ): primes.append(lowerCAmelCase ) num += 1 else: num += 1 return primes[len(lowerCAmelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" def a__ ( lowerCAmelCase : list ): '''simple docstring''' if len(lowerCAmelCase ) <= 1: return [tuple(lowerCAmelCase )] UpperCAmelCase__ : str = [] def generate(lowerCAmelCase : int , lowerCAmelCase : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase__ : List[Any] = arr[k - 1], arr[i] else: # k is odd UpperCAmelCase__ : Any = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase ) generate(len(lowerCAmelCase ) , lowerCAmelCase ) return res if __name__ == "__main__": A__ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip() A__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
704
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=0.6 , __UpperCamelCase=None , )-> List[Any]: UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : int = mask_ratio UpperCAmelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self )-> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = ViTMAEModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _A = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} _A = False _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Any = ViTMAEModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> Dict: pass def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Dict: # make masks reproducible np.random.seed(2 ) UpperCAmelCase__ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : str = torch.from_numpy(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Optional[Any] = pt_noise super().check_pt_tf_models(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = outputs[0].cpu().numpy() UpperCAmelCase__ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model_class.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) # Make sure we don't have nans UpperCAmelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> List[str]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Any: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self )-> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self )-> Union[str, Any]: pass @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ViTMAEModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> List[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self )-> Optional[int]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase__ : Any = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCamelCase ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : List[Any] = ViTMAEConfig() UpperCAmelCase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**__UpperCamelCase , noise=torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ) ) # verify the logits UpperCAmelCase__ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCamelCase ) , atol=1E-4 ) )
660
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets A__ : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ A__ : List[Any] = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ A__ : Tuple = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase__ ( self )-> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def lowerCAmelCase__ ( self )-> Union[str, Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase="uniform_average" , __UpperCamelCase=True )-> int: UpperCAmelCase__ : List[str] = mean_squared_error( __UpperCamelCase , __UpperCamelCase , sample_weight=__UpperCamelCase , multioutput=__UpperCamelCase , squared=__UpperCamelCase ) return {"mse": mse}
705
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _lowercase : '''simple docstring''' _A = 42 # setable values _A = 42 _A = 42 _A = None @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: return cls(common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase ) @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A = [e.name for e in FlaxKarrasDiffusionSchedulers] _A = 42 @property def lowerCAmelCase__ ( self )-> Optional[int]: return True @register_to_config def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = 0.0001 , __UpperCamelCase = 0.02 , __UpperCamelCase = "linear" , __UpperCamelCase = None , __UpperCamelCase = "fixed_small" , __UpperCamelCase = True , __UpperCamelCase = "epsilon" , __UpperCamelCase = jnp.floataa , )-> List[str]: UpperCAmelCase__ : int = dtype def lowerCAmelCase__ ( self , __UpperCamelCase = None )-> DDPMSchedulerState: if common is None: UpperCAmelCase__ : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> jnp.ndarray: return sample def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = () )-> DDPMSchedulerState: UpperCAmelCase__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Optional[int] = (jnp.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : Dict = jnp.clip(__UpperCamelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Tuple = jnp.log(jnp.clip(__UpperCamelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] UpperCAmelCase__ : Optional[int] = (predicted_variance + 1) / 2 UpperCAmelCase__ : Any = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase__ : List[str] = timestep if key is None: UpperCAmelCase__ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = jnp.split(__UpperCamelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : Optional[Any] = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Any = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : List[Any] = jnp.clip(__UpperCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : Any = jax.random.split(__UpperCamelCase , num=1 ) UpperCAmelCase__ : int = jax.random.normal(__UpperCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__UpperCamelCase , __UpperCamelCase , predicted_variance=__UpperCamelCase ) ** 0.5) * noise UpperCAmelCase__ : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase , state=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return add_noise_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return get_velocity_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __len__( self )-> Tuple: return self.config.num_train_timesteps
660
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Dict = logging.get_logger(__name__) A__ : str = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'git_vision_model' def __init__( self , __UpperCamelCase=7_68 , __UpperCamelCase=30_72 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3 , __UpperCamelCase=2_24 , __UpperCamelCase=16 , __UpperCamelCase="quick_gelu" , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , **__UpperCamelCase , )-> Tuple: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : str = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : str = hidden_act @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) UpperCAmelCase__ : Tuple = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": UpperCAmelCase__ : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'git' def __init__( self , __UpperCamelCase=None , __UpperCamelCase=3_05_22 , __UpperCamelCase=7_68 , __UpperCamelCase=6 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10_24 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1_01 , __UpperCamelCase=1_02 , __UpperCamelCase=None , **__UpperCamelCase , )-> List[str]: super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , pad_token_id=__UpperCamelCase , **__UpperCamelCase ) if vision_config is None: UpperCAmelCase__ : List[str] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) UpperCAmelCase__ : Dict = GitVisionConfig(**__UpperCamelCase ) UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Any = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[Any] = use_cache UpperCAmelCase__ : str = tie_word_embeddings UpperCAmelCase__ : str = num_image_with_embedding UpperCAmelCase__ : str = bos_token_id UpperCAmelCase__ : Any = eos_token_id def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : int = self.vision_config.to_dict() UpperCAmelCase__ : Dict = self.__class__.model_type return output
706
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: A__ : List[str] = None A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} A__ : Optional[Any] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } A__ : List[str] = { """camembert-base""": 512, } A__ : str = """▁""" class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] _A = CamembertTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=["<s>NOTUSED", "</s>NOTUSED"] , **__UpperCamelCase , )-> Dict: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : str = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) UpperCAmelCase__ : str = vocab_file UpperCAmelCase__ : Union[str, Any] = False if not self.vocab_file else True def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase__ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[int]: UpperCAmelCase__ : int = [self.sep_token_id] UpperCAmelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ : int = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
707
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : Dict = logging.get_logger(__name__) def a__ ( lowerCAmelCase : Optional[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase__ : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase__ : int = get_size_dict(__UpperCamelCase , param_name="crop_size" ) UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : List[Any] = do_center_crop UpperCAmelCase__ : str = crop_size UpperCAmelCase__ : Optional[int] = resample UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = offset UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(__UpperCamelCase , size["shortest_edge"] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: UpperCAmelCase__ : Any = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = image.astype(np.floataa ) if offset: UpperCAmelCase__ : Tuple = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = to_numpy_array(__UpperCamelCase ) if do_resize: UpperCAmelCase__ : Union[str, Any] = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: UpperCAmelCase__ : int = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: UpperCAmelCase__ : List[str] = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: UpperCAmelCase__ : List[Any] = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) UpperCAmelCase__ : Dict = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> PIL.Image.Image: UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Optional[int] = offset if offset is not None else self.offset UpperCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Tuple = get_size_dict(__UpperCamelCase , param_name="crop_size" ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ : List[str] = make_batched(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] UpperCAmelCase__ : Dict = {"pixel_values": videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
660
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = np.full((len(lowerCAmelCase ), sequence_length, 2) , lowerCAmelCase ) else: UpperCAmelCase__ : Optional[Any] = np.full((len(lowerCAmelCase ), sequence_length) , lowerCAmelCase ) for i, tensor in enumerate(lowerCAmelCase ): if padding_side == "right": if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Dict = tensor[:sequence_length] else: UpperCAmelCase__ : Tuple = tensor[:sequence_length] else: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase__ : int = tensor[:sequence_length] return out_tensor.tolist() def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = ord(lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCAmelCase__ : Optional[Any] = unicodedata.category(lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -100 _A = 'pt' def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: import torch UpperCAmelCase__ : Optional[Any] = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase__ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase__ : str = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch UpperCAmelCase__ : Optional[Any] = torch.tensor(batch["entity_ids"] ).shape[1] UpperCAmelCase__ : int = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase__ : int = [ list(__UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) for label in labels ] else: UpperCAmelCase__ : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) + list(__UpperCamelCase ) for label in labels ] UpperCAmelCase__ : Optional[Any] = [feature["ner_tags"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , -1 , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = [feature["original_entity_spans"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , (-1, -1) , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {k: torch.tensor(__UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
708
"""simple docstring""" def a__ ( lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(lowerCAmelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def a__ ( lowerCAmelCase : Callable[[int | float], int | float] , lowerCAmelCase : int | float , lowerCAmelCase : int | float , lowerCAmelCase : int = 100 , ): '''simple docstring''' UpperCAmelCase__ : List[str] = x_start UpperCAmelCase__ : Optional[Any] = fnc(lowerCAmelCase ) UpperCAmelCase__ : Tuple = 0.0 for _ in range(lowerCAmelCase ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase__ : str = (x_end - x_start) / steps + xa UpperCAmelCase__ : str = fnc(lowerCAmelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCAmelCase__ : Tuple = xa UpperCAmelCase__ : int = fxa return length if __name__ == "__main__": def a__ ( lowerCAmelCase : Any ): '''simple docstring''' return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") A__ : str = 10 while i <= 100_000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
709
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A__ : Optional[Any] = logging.get_logger(__name__) def a__ ( lowerCAmelCase : bool , lowerCAmelCase : bool ): '''simple docstring''' def run_func(lowerCAmelCase : Dict ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a__ ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Dict = random.Random() UpperCAmelCase__ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = 42 _A = "TensorFlow" @property def lowerCAmelCase__ ( self )-> Optional[int]: return tf.__version__ def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: # initialize GPU on separate process UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Union[str, Any] = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: UpperCAmelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : List[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Any = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Optional[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Optional[int] = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : str = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : Any = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Dict = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : Any = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : int = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Optional[Any] = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Any = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : int = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : int = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : Union[str, Any] = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Dict = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Union[str, Any] = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Any = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients UpperCAmelCase__ : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase__ ( self , __UpperCamelCase )-> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase__ : Optional[Any] = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=10 , ) return min(__UpperCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase__ : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase__ : Optional[int] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) UpperCAmelCase__ : str = meminfo.used UpperCAmelCase__ : int = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase__ : Any = None else: UpperCAmelCase__ : List[Any] = measure_peak_memory_cpu(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase__ : Optional[Any] = stop_memory_tracing(__UpperCamelCase ) if memory is None: UpperCAmelCase__ : Tuple = summary.total else: UpperCAmelCase__ : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
660
0
"""simple docstring""" import qiskit def a__ ( lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register UpperCAmelCase__ : List[str] = qiskit.QuantumCircuit(lowerCAmelCase , lowerCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": print(f"""Total count for various states are: {single_qubit_measure(1, 1)}""")
710
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule A__ : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
660
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase : list[int] ): '''simple docstring''' if len(lowerCAmelCase ) == 0: return array UpperCAmelCase__ : Union[str, Any] = min(lowerCAmelCase ), max(lowerCAmelCase ) # Compute the variables UpperCAmelCase__ : Tuple = _max - _min + 1 UpperCAmelCase__ : Dict = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCAmelCase__ : List[str] = i - _min UpperCAmelCase__ : Union[str, Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCAmelCase__ : Union[str, Any] = 0 for i in range(lowerCAmelCase ): while holes_repeat[i] > 0: UpperCAmelCase__ : Optional[int] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() A__ : Any = input("""Enter numbers separated by comma:\n""") A__ : str = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
711
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCamelCase = 7_68 , )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , )-> Any: UpperCAmelCase__ : Dict = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) UpperCAmelCase__ : Any = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Any = (embeds * self.std) + self.mean return embeds
660
0
"""simple docstring""" from __future__ import annotations A__ : Optional[Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a__ ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : list[int] , lowerCAmelCase : list[int] , lowerCAmelCase : int , lowerCAmelCase : list[list[int]] , ): '''simple docstring''' UpperCAmelCase__ : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase ) ) ] # the reference grid UpperCAmelCase__ : Tuple = 1 UpperCAmelCase__ : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase ) ) ] # the action grid UpperCAmelCase__ : Optional[int] = init[0] UpperCAmelCase__ : Optional[int] = init[1] UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : int = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase__ : Any = [[f, g, x, y]] UpperCAmelCase__ : Any = False # flag that is set when search is complete UpperCAmelCase__ : Tuple = False # flag set if we can't find expand while not found and not resign: if len(lowerCAmelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase__ : List[Any] = cell.pop() UpperCAmelCase__ : Dict = next_cell[2] UpperCAmelCase__ : Tuple = next_cell[3] UpperCAmelCase__ : Dict = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase__ : Dict = True else: for i in range(len(lowerCAmelCase ) ): # to try out different valid actions UpperCAmelCase__ : Optional[int] = x + DIRECTIONS[i][0] UpperCAmelCase__ : List[str] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowerCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase__ : List[Any] = g + cost UpperCAmelCase__ : List[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = i UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[int] = goal[0] UpperCAmelCase__ : str = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase__ : int = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase__ : Optional[int] = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase__ : Dict = xa UpperCAmelCase__ : Tuple = ya invpath.append([x, y] ) UpperCAmelCase__ : Tuple = [] for i in range(len(lowerCAmelCase ) ): path.append(invpath[len(lowerCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": A__ : int = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] A__ : Tuple = [0, 0] # all coordinates are given in format [y,x] A__ : List[Any] = [len(grid) - 1, len(grid[0]) - 1] A__ : List[Any] = 1 # the cost map which pushes the path closer to the goal A__ : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): A__ : List[Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map A__ : int = 99 A__ : Optional[int] = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
712
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): '''simple docstring''' # Construct model if gpta_config_file == "": UpperCAmelCase__ : Optional[int] = GPTaConfig() else: UpperCAmelCase__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
660
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=18 , __UpperCamelCase=30 , __UpperCamelCase=4_00 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , )-> int: UpperCAmelCase__ : Optional[int] = size if size is not None else {"shortest_edge": 18} UpperCAmelCase__ : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : Any = max_resolution UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : List[Any] = size UpperCAmelCase__ : Any = do_center_crop UpperCAmelCase__ : Optional[int] = crop_size UpperCAmelCase__ : Union[str, Any] = do_normalize UpperCAmelCase__ : str = image_mean UpperCAmelCase__ : Dict = image_std def lowerCAmelCase__ ( self )-> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = LevitImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : str = LevitImageProcessingTester(self ) @property def lowerCAmelCase__ ( self )-> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size" ) ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCAmelCase__ ( self )-> int: pass def lowerCAmelCase__ ( self )-> List[str]: # Initialize image_processing UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase__ : str = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self )-> Optional[Any]: # Initialize image_processing UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self )-> Union[str, Any]: # Initialize image_processing UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase__ : Dict = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
713
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A__ : Optional[int] = ["""small""", """medium""", """large"""] A__ : Optional[int] = """lm_head.decoder.weight""" A__ : Dict = """lm_head.weight""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = d.pop(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) A__ : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: A__ : Tuple = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A__ : str = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
660
0
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList A__ : Optional[int] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=1 )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = tokenizer UpperCAmelCase__ : Any = dataset UpperCAmelCase__ : int = len(__UpperCamelCase ) if n_tasks is None else n_tasks UpperCAmelCase__ : Dict = n_copies def __iter__( self )-> int: UpperCAmelCase__ : int = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) UpperCAmelCase__ : Union[str, Any] = self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : Optional[int] = start_length UpperCAmelCase__ : Union[str, Any] = eof_strings UpperCAmelCase__ : int = tokenizer def __call__( self , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase )-> str: UpperCAmelCase__ : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) UpperCAmelCase__ : Optional[Any] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__UpperCamelCase ) def a__ ( lowerCAmelCase : Dict ): '''simple docstring''' UpperCAmelCase__ : int = re.split("(%s)" % "|".join(lowerCAmelCase ) , lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def a__ ( lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=20 , **lowerCAmelCase : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = defaultdict(lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowerCAmelCase ) ): with torch.no_grad(): UpperCAmelCase__ : List[str] = batch["ids"].shape[-1] UpperCAmelCase__ : Dict = accelerator.unwrap_model(lowerCAmelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=lowerCAmelCase , **lowerCAmelCase ) # each task is generated batch_size times UpperCAmelCase__ : Any = batch["task_id"].repeat(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = accelerator.pad_across_processes( lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) UpperCAmelCase__ : str = accelerator.gather((generated_tokens, generated_tasks) ) UpperCAmelCase__ : Optional[Any] = generated_tokens.cpu().numpy() UpperCAmelCase__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowerCAmelCase , lowerCAmelCase ): gen_token_dict[task].append(lowerCAmelCase ) UpperCAmelCase__ : Tuple = [[] for _ in range(lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: UpperCAmelCase__ : Optional[int] = tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) code_gens[task].append(remove_last_block(lowerCAmelCase ) ) return code_gens def a__ ( ): '''simple docstring''' UpperCAmelCase__ : List[str] = HfArgumentParser(lowerCAmelCase ) UpperCAmelCase__ : Dict = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric UpperCAmelCase__ : Dict = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing UpperCAmelCase__ : Optional[int] = "false" if args.num_workers is None: UpperCAmelCase__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate UpperCAmelCase__ : List[Any] = Accelerator() set_seed(args.seed , device_specific=lowerCAmelCase ) # Load model and tokenizer UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase__ : int = tokenizer.eos_token UpperCAmelCase__ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings UpperCAmelCase__ : Any = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCAmelCase , lowerCAmelCase )] ), } # Load evaluation dataset and metric UpperCAmelCase__ : Optional[Any] = load_dataset("openai_humaneval" ) UpperCAmelCase__ : int = load_metric("code_eval" ) UpperCAmelCase__ : Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) UpperCAmelCase__ : Union[str, Any] = args.n_samples // args.batch_size UpperCAmelCase__ : Union[str, Any] = TokenizedDataset(lowerCAmelCase , human_eval["test"] , n_copies=lowerCAmelCase , n_tasks=lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences UpperCAmelCase__ : List[Any] = DataLoader(lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: UpperCAmelCase__ : List[Any] = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception UpperCAmelCase__ : Optional[Any] = accelerator.prepare(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = complete_code( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , n_tasks=lowerCAmelCase , batch_size=args.batch_size , **lowerCAmelCase , ) if accelerator.is_main_process: UpperCAmelCase__ : Optional[int] = [] for task in tqdm(range(lowerCAmelCase ) ): UpperCAmelCase__ : List[Any] = human_eval["test"][task]["test"] UpperCAmelCase__ : Optional[int] = F"check({human_eval['test'][task]['entry_point']})" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric UpperCAmelCase__ : Tuple = code_eval_metric.compute( references=lowerCAmelCase , predictions=lowerCAmelCase , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(lowerCAmelCase , lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
714
"""simple docstring""" from math import isqrt def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def a__ ( lowerCAmelCase : int = 10**8 ): '''simple docstring''' UpperCAmelCase__ : Dict = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase : list[list[int]] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = len(lowerCAmelCase ) # We need to create solution object to save path. UpperCAmelCase__ : Optional[Any] = [[0 for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase )] UpperCAmelCase__ : Any = run_maze(lowerCAmelCase , 0 , 0 , lowerCAmelCase ) if solved: print("\n".join(str(lowerCAmelCase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def a__ ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[list[int]] ): '''simple docstring''' UpperCAmelCase__ : Any = len(lowerCAmelCase ) # Final check point. if i == j == (size - 1): UpperCAmelCase__ : int = 1 return True UpperCAmelCase__ : Tuple = (not i < 0) and (not j < 0) # Check lower bounds UpperCAmelCase__ : Dict = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. UpperCAmelCase__ : Optional[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited UpperCAmelCase__ : str = 1 # check for directions if ( run_maze(lowerCAmelCase , i + 1 , lowerCAmelCase , lowerCAmelCase ) or run_maze(lowerCAmelCase , lowerCAmelCase , j + 1 , lowerCAmelCase ) or run_maze(lowerCAmelCase , i - 1 , lowerCAmelCase , lowerCAmelCase ) or run_maze(lowerCAmelCase , lowerCAmelCase , j - 1 , lowerCAmelCase ) ): return True UpperCAmelCase__ : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = np.full((len(lowerCAmelCase ), sequence_length, 2) , lowerCAmelCase ) else: UpperCAmelCase__ : Optional[Any] = np.full((len(lowerCAmelCase ), sequence_length) , lowerCAmelCase ) for i, tensor in enumerate(lowerCAmelCase ): if padding_side == "right": if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Dict = tensor[:sequence_length] else: UpperCAmelCase__ : Tuple = tensor[:sequence_length] else: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase__ : int = tensor[:sequence_length] return out_tensor.tolist() def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = ord(lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCAmelCase__ : Optional[Any] = unicodedata.category(lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -100 _A = "pt" def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: import torch UpperCAmelCase__ : Optional[Any] = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase__ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase__ : str = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch UpperCAmelCase__ : Optional[Any] = torch.tensor(batch["entity_ids"] ).shape[1] UpperCAmelCase__ : int = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase__ : int = [ list(__UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) for label in labels ] else: UpperCAmelCase__ : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) + list(__UpperCamelCase ) for label in labels ] UpperCAmelCase__ : Optional[Any] = [feature["ner_tags"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , -1 , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = [feature["original_entity_spans"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , (-1, -1) , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {k: torch.tensor(__UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
660
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : Optional[Any] = logging.get_logger(__name__) A__ : List[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } A__ : Optional[Any] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } A__ : int = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def a__ ( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCAmelCase__ : List[str] = bs[:] UpperCAmelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : Optional[Any] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def a__ ( lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = set() UpperCAmelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : List[Any] = char return pairs class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="replace" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=False , **__UpperCamelCase , )-> Optional[Any]: UpperCAmelCase__ : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token UpperCAmelCase__ : Optional[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token UpperCAmelCase__ : int = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token UpperCAmelCase__ : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token UpperCAmelCase__ : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token UpperCAmelCase__ : str = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Union[str, Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) with open(__UpperCamelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase__ : Dict = json.load(__UpperCamelCase ) UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : Optional[int] = errors # how to handle errors in decoding UpperCAmelCase__ : Dict = bytes_to_unicode() UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCamelCase , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : str = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase__ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : str = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) UpperCAmelCase__ : int = {} UpperCAmelCase__ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : List[Any] = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase__ ( self )-> Optional[Any]: return len(self.encoder ) def lowerCAmelCase__ ( self )-> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = get_pairs(__UpperCamelCase ) if not pairs: return token while True: UpperCAmelCase__ : str = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ : List[str] = bigram UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : List[str] = 0 while i < len(__UpperCamelCase ): try: UpperCAmelCase__ : Dict = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Tuple = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : List[Any] = tuple(__UpperCamelCase ) UpperCAmelCase__ : int = new_word if len(__UpperCamelCase ) == 1: break else: UpperCAmelCase__ : Any = get_pairs(__UpperCamelCase ) UpperCAmelCase__ : Dict = " ".join(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = word return word def lowerCAmelCase__ ( self , __UpperCamelCase )-> Any: UpperCAmelCase__ : Any = [] for token in re.findall(self.pat , __UpperCamelCase ): UpperCAmelCase__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: return self.decoder.get(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : List[str] = "".join(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ : Tuple = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + "\n" ) UpperCAmelCase__ : Dict = 0 with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase__ : str = token_index writer.write(" ".join(__UpperCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[int]: UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : str = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCamelCase ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Optional[int] = " " + text return (text, kwargs) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[Any]: return token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[int]: UpperCAmelCase__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) UpperCAmelCase__ : Any = " ".join(__UpperCamelCase ) UpperCAmelCase__ : int = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: UpperCAmelCase__ : List[str] = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
716
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
660
0
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def a__ ( lowerCAmelCase : Any ): '''simple docstring''' monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : Optional[Any] = metric_id class _lowercase : '''simple docstring''' _A = [MetricMock(lowerCAmelCase_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def lowerCAmelCase__ ( self )-> Optional[Any]: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ): '''simple docstring''' if "tmp_path" in args: UpperCAmelCase__ : Tuple = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(lowerCAmelCase , match="https://huggingface.co/docs/evaluate" ): func(*lowerCAmelCase )
717
"""simple docstring""" from manim import * class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : str = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[Any] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : int = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("CPU" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Union[str, Any] = Text("GPU" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Model" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): rect.set_stroke(__UpperCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase__ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCamelCase , buff=0.0 ) self.add(__UpperCamelCase ) cpu_targs.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Any = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , aligned_edge=__UpperCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : str = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase__ : Optional[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.play(Write(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = fill.copy().set_fill(__UpperCamelCase , opacity=0.7 ) target.move_to(__UpperCamelCase ) first_animations.append(GrowFromCenter(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
660
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def a__ ( lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]=None , lowerCAmelCase : int=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : str=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase__ : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase__ : Optional[int] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowerCAmelCase ) if decoder_head_mask is None: UpperCAmelCase__ : Optional[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase ) if cross_attn_head_mask is None: UpperCAmelCase__ : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase="relu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=20 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , )-> Dict: UpperCAmelCase__ : Any = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : Dict = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = encoder_layerdrop UpperCAmelCase__ : List[str] = decoder_layerdrop UpperCAmelCase__ : Optional[int] = max_position_embeddings UpperCAmelCase__ : List[str] = eos_token_id UpperCAmelCase__ : Union[str, Any] = pad_token_id UpperCAmelCase__ : int = bos_token_id def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[Any] = self.eos_token_id # Eos Token UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase__ : Tuple = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ : Dict = self.get_config() UpperCAmelCase__ : Optional[int] = prepare_mam_aaa_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def lowerCAmelCase__ ( self )-> Optional[Any]: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> Dict: UpperCAmelCase__ : Optional[Any] = MaMaaaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() UpperCAmelCase__ : Dict = inputs_dict["input_ids"] UpperCAmelCase__ : str = inputs_dict["attention_mask"] UpperCAmelCase__ : List[str] = inputs_dict["head_mask"] # first forward pass UpperCAmelCase__ : Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase , head_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) UpperCAmelCase__ : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase__ : Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase )["last_hidden_state"] UpperCAmelCase__ : Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[ "last_hidden_state" ] # select random slice UpperCAmelCase__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-2 ) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> Any: UpperCAmelCase__ : Tuple = MaMaaaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() UpperCAmelCase__ : List[str] = model(**__UpperCamelCase ) UpperCAmelCase__ : str = outputs.encoder_last_hidden_state UpperCAmelCase__ : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ : List[str] = model.get_encoder() encoder.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Dict = MaMaaaEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ : Optional[Any] = model.get_decoder() decoder.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Any = MaMaaaDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) _A = (MaMaaaForConditionalGeneration,) if is_torch_available() else () _A = ( { 'conversational': MaMaaaForConditionalGeneration, 'feature-extraction': MaMaaaModel, 'summarization': MaMaaaForConditionalGeneration, 'text2text-generation': MaMaaaForConditionalGeneration, 'translation': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) _A = True _A = True _A = False _A = False def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : Optional[int] = MaMaaaModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[int]: self.config_tester.run_common_tests() def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase ) self.assertEqual(info["missing_keys"] , [] ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[Any] = copy.deepcopy(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if not self.is_encoder_decoder: UpperCAmelCase__ : Tuple = inputs["input_ids"] del inputs["input_ids"] else: UpperCAmelCase__ : Tuple = inputs["input_ids"] UpperCAmelCase__ : Any = inputs.get("decoder_input_ids" , __UpperCamelCase ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , __UpperCamelCase ) UpperCAmelCase__ : int = model.get_input_embeddings() if not self.is_encoder_decoder: UpperCAmelCase__ : int = wte(__UpperCamelCase ) else: UpperCAmelCase__ : Optional[int] = wte(__UpperCamelCase ) UpperCAmelCase__ : int = wte(__UpperCamelCase ) with torch.no_grad(): model(**__UpperCamelCase )[0] def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ : Any = input_dict["input_ids"] UpperCAmelCase__ : Union[str, Any] = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = MaMaaaForConditionalGeneration(__UpperCamelCase ).eval().to(__UpperCamelCase ) if torch_device == "cuda": model.half() model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ) model.generate(num_beams=4 , do_sample=__UpperCamelCase , early_stopping=__UpperCamelCase , num_return_sequences=3 ) def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' return torch.tensor(lowerCAmelCase , dtype=torch.long , device=lowerCAmelCase ) A__ : Dict = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> Tuple: return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : Union[str, Any] = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCAmelCase__ : Optional[int] = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCAmelCase__ : Optional[Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) with torch.no_grad(): UpperCAmelCase__ : Dict = model(**__UpperCamelCase )[0] UpperCAmelCase__ : Any = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here UpperCAmelCase__ : Dict = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Optional[Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__UpperCamelCase ) # change to intended input UpperCAmelCase__ : Union[str, Any] = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) UpperCAmelCase__ : List[str] = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) UpperCAmelCase__ : List[Any] = prepare_mam_aaa_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**__UpperCamelCase )[0] UpperCAmelCase__ : str = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here UpperCAmelCase__ : Tuple = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) UpperCAmelCase__ : Tuple = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams UpperCAmelCase__ : str = tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors="pt" ) UpperCAmelCase__ : Dict = model.generate( input_ids=dct["input_ids"].to(__UpperCamelCase ) , attention_mask=dct["attention_mask"].to(__UpperCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) UpperCAmelCase__ : int = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] UpperCAmelCase__ : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) assert generated == expected_en
718
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : nn.ModuleList , lowerCAmelCase : nn.ModuleList , lowerCAmelCase : List[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F"{len(lowerCAmelCase )} != {len(lowerCAmelCase )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): '''simple docstring''' try: UpperCAmelCase__ : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : int , lowerCAmelCase : Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( lowerCAmelCase : Union[str, PreTrainedModel] , lowerCAmelCase : Union[str, Path] = "student" , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"teacher must be a model or string got type {type(lowerCAmelCase )}" UpperCAmelCase__ : int = teacher.config.to_diff_dict() try: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ : Tuple = teacher_e if d is None: UpperCAmelCase__ : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ : Optional[Any] = teacher_e if d is None: UpperCAmelCase__ : Optional[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights UpperCAmelCase__ : Tuple = teacher.config_class(**lowerCAmelCase ) UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ : Optional[int] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ , UpperCAmelCase__ : int = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) UpperCAmelCase__ : int = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
660
0
"""simple docstring""" def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase , lowerCAmelCase ) ) ) def a__ ( lowerCAmelCase : list[float] ): '''simple docstring''' if point: if isinstance(lowerCAmelCase , lowerCAmelCase ): for item in point: if not isinstance(lowerCAmelCase , (int, float) ): UpperCAmelCase__ : Tuple = ( "Expected a list of numbers as input, found " F"{type(lowerCAmelCase ).__name__}" ) raise TypeError(lowerCAmelCase ) else: UpperCAmelCase__ : Dict = F"Expected a list of numbers as input, found {type(lowerCAmelCase ).__name__}" raise TypeError(lowerCAmelCase ) else: raise ValueError("Missing an input" ) def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase , lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Tuple = ort.SessionOptions() UpperCAmelCase__ : List[str] = False return options def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : Tuple = np.random.RandomState(0 ) UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images UpperCAmelCase__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : List[str] = np.random.RandomState(0 ) UpperCAmelCase__ : str = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : int = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
660
0
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self )-> List[Any]: debug_launcher(test_script.main ) def lowerCAmelCase__ ( self )-> List[Any]: debug_launcher(test_ops.main )
720
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'table-transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=1_00 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , )-> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : int = backbone_config.get("model_type" ) UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : int = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = None, None, None UpperCAmelCase__ : Optional[int] = use_timm_backbone UpperCAmelCase__ : Dict = backbone_config UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : int = d_model UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : str = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = auxiliary_loss UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[str] = backbone UpperCAmelCase__ : List[Any] = use_pretrained_backbone UpperCAmelCase__ : List[str] = dilation # Hungarian matcher UpperCAmelCase__ : Dict = class_cost UpperCAmelCase__ : Any = bbox_cost UpperCAmelCase__ : Tuple = giou_cost # Loss coefficients UpperCAmelCase__ : Any = mask_loss_coefficient UpperCAmelCase__ : Dict = dice_loss_coefficient UpperCAmelCase__ : Any = bbox_loss_coefficient UpperCAmelCase__ : Tuple = giou_loss_coefficient UpperCAmelCase__ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> int: return self.encoder_attention_heads @property def lowerCAmelCase__ ( self )-> int: return self.d_model class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-5 @property def lowerCAmelCase__ ( self )-> int: return 12
660
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = (UnCLIPScheduler,) def lowerCAmelCase__ ( self , **__UpperCamelCase )-> int: UpperCAmelCase__ : Any = { "num_train_timesteps": 10_00, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**__UpperCamelCase ) return config def lowerCAmelCase__ ( self )-> int: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> str: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[Any]: for time_step in [0, 5_00, 9_99]: for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__UpperCamelCase , prev_timestep=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : int = self.scheduler_classes[0] UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config(variance_type="fixed_small_log" ) UpperCAmelCase__ : Tuple = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.999_4987 ) ) < 1E-5 def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : Optional[int] = self.get_scheduler_config(variance_type="learned_range" ) UpperCAmelCase__ : str = scheduler_class(**__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = 0.5 assert scheduler._get_variance(1 , predicted_variance=__UpperCamelCase ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(4_87 , predicted_variance=__UpperCamelCase ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(9_99 , predicted_variance=__UpperCamelCase ) - -0.001_0011 < 1E-5 def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Dict = self.scheduler_classes[0] UpperCAmelCase__ : Any = self.get_scheduler_config() UpperCAmelCase__ : Any = scheduler_class(**__UpperCamelCase ) UpperCAmelCase__ : List[Any] = scheduler.timesteps UpperCAmelCase__ : Tuple = self.dummy_model() UpperCAmelCase__ : int = self.dummy_sample_deter UpperCAmelCase__ : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(__UpperCamelCase ): # 1. predict noise residual UpperCAmelCase__ : List[str] = model(__UpperCamelCase , __UpperCamelCase ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase__ : Dict = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample UpperCAmelCase__ : List[Any] = pred_prev_sample UpperCAmelCase__ : Tuple = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : List[Any] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : str = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(25 ) UpperCAmelCase__ : List[str] = scheduler.timesteps UpperCAmelCase__ : List[str] = self.dummy_model() UpperCAmelCase__ : List[str] = self.dummy_sample_deter UpperCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) for i, t in enumerate(__UpperCamelCase ): # 1. predict noise residual UpperCAmelCase__ : List[Any] = model(__UpperCamelCase , __UpperCamelCase ) if i + 1 == timesteps.shape[0]: UpperCAmelCase__ : Any = None else: UpperCAmelCase__ : Optional[Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 UpperCAmelCase__ : Any = scheduler.step( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , prev_timestep=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample UpperCAmelCase__ : Tuple = pred_prev_sample UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: pass def lowerCAmelCase__ ( self )-> Union[str, Any]: pass
721
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) A__ : int = getLogger(__name__) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 1024 , lowerCAmelCase : List[Any]="val" , lowerCAmelCase : str=None , lowerCAmelCase : int=False , lowerCAmelCase : Dict="summarization" , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict = None , lowerCAmelCase : List[str]="" , **lowerCAmelCase : int , ): '''simple docstring''' UpperCAmelCase__ : Dict = str(lowerCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=lowerCAmelCase ) UpperCAmelCase__ : List[str] = Path(lowerCAmelCase ) UpperCAmelCase__ : str = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).cuda() if fpaa: UpperCAmelCase__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase , lowerCAmelCase ) # update config with task specific params UpperCAmelCase__ : List[Any] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase__ : Any = num_return_sequences UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase__ : int = tokenizer.model_max_length if prefix is None: UpperCAmelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase__ : str = SeqaSeqDataset( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , max_target_length=1024 , type_path=lowerCAmelCase , n_obs=lowerCAmelCase , prefix=lowerCAmelCase , **lowerCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase__ : Union[str, Any] = ds.make_sortish_sampler(lowerCAmelCase , distributed=lowerCAmelCase , add_extra_examples=lowerCAmelCase , shuffle=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = DataLoader(lowerCAmelCase , sampler=lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn ) UpperCAmelCase__ : str = [] for batch in tqdm(lowerCAmelCase ): UpperCAmelCase__ : Dict = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=lowerCAmelCase , num_beams=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase__ : int = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) UpperCAmelCase__ : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase__ : str = chunks(lowerCAmelCase , lowerCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(lowerCAmelCase , lowerCAmelCase ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' UpperCAmelCase__ : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=lowerCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument( "--type_path" , type=lowerCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowerCAmelCase , default=8 , required=lowerCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=lowerCAmelCase , default=1 , required=lowerCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=lowerCAmelCase , default=600 , required=lowerCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument( "--prefix" , type=lowerCAmelCase , required=lowerCAmelCase , default=lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_known_args() UpperCAmelCase__ : int = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase__ : Dict = Path(args.save_dir + "_tmp" ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) # this handles locking. UpperCAmelCase__ : List[str] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase__ : List[str] = {} if args.src_lang is not None: UpperCAmelCase__ : str = args.src_lang if args.tgt_lang is not None: UpperCAmelCase__ : List[str] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = eval_data_dir( args.data_dir , lowerCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase , **lowerCAmelCase , ) if args.local_rank <= 0: UpperCAmelCase__ : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ : Tuple = gather_results_from_each_node(lowerCAmelCase , lowerCAmelCase , args.sync_timeout ) UpperCAmelCase__ : Union[str, Any] = combine_partial_results(lowerCAmelCase ) if args.num_return_sequences > 1: UpperCAmelCase__ : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase , lowerCAmelCase ) return UpperCAmelCase__ : Optional[Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(lowerCAmelCase ) as f: UpperCAmelCase__ : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase__ : List[Any] = "translation" in args.task UpperCAmelCase__ : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase__ : Optional[Any] = "bleu" if calc_bleu else "rouge" UpperCAmelCase__ : Dict = score_fn(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = time.time() - start_time UpperCAmelCase__ : Optional[int] = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase__ : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) print(lowerCAmelCase ) write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase ) def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = [] for partial_result in partial_results: records.extend(lowerCAmelCase ) UpperCAmelCase__ : Dict = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["id"] ) UpperCAmelCase__ : List[str] = [x["pred"] for x in records] return preds def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): '''simple docstring''' # WAIT FOR lots of .json files UpperCAmelCase__ : int = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase__ : Dict = None while (time.time() - start_wait) < timeout: UpperCAmelCase__ : str = list(save_dir.glob("rank_*.json" ) ) if len(lowerCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase__ : Union[str, Any] = lmap(lowerCAmelCase , lowerCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
660
0
"""simple docstring""" import requests A__ : Optional[int] = """YOUR API KEY""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str = giphy_api_key ): '''simple docstring''' UpperCAmelCase__ : str = "+".join(query.split() ) UpperCAmelCase__ : Dict = F"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}" UpperCAmelCase__ : List[Any] = requests.get(lowerCAmelCase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
700
"""simple docstring""" from timeit import timeit def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): '''simple docstring''' def do_benchmark(lowerCAmelCase : int ) -> None: UpperCAmelCase__ : Dict = "import __main__ as z" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Any = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
660
0
"""simple docstring""" from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
701
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowercase ( unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Optional[Any] = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase__ : List[str] = load_tool("text-classification" , remote=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Dict = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Any = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : str = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" )
660
0
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Dict ): '''simple docstring''' UpperCAmelCase__ : int = BertConfig.from_json_file(lowerCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) UpperCAmelCase__ : int = BertForPreTraining(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A__ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
702
"""simple docstring""" def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase , lowerCAmelCase ) ) ) def a__ ( lowerCAmelCase : list[float] ): '''simple docstring''' if point: if isinstance(lowerCAmelCase , lowerCAmelCase ): for item in point: if not isinstance(lowerCAmelCase , (int, float) ): UpperCAmelCase__ : Tuple = ( "Expected a list of numbers as input, found " F"{type(lowerCAmelCase ).__name__}" ) raise TypeError(lowerCAmelCase ) else: UpperCAmelCase__ : Dict = F"Expected a list of numbers as input, found {type(lowerCAmelCase ).__name__}" raise TypeError(lowerCAmelCase ) else: raise ValueError("Missing an input" ) def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase , lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[Any] = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained("xlm-roberta-base" ) UpperCAmelCase__ : str = "The dog is cute and lives in the garden house" UpperCAmelCase__ : str = jnp.array([tokenizer.encode(__UpperCamelCase )] ) UpperCAmelCase__ : Optional[Any] = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : Union[str, Any] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) UpperCAmelCase__ : Tuple = model(__UpperCamelCase )["last_hidden_state"] self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __UpperCamelCase , atol=1E-3 ) )
703
"""simple docstring""" import math def a__ ( lowerCAmelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( lowerCAmelCase : int = 1_0001 ): '''simple docstring''' try: UpperCAmelCase__ : List[str] = int(lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : str = 2 while len(lowerCAmelCase ) < nth: if is_prime(lowerCAmelCase ): primes.append(lowerCAmelCase ) num += 1 else: num += 1 return primes[len(lowerCAmelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel A__ : Any = logging.getLogger(__name__) def a__ ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : int ): '''simple docstring''' # save results if os.path.exists(lowerCAmelCase ): if os.path.exists(os.path.join(lowerCAmelCase , "config.json" ) ) and os.path.isfile( os.path.join(lowerCAmelCase , "config.json" ) ): os.remove(os.path.join(lowerCAmelCase , "config.json" ) ) if os.path.exists(os.path.join(lowerCAmelCase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(lowerCAmelCase , "pytorch_model.bin" ) ): os.remove(os.path.join(lowerCAmelCase , "pytorch_model.bin" ) ) else: os.makedirs(lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) def a__ ( lowerCAmelCase : Any , lowerCAmelCase : Dict=False ): '''simple docstring''' UpperCAmelCase__ : Any = 2 if unlogit: UpperCAmelCase__ : Union[str, Any] = torch.pow(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = p * torch.log(lowerCAmelCase ) UpperCAmelCase__ : Any = 0 return -plogp.sum(dim=-1 ) def a__ ( lowerCAmelCase : str ): '''simple docstring''' logger.info("lv, h >\t" + "\t".join(F"{x + 1}" for x in range(len(lowerCAmelCase ) ) ) ) for row in range(len(lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(F"layer {row + 1}:\t" + "\t".join(F"{x:d}" for x in tensor[row].cpu().data ) ) def a__ ( lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[str]=None , lowerCAmelCase : str=False ): '''simple docstring''' UpperCAmelCase__ : List[Any] = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase__ : List[str] = torch.zeros(lowerCAmelCase , lowerCAmelCase ).to(args.device ) UpperCAmelCase__ : Optional[Any] = torch.zeros(lowerCAmelCase , lowerCAmelCase ).to(args.device ) if head_mask is None: UpperCAmelCase__ : Optional[Any] = torch.ones(lowerCAmelCase , lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase__ : Dict = None UpperCAmelCase__ : List[str] = 0.0 UpperCAmelCase__ : int = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase__ : Tuple = tuple(t.to(args.device ) for t in inputs ) (UpperCAmelCase__ ) : Optional[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase__ : Union[str, Any] = model(lowerCAmelCase , labels=lowerCAmelCase , head_mask=lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase__ : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = entropy(attn.detach() , lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase__ : int = 2 UpperCAmelCase__ : Dict = torch.pow(torch.pow(lowerCAmelCase , lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: UpperCAmelCase__ : Tuple = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(lowerCAmelCase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(lowerCAmelCase ) logger.info("Head ranked by importance scores" ) UpperCAmelCase__ : Dict = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase__ : Optional[int] = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase__ : Any = head_ranks.view_as(lowerCAmelCase ) print_ad_tensor(lowerCAmelCase ) return attn_entropy, head_importance, total_loss def a__ ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = compute_heads_importance(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , compute_entropy=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , lowerCAmelCase , original_score * args.masking_threshold ) UpperCAmelCase__ : str = torch.ones_like(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase__ : List[Any] = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase__ : List[Any] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase__ : Dict = float("Inf" ) UpperCAmelCase__ : List[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads UpperCAmelCase__ : Any = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase__ : Tuple = new_head_mask.view(-1 ) UpperCAmelCase__ : Optional[int] = 0.0 UpperCAmelCase__ : Any = new_head_mask.view_as(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase ) # Compute metric and head importance again UpperCAmelCase__ : List[str] = compute_heads_importance( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , compute_entropy=lowerCAmelCase , head_mask=lowerCAmelCase ) UpperCAmelCase__ : int = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("Final head mask" ) print_ad_tensor(lowerCAmelCase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def a__ ( lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = datetime.now() UpperCAmelCase__ : Any = compute_heads_importance( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , compute_entropy=lowerCAmelCase , compute_importance=lowerCAmelCase , head_mask=lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = 1 / loss UpperCAmelCase__ : int = datetime.now() - before_time UpperCAmelCase__ : Dict = sum(p.numel() for p in model.parameters() ) UpperCAmelCase__ : Optional[int] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = [ v, ] assert sum(len(lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase ) UpperCAmelCase__ : Tuple = sum(p.numel() for p in model.parameters() ) UpperCAmelCase__ : Optional[int] = datetime.now() UpperCAmelCase__ : int = compute_heads_importance( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , compute_entropy=lowerCAmelCase , compute_importance=lowerCAmelCase , head_mask=lowerCAmelCase , actually_pruned=lowerCAmelCase , ) UpperCAmelCase__ : List[str] = 1 / loss UpperCAmelCase__ : Optional[int] = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , lowerCAmelCase , lowerCAmelCase , pruned_num_params / original_num_params * 100 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , lowerCAmelCase , lowerCAmelCase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 100 ) save_model(lowerCAmelCase , args.output_dir ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=lowerCAmelCase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=lowerCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=lowerCAmelCase , type=lowerCAmelCase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=lowerCAmelCase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=lowerCAmelCase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=lowerCAmelCase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=lowerCAmelCase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=128 , type=lowerCAmelCase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=lowerCAmelCase , help="Batch size." ) parser.add_argument("--seed" , type=lowerCAmelCase , default=42 ) parser.add_argument("--local_rank" , type=lowerCAmelCase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=lowerCAmelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=lowerCAmelCase , default="" , help="Can be used for distant debugging." ) UpperCAmelCase__ : Any = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase__ : List[str] = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) UpperCAmelCase__ : List[str] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase__ : Any = torch.device("cuda" , args.local_rank ) UpperCAmelCase__ : int = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase__ : str = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase__ : List[str] = nn.parallel.DistributedDataParallel( lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase ) elif args.n_gpu > 1: UpperCAmelCase__ : Union[str, Any] = nn.DataParallel(lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase ) torch.save(lowerCAmelCase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , lowerCAmelCase ) # Prepare dataset UpperCAmelCase__ : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase__ : str = (torch.from_numpy(lowerCAmelCase ),) UpperCAmelCase__ : int = TensorDataset(*lowerCAmelCase ) UpperCAmelCase__ : List[Any] = RandomSampler(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = DataLoader(lowerCAmelCase , sampler=lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase__ : Optional[int] = mask_heads(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) prune_heads(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": main()
704
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=0.6 , __UpperCamelCase=None , )-> List[Any]: UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : int = mask_ratio UpperCAmelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self )-> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = ViTMAEModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _A = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} _A = False _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Any = ViTMAEModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> Dict: pass def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Dict: # make masks reproducible np.random.seed(2 ) UpperCAmelCase__ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : str = torch.from_numpy(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Optional[Any] = pt_noise super().check_pt_tf_models(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = outputs[0].cpu().numpy() UpperCAmelCase__ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model_class.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) # Make sure we don't have nans UpperCAmelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> List[str]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Any: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self )-> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self )-> Union[str, Any]: pass @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ViTMAEModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> List[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self )-> Optional[int]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase__ : Any = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCamelCase ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : List[Any] = ViTMAEConfig() UpperCAmelCase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**__UpperCamelCase , noise=torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ) ) # verify the logits UpperCAmelCase__ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCamelCase ) , atol=1E-4 ) )
660
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ : List[Any] = model_name.find("patch" ) UpperCAmelCase__ : Optional[int] = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) UpperCAmelCase__ : Optional[Any] = XCLIPVisionConfig(patch_size=lowerCAmelCase , num_frames=lowerCAmelCase ) if "large" in model_name: UpperCAmelCase__ : Any = 768 UpperCAmelCase__ : int = 3072 UpperCAmelCase__ : Dict = 12 UpperCAmelCase__ : Optional[int] = 1024 UpperCAmelCase__ : Optional[Any] = 4096 UpperCAmelCase__ : Optional[Any] = 16 UpperCAmelCase__ : Tuple = 24 UpperCAmelCase__ : List[Any] = 768 UpperCAmelCase__ : int = 3072 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ : str = 336 UpperCAmelCase__ : int = XCLIPConfig.from_text_vision_configs(lowerCAmelCase , lowerCAmelCase ) if "large" in model_name: UpperCAmelCase__ : Optional[Any] = 768 return config def a__ ( lowerCAmelCase : List[Any] ): '''simple docstring''' # text encoder if name == "token_embedding.weight": UpperCAmelCase__ : Optional[Any] = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": UpperCAmelCase__ : Tuple = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: UpperCAmelCase__ : Any = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: UpperCAmelCase__ : Dict = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: UpperCAmelCase__ : int = name.replace("c_fc" , "fc1" ) if "c_proj" in name: UpperCAmelCase__ : int = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): UpperCAmelCase__ : List[str] = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ : str = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: UpperCAmelCase__ : Tuple = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ : Optional[Any] = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": UpperCAmelCase__ : Any = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): UpperCAmelCase__ : Optional[Any] = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: UpperCAmelCase__ : Union[str, Any] = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: UpperCAmelCase__ : Optional[Any] = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: UpperCAmelCase__ : Union[str, Any] = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: UpperCAmelCase__ : List[Any] = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: UpperCAmelCase__ : int = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ : Tuple = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: UpperCAmelCase__ : List[str] = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ : Optional[int] = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): UpperCAmelCase__ : List[str] = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): UpperCAmelCase__ : int = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase__ : Union[str, Any] = orig_state_dict.pop(lowerCAmelCase ) if "attn.in_proj" in key: UpperCAmelCase__ : Optional[Any] = key.split("." ) if key.startswith("visual" ): UpperCAmelCase__ : Union[str, Any] = key_split[3] UpperCAmelCase__ : int = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ : Dict = val[ :dim, : ] UpperCAmelCase__ : Optional[int] = val[ dim : dim * 2, : ] UpperCAmelCase__ : Any = val[ -dim:, : ] else: UpperCAmelCase__ : Optional[int] = val[ :dim ] UpperCAmelCase__ : List[Any] = val[ dim : dim * 2 ] UpperCAmelCase__ : int = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ : int = val[ :dim, : ] UpperCAmelCase__ : Optional[Any] = val[ dim : dim * 2, : ] UpperCAmelCase__ : Union[str, Any] = val[ -dim:, : ] else: UpperCAmelCase__ : List[Any] = val[:dim] UpperCAmelCase__ : List[Any] = val[ dim : dim * 2 ] UpperCAmelCase__ : Tuple = val[-dim:] elif key.startswith("mit" ): UpperCAmelCase__ : Optional[Any] = key_split[2] UpperCAmelCase__ : str = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ : Optional[Any] = val[:dim, :] UpperCAmelCase__ : List[Any] = val[dim : dim * 2, :] UpperCAmelCase__ : Tuple = val[-dim:, :] else: UpperCAmelCase__ : Optional[int] = val[:dim] UpperCAmelCase__ : Any = val[dim : dim * 2] UpperCAmelCase__ : Tuple = val[-dim:] else: UpperCAmelCase__ : Any = key_split[2] UpperCAmelCase__ : List[str] = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ : List[Any] = val[:dim, :] UpperCAmelCase__ : List[str] = val[ dim : dim * 2, : ] UpperCAmelCase__ : List[Any] = val[-dim:, :] else: UpperCAmelCase__ : List[str] = val[:dim] UpperCAmelCase__ : List[str] = val[ dim : dim * 2 ] UpperCAmelCase__ : List[Any] = val[-dim:] else: UpperCAmelCase__ : List[str] = rename_key(lowerCAmelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ : Optional[int] = val.T UpperCAmelCase__ : List[str] = val return orig_state_dict def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' if num_frames == 8: UpperCAmelCase__ : int = "eating_spaghetti_8_frames.npy" elif num_frames == 16: UpperCAmelCase__ : Optional[int] = "eating_spaghetti.npy" elif num_frames == 32: UpperCAmelCase__ : Optional[int] = "eating_spaghetti_32_frames.npy" UpperCAmelCase__ : Any = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=lowerCAmelCase , repo_type="dataset" , ) UpperCAmelCase__ : Union[str, Any] = np.load(lowerCAmelCase ) return list(lowerCAmelCase ) def a__ ( lowerCAmelCase : str , lowerCAmelCase : str=None , lowerCAmelCase : Any=False ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } UpperCAmelCase__ : Dict = model_to_url[model_name] UpperCAmelCase__ : int = 8 if "16-frames" in model_name: UpperCAmelCase__ : Optional[Any] = 16 elif "shot" in model_name: UpperCAmelCase__ : Union[str, Any] = 32 UpperCAmelCase__ : str = get_xclip_config(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[str] = XCLIPModel(lowerCAmelCase ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ : int = "pytorch_model.bin" gdown.cached_download(lowerCAmelCase , lowerCAmelCase , quiet=lowerCAmelCase ) UpperCAmelCase__ : Any = torch.load(lowerCAmelCase , map_location="cpu" )["model"] else: UpperCAmelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCAmelCase )["model"] UpperCAmelCase__ : Any = convert_state_dict(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Tuple = XCLIPModel(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ : Dict = 336 if model_name == "xclip-large-patch14-16-frames" else 224 UpperCAmelCase__ : str = VideoMAEImageProcessor(size=lowerCAmelCase ) UpperCAmelCase__ : int = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase__ : int = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase__ : Dict = XCLIPProcessor(image_processor=lowerCAmelCase , tokenizer=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = prepare_video(lowerCAmelCase ) UpperCAmelCase__ : Dict = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=lowerCAmelCase , return_tensors="pt" , padding=lowerCAmelCase ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase ) # Verify outputs UpperCAmelCase__ : Union[str, Any] = outputs.logits_per_video UpperCAmelCase__ : List[str] = logits_per_video.softmax(dim=1 ) print("Probs:" , lowerCAmelCase ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ : Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ : Dict = torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ : int = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ : Any = torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ : Optional[int] = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ : Tuple = torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ : Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ : str = torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ : List[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ : int = torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ : List[str] = torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ : Dict = torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ : Optional[int] = torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ : Tuple = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ : Tuple = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ : Any = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ : Optional[int] = torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ : Dict = torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(lowerCAmelCase , organization="nielsr" ) processor.push_to_hub(lowerCAmelCase , organization="nielsr" ) slow_tokenizer.push_to_hub(lowerCAmelCase , organization="nielsr" ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ : Optional[int] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
705
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _lowercase : '''simple docstring''' _A = 42 # setable values _A = 42 _A = 42 _A = None @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: return cls(common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase ) @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A = [e.name for e in FlaxKarrasDiffusionSchedulers] _A = 42 @property def lowerCAmelCase__ ( self )-> Optional[int]: return True @register_to_config def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = 0.0001 , __UpperCamelCase = 0.02 , __UpperCamelCase = "linear" , __UpperCamelCase = None , __UpperCamelCase = "fixed_small" , __UpperCamelCase = True , __UpperCamelCase = "epsilon" , __UpperCamelCase = jnp.floataa , )-> List[str]: UpperCAmelCase__ : int = dtype def lowerCAmelCase__ ( self , __UpperCamelCase = None )-> DDPMSchedulerState: if common is None: UpperCAmelCase__ : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> jnp.ndarray: return sample def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = () )-> DDPMSchedulerState: UpperCAmelCase__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Optional[int] = (jnp.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : Dict = jnp.clip(__UpperCamelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Tuple = jnp.log(jnp.clip(__UpperCamelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] UpperCAmelCase__ : Optional[int] = (predicted_variance + 1) / 2 UpperCAmelCase__ : Any = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase__ : List[str] = timestep if key is None: UpperCAmelCase__ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = jnp.split(__UpperCamelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : Optional[Any] = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Any = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : List[Any] = jnp.clip(__UpperCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : Any = jax.random.split(__UpperCamelCase , num=1 ) UpperCAmelCase__ : int = jax.random.normal(__UpperCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__UpperCamelCase , __UpperCamelCase , predicted_variance=__UpperCamelCase ) ** 0.5) * noise UpperCAmelCase__ : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase , state=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return add_noise_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return get_velocity_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __len__( self )-> Tuple: return self.config.num_train_timesteps
660
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : int = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'encodec' def __init__( self , __UpperCamelCase=[1.5, 3.0, 6.0, 12.0, 24.0] , __UpperCamelCase=2_40_00 , __UpperCamelCase=1 , __UpperCamelCase=False , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=1_28 , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=[8, 5, 4, 2] , __UpperCamelCase="weight_norm" , __UpperCamelCase=7 , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=True , __UpperCamelCase="reflect" , __UpperCamelCase=2 , __UpperCamelCase=2 , __UpperCamelCase=1.0 , __UpperCamelCase=10_24 , __UpperCamelCase=None , __UpperCamelCase=True , **__UpperCamelCase , )-> str: UpperCAmelCase__ : Any = target_bandwidths UpperCAmelCase__ : Tuple = sampling_rate UpperCAmelCase__ : Union[str, Any] = audio_channels UpperCAmelCase__ : List[Any] = normalize UpperCAmelCase__ : Optional[Any] = chunk_length_s UpperCAmelCase__ : int = overlap UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Dict = num_filters UpperCAmelCase__ : Any = num_residual_layers UpperCAmelCase__ : Tuple = upsampling_ratios UpperCAmelCase__ : Dict = norm_type UpperCAmelCase__ : Optional[int] = kernel_size UpperCAmelCase__ : Optional[int] = last_kernel_size UpperCAmelCase__ : str = residual_kernel_size UpperCAmelCase__ : Union[str, Any] = dilation_growth_rate UpperCAmelCase__ : str = use_causal_conv UpperCAmelCase__ : Optional[Any] = pad_mode UpperCAmelCase__ : Any = compress UpperCAmelCase__ : Any = num_lstm_layers UpperCAmelCase__ : Any = trim_right_ratio UpperCAmelCase__ : List[str] = codebook_size UpperCAmelCase__ : Optional[int] = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase__ : Optional[Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase__ ( self )-> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : Union[str, Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCAmelCase__ ( self )-> int: return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
706
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): A__ : Tuple = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: A__ : Union[str, Any] = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase__ : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase__ : Optional[Any] = numpy_to_pil(lowerCAmelCase ) return images def a__ ( lowerCAmelCase : List[Any] ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase__ : str = images[None, ...] UpperCAmelCase__ : str = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase__ : Any = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: UpperCAmelCase__ : List[str] = [Image.fromarray(lowerCAmelCase ) for image in images] return pil_images
707
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : Dict = logging.get_logger(__name__) def a__ ( lowerCAmelCase : Optional[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase__ : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase__ : int = get_size_dict(__UpperCamelCase , param_name="crop_size" ) UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : List[Any] = do_center_crop UpperCAmelCase__ : str = crop_size UpperCAmelCase__ : Optional[int] = resample UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = offset UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(__UpperCamelCase , size["shortest_edge"] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: UpperCAmelCase__ : Any = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = image.astype(np.floataa ) if offset: UpperCAmelCase__ : Tuple = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = to_numpy_array(__UpperCamelCase ) if do_resize: UpperCAmelCase__ : Union[str, Any] = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: UpperCAmelCase__ : int = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: UpperCAmelCase__ : List[str] = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: UpperCAmelCase__ : List[Any] = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) UpperCAmelCase__ : Dict = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> PIL.Image.Image: UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Optional[int] = offset if offset is not None else self.offset UpperCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Tuple = get_size_dict(__UpperCamelCase , param_name="crop_size" ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ : List[str] = make_batched(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] UpperCAmelCase__ : Dict = {"pixel_values": videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
660
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) A__ : List[Any] = logging.getLogger(__name__) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Dict = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCAmelCase , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCAmelCase , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCAmelCase , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCAmelCase , default="data/dump" , help="The dump file prefix." ) UpperCAmelCase__ : Tuple = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": UpperCAmelCase__ : Optional[Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : Tuple = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase__ : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase__ : Optional[int] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : Any = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase__ : Tuple = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase__ : Tuple = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase__ : Dict = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase__ : Any = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: UpperCAmelCase__ : int = fp.readlines() logger.info("Start encoding" ) logger.info(F"{len(lowerCAmelCase )} examples to process." ) UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Union[str, Any] = 1_0000 UpperCAmelCase__ : List[Any] = time.time() for text in data: UpperCAmelCase__ : List[str] = F"{bos} {text.strip()} {sep}" UpperCAmelCase__ : Dict = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) rslt.append(lowerCAmelCase ) iter += 1 if iter % interval == 0: UpperCAmelCase__ : int = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) UpperCAmelCase__ : List[Any] = time.time() logger.info("Finished binarization" ) logger.info(F"{len(lowerCAmelCase )} examples processed." ) UpperCAmelCase__ : Optional[int] = F"{args.dump_file}.{args.tokenizer_name}.pickle" UpperCAmelCase__ : Union[str, Any] = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase__ : int = [np.uintaa(lowerCAmelCase ) for d in rslt] else: UpperCAmelCase__ : Union[str, Any] = [np.intaa(lowerCAmelCase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(lowerCAmelCase , "wb" ) as handle: pickle.dump(rslt_ , lowerCAmelCase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
708
"""simple docstring""" def a__ ( lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(lowerCAmelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Union[str, Any] = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys A__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A__ : Optional[Any] = logging.get_logger(__name__) def a__ ( lowerCAmelCase : bool , lowerCAmelCase : bool ): '''simple docstring''' def run_func(lowerCAmelCase : Dict ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a__ ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Dict = random.Random() UpperCAmelCase__ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = 42 _A = "TensorFlow" @property def lowerCAmelCase__ ( self )-> Optional[int]: return tf.__version__ def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: # initialize GPU on separate process UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Union[str, Any] = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: UpperCAmelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : List[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Any = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Optional[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Optional[int] = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : str = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : Any = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Dict = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : Any = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : int = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Optional[Any] = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Any = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : int = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : int = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : Union[str, Any] = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Dict = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Union[str, Any] = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Any = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients UpperCAmelCase__ : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase__ ( self , __UpperCamelCase )-> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase__ : Optional[Any] = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=10 , ) return min(__UpperCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase__ : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase__ : Optional[int] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) UpperCAmelCase__ : str = meminfo.used UpperCAmelCase__ : int = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase__ : Any = None else: UpperCAmelCase__ : List[Any] = measure_peak_memory_cpu(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase__ : Optional[Any] = stop_memory_tracing(__UpperCamelCase ) if memory is None: UpperCAmelCase__ : Tuple = summary.total else: UpperCAmelCase__ : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
660
0
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Optional[int] = logging.get_logger(__name__) A__ : Dict = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'owlvit_text_model' def __init__( self , __UpperCamelCase=4_94_08 , __UpperCamelCase=5_12 , __UpperCamelCase=20_48 , __UpperCamelCase=12 , __UpperCamelCase=8 , __UpperCamelCase=16 , __UpperCamelCase="quick_gelu" , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=0 , __UpperCamelCase=4_94_06 , __UpperCamelCase=4_94_07 , **__UpperCamelCase , )-> Any: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) UpperCAmelCase__ : Dict = vocab_size UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Any = num_hidden_layers UpperCAmelCase__ : str = num_attention_heads UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : str = initializer_factor @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase__ : List[str] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'owlvit_vision_model' def __init__( self , __UpperCamelCase=7_68 , __UpperCamelCase=30_72 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3 , __UpperCamelCase=7_68 , __UpperCamelCase=32 , __UpperCamelCase="quick_gelu" , __UpperCamelCase=1E-5 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , **__UpperCamelCase , )-> List[Any]: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Tuple = hidden_size UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : str = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : str = num_channels UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : Optional[Any] = patch_size UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : Any = attention_dropout UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : List[Any] = initializer_factor @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) UpperCAmelCase__ : Tuple = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": UpperCAmelCase__ : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'owlvit' _A = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=5_12 , __UpperCamelCase=2.6592 , __UpperCamelCase=True , **__UpperCamelCase , )-> str: super().__init__(**__UpperCamelCase ) if text_config is None: UpperCAmelCase__ : List[str] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: UpperCAmelCase__ : Any = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) UpperCAmelCase__ : Optional[int] = OwlViTTextConfig(**__UpperCamelCase ) UpperCAmelCase__ : Tuple = OwlViTVisionConfig(**__UpperCamelCase ) UpperCAmelCase__ : Any = projection_dim UpperCAmelCase__ : int = logit_scale_init_value UpperCAmelCase__ : Union[str, Any] = return_dict UpperCAmelCase__ : Dict = 1.0 @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCamelCase ) UpperCAmelCase__ : Tuple = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase )-> Tuple: UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : Union[str, Any] = text_config UpperCAmelCase__ : Optional[Any] = vision_config return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : Any = self.text_config.to_dict() UpperCAmelCase__ : Optional[int] = self.vision_config.to_dict() UpperCAmelCase__ : int = self.__class__.model_type return output class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-4 def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = None , )-> Mapping[str, Any]: UpperCAmelCase__ : List[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , framework=__UpperCamelCase ) UpperCAmelCase__ : str = super().generate_dummy_inputs( processor.image_processor , batch_size=__UpperCamelCase , framework=__UpperCamelCase ) return {**text_input_dict, **image_input_dict} @property def lowerCAmelCase__ ( self )-> int: return 14
710
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule A__ : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
660
0
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0.2 , __UpperCamelCase=0.2 )-> str: '''simple docstring''' UpperCAmelCase__ : List[str] = bp_numa UpperCAmelCase__ : str = bp_numa UpperCAmelCase__ : List[Any] = bp_numa UpperCAmelCase__ : Union[str, Any] = conva_get[:2] UpperCAmelCase__ : Dict = conva_get[2] UpperCAmelCase__ : List[Any] = size_pa UpperCAmelCase__ : Optional[int] = rate_w UpperCAmelCase__ : Any = rate_t UpperCAmelCase__ : List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase__ : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCAmelCase__ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase__ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase__ : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__UpperCamelCase , "wb" ) as f: pickle.dump(__UpperCamelCase , __UpperCamelCase ) print(F"Model saved: {save_path}" ) @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase )-> Dict: '''simple docstring''' with open(__UpperCamelCase , "rb" ) as f: UpperCAmelCase__ : Union[str, Any] = pickle.load(__UpperCamelCase ) # noqa: S301 UpperCAmelCase__ : Optional[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) UpperCAmelCase__ : str = model_dic.get("size_pooling1" ) UpperCAmelCase__ : List[str] = model_dic.get("num_bp1" ) UpperCAmelCase__ : Union[str, Any] = model_dic.get("num_bp2" ) UpperCAmelCase__ : Dict = model_dic.get("num_bp3" ) UpperCAmelCase__ : int = model_dic.get("rate_weight" ) UpperCAmelCase__ : str = model_dic.get("rate_thre" ) # create model instance UpperCAmelCase__ : int = CNN(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # modify model parameter UpperCAmelCase__ : List[Any] = model_dic.get("w_conv1" ) UpperCAmelCase__ : int = model_dic.get("wkj" ) UpperCAmelCase__ : Any = model_dic.get("vji" ) UpperCAmelCase__ : int = model_dic.get("thre_conv1" ) UpperCAmelCase__ : Optional[int] = model_dic.get("thre_bp2" ) UpperCAmelCase__ : Dict = model_dic.get("thre_bp3" ) return conv_ins def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: '''simple docstring''' return round(__UpperCamelCase , 3 ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = convs[0] UpperCAmelCase__ : Union[str, Any] = convs[1] UpperCAmelCase__ : Tuple = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus UpperCAmelCase__ : Optional[int] = [] for i_focus in range(0 , size_data - size_conv + 1 , __UpperCamelCase ): for j_focus in range(0 , size_data - size_conv + 1 , __UpperCamelCase ): UpperCAmelCase__ : int = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): UpperCAmelCase__ : str = [] for i_focus in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Dict = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) UpperCAmelCase__ : int = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase , __UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion UpperCAmelCase__ : Any = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) UpperCAmelCase__ : List[str] = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="average_pool" )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = len(featuremaps[0] ) UpperCAmelCase__ : Dict = int(size_map / size_pooling ) UpperCAmelCase__ : Dict = [] for i_map in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Optional[Any] = featuremaps[i_map] UpperCAmelCase__ : List[str] = [] for i_focus in range(0 , __UpperCamelCase , __UpperCamelCase ): for j_focus in range(0 , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) UpperCAmelCase__ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase , __UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = [] for i in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Optional[Any] = np.shape(data[i] ) UpperCAmelCase__ : Tuple = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCAmelCase__ : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = np.asarray(__UpperCamelCase ) return data_expanded def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : Tuple = np.asarray(__UpperCamelCase ) UpperCAmelCase__ : Any = np.shape(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Tuple = 0 for i_map in range(__UpperCamelCase ): UpperCAmelCase__ : str = np.ones((size_map, size_map) ) for i in range(0 , __UpperCamelCase , __UpperCamelCase ): for j in range(0 , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : List[Any] = pd_pool[ i_pool ] UpperCAmelCase__ : str = i_pool + 1 UpperCAmelCase__ : Optional[Any] = np.multiply( __UpperCamelCase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=bool )-> Optional[int]: '''simple docstring''' print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(__UpperCamelCase )) ) print((" - - Shape: Teach_Data ", np.shape(__UpperCamelCase )) ) UpperCAmelCase__ : Union[str, Any] = 0 UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Any = 1_00_00 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase__ : str = 0 print(F"-------------Learning Time {rp}--------------" ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase__ : Union[str, Any] = np.asmatrix(datas_train[p] ) UpperCAmelCase__ : int = np.asarray(datas_teach[p] ) UpperCAmelCase__ : Any = self.convolute( __UpperCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase__ : Dict = self.pooling(__UpperCamelCase , self.size_poolinga ) UpperCAmelCase__ : List[str] = np.shape(__UpperCamelCase ) UpperCAmelCase__ : str = self._expand(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = data_bp_input UpperCAmelCase__ : str = np.dot(__UpperCamelCase , self.vji.T ) - self.thre_bpa UpperCAmelCase__ : Dict = self.sig(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = np.dot(__UpperCamelCase , self.wkj.T ) - self.thre_bpa UpperCAmelCase__ : Optional[int] = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase__ : List[str] = np.multiply( (data_teach - bp_outa) , np.multiply(__UpperCamelCase , (1 - bp_outa) ) ) UpperCAmelCase__ : Tuple = np.multiply( np.dot(__UpperCamelCase , self.wkj ) , np.multiply(__UpperCamelCase , (1 - bp_outa) ) ) UpperCAmelCase__ : int = np.dot(__UpperCamelCase , self.vji ) UpperCAmelCase__ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase__ : List[Any] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase__ : str = self._calculate_gradient_from_pool( __UpperCamelCase , __UpperCamelCase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase__ : Any = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase__ : Optional[int] = self.rate_weight * np.dot(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase__ : int = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase__ : str = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase__ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase__ : Optional[int] = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase__ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase__ : Optional[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase__ : int = rp + 1 UpperCAmelCase__ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): UpperCAmelCase__ : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase , "+-" ) plt.plot(__UpperCamelCase , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(__UpperCamelCase , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: '''simple docstring''' UpperCAmelCase__ : List[str] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): UpperCAmelCase__ : Tuple = np.asmatrix(datas_test[p] ) UpperCAmelCase__ : Optional[Any] = self.convolute( __UpperCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase__ : Any = self.pooling(__UpperCamelCase , self.size_poolinga ) UpperCAmelCase__ : Tuple = self._expand(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = data_bp_input UpperCAmelCase__ : Optional[int] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase__ : Any = self.sig(__UpperCamelCase ) UpperCAmelCase__ : List[str] = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase__ : Any = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase__ : Tuple = [list(map(self.do_round , __UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : Any = np.asmatrix(__UpperCamelCase ) UpperCAmelCase__ : str = self.convolute( __UpperCamelCase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCAmelCase__ : Dict = self.pooling(__UpperCamelCase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
711
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCamelCase = 7_68 , )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , )-> Any: UpperCAmelCase__ : Dict = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) UpperCAmelCase__ : Any = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Any = (embeds * self.std) + self.mean return embeds
660
0
"""simple docstring""" A__ : int = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
712
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): '''simple docstring''' # Construct model if gpta_config_file == "": UpperCAmelCase__ : Optional[int] = GPTaConfig() else: UpperCAmelCase__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
660
0
"""simple docstring""" import numpy as np def a__ ( lowerCAmelCase : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A__ : Optional[int] = ["""small""", """medium""", """large"""] A__ : Optional[int] = """lm_head.decoder.weight""" A__ : Dict = """lm_head.weight""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = d.pop(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) A__ : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: A__ : Tuple = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A__ : str = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
660
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig A__ : Union[str, Any] = logging.get_logger(__name__) # General docstring A__ : Tuple = """RegNetConfig""" # Base docstring A__ : List[Any] = """facebook/regnet-y-040""" A__ : Union[str, Any] = [1, 1_088, 7, 7] # Image classification docstring A__ : List[Any] = """facebook/regnet-y-040""" A__ : List[str] = """tabby, tabby cat""" A__ : List[Any] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 3 , __UpperCamelCase = 1 , __UpperCamelCase = 1 , __UpperCamelCase = "relu" , )-> Any: super().__init__() UpperCAmelCase__ : Union[str, Any] = nn.Convad( __UpperCamelCase , __UpperCamelCase , kernel_size=__UpperCamelCase , stride=__UpperCamelCase , padding=kernel_size // 2 , groups=__UpperCamelCase , bias=__UpperCamelCase , ) UpperCAmelCase__ : Optional[Any] = nn.BatchNormad(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase__ ( self , __UpperCamelCase )-> Any: UpperCAmelCase__ : List[str] = self.convolution(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = self.normalization(__UpperCamelCase ) UpperCAmelCase__ : Any = self.activation(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> str: super().__init__() UpperCAmelCase__ : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCAmelCase__ : Optional[int] = config.num_channels def lowerCAmelCase__ ( self , __UpperCamelCase )-> Any: UpperCAmelCase__ : Dict = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) UpperCAmelCase__ : Optional[Any] = self.embedder(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : Optional[Any] = nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , stride=__UpperCamelCase , bias=__UpperCamelCase ) UpperCAmelCase__ : int = nn.BatchNormad(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tensor: UpperCAmelCase__ : List[str] = self.convolution(__UpperCamelCase ) UpperCAmelCase__ : str = self.normalization(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: super().__init__() UpperCAmelCase__ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase__ : Union[str, Any] = nn.Sequential( nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(__UpperCamelCase , __UpperCamelCase , kernel_size=1 ) , nn.Sigmoid() , ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: # b c h w -> b c 1 1 UpperCAmelCase__ : Union[str, Any] = self.pooler(__UpperCamelCase ) UpperCAmelCase__ : Any = self.attention(__UpperCamelCase ) UpperCAmelCase__ : List[str] = hidden_state * attention return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 )-> List[str]: super().__init__() UpperCAmelCase__ : Tuple = in_channels != out_channels or stride != 1 UpperCAmelCase__ : List[str] = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : str = ( RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase__ : List[Any] = nn.Sequential( RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , ) UpperCAmelCase__ : str = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self , __UpperCamelCase )-> Dict: UpperCAmelCase__ : Optional[Any] = hidden_state UpperCAmelCase__ : Dict = self.layer(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = self.shortcut(__UpperCamelCase ) hidden_state += residual UpperCAmelCase__ : Tuple = self.activation(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 )-> str: super().__init__() UpperCAmelCase__ : Any = in_channels != out_channels or stride != 1 UpperCAmelCase__ : str = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : Union[str, Any] = ( RegNetShortCut(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase__ : List[str] = nn.Sequential( RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , groups=__UpperCamelCase , activation=config.hidden_act ) , RegNetSELayer(__UpperCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__UpperCamelCase , __UpperCamelCase , kernel_size=1 , activation=__UpperCamelCase ) , ) UpperCAmelCase__ : List[str] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: UpperCAmelCase__ : Any = hidden_state UpperCAmelCase__ : Optional[Any] = self.layer(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.shortcut(__UpperCamelCase ) hidden_state += residual UpperCAmelCase__ : str = self.activation(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 2 , __UpperCamelCase = 2 , )-> str: super().__init__() UpperCAmelCase__ : Optional[int] = RegNetXLayer if config.layer_type == "x" else RegNetYLayer UpperCAmelCase__ : Any = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , stride=__UpperCamelCase , ) , *[layer(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for _ in range(depth - 1 )] , ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = self.layers(__UpperCamelCase ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> Tuple: super().__init__() UpperCAmelCase__ : int = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase__ : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCamelCase , config.depths[1:] ): self.stages.append(RegNetStage(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , depth=__UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = True )-> BaseModelOutputWithNoAttention: UpperCAmelCase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase__ : Tuple = hidden_states + (hidden_state,) UpperCAmelCase__ : Optional[Any] = stage_module(__UpperCamelCase ) if output_hidden_states: UpperCAmelCase__ : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCamelCase , hidden_states=__UpperCamelCase ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = RegNetConfig _A = 'regnet' _A = 'pixel_values' _A = True def lowerCAmelCase__ ( self , __UpperCamelCase )-> str: if isinstance(__UpperCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(__UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False )-> str: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : str = value A__ : Union[str, Any] = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ A__ : List[str] = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> Tuple: super().__init__(__UpperCamelCase ) UpperCAmelCase__ : List[str] = config UpperCAmelCase__ : Dict = RegNetEmbeddings(__UpperCamelCase ) UpperCAmelCase__ : List[str] = RegNetEncoder(__UpperCamelCase ) UpperCAmelCase__ : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None )-> BaseModelOutputWithPoolingAndNoAttention: UpperCAmelCase__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Optional[Any] = self.embedder(__UpperCamelCase ) UpperCAmelCase__ : Any = self.encoder( __UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_outputs[0] UpperCAmelCase__ : Tuple = self.pooler(__UpperCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCamelCase , pooler_output=__UpperCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self , __UpperCamelCase )-> List[Any]: super().__init__(__UpperCamelCase ) UpperCAmelCase__ : str = config.num_labels UpperCAmelCase__ : List[Any] = RegNetModel(__UpperCamelCase ) # classification head UpperCAmelCase__ : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , )-> ImageClassifierOutputWithNoAttention: UpperCAmelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Any = self.regnet(__UpperCamelCase , output_hidden_states=__UpperCamelCase , return_dict=__UpperCamelCase ) UpperCAmelCase__ : List[str] = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase__ : Optional[Any] = self.classifier(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase__ : Optional[int] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase__ : str = "single_label_classification" else: UpperCAmelCase__ : Tuple = "multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase__ : Tuple = MSELoss() if self.num_labels == 1: UpperCAmelCase__ : Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase__ : int = loss_fct(__UpperCamelCase , __UpperCamelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase__ : Optional[int] = CrossEntropyLoss() UpperCAmelCase__ : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase__ : Optional[Any] = BCEWithLogitsLoss() UpperCAmelCase__ : Dict = loss_fct(__UpperCamelCase , __UpperCamelCase ) if not return_dict: UpperCAmelCase__ : Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCamelCase , logits=__UpperCamelCase , hidden_states=outputs.hidden_states )
714
"""simple docstring""" from math import isqrt def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def a__ ( lowerCAmelCase : int = 10**8 ): '''simple docstring''' UpperCAmelCase__ : Dict = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" from __future__ import annotations from typing import Any class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0 )-> None: UpperCAmelCase__ : Dict = row, column UpperCAmelCase__ : Union[str, Any] = [[default_value for c in range(__UpperCamelCase )] for r in range(__UpperCamelCase )] def __str__( self )-> str: UpperCAmelCase__ : List[Any] = F"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier UpperCAmelCase__ : Union[str, Any] = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase__ : int = max(__UpperCamelCase , len(str(__UpperCamelCase ) ) ) UpperCAmelCase__ : Optional[Any] = F"%{max_element_length}s" # Make string and return def single_line(__UpperCamelCase ) -> str: nonlocal string_format_identifier UpperCAmelCase__ : Union[str, Any] = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCamelCase ) for row_vector in self.array ) return s def __repr__( self )-> str: return str(self ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> bool: if not (isinstance(__UpperCamelCase , (list, tuple) ) and len(__UpperCamelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCamelCase )-> Any: assert self.validate_indicies(__UpperCamelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCamelCase , __UpperCamelCase )-> None: assert self.validate_indicies(__UpperCamelCase ) UpperCAmelCase__ : Dict = value def __add__( self , __UpperCamelCase )-> Matrix: assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase__ : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ : Union[str, Any] = self[r, c] + another[r, c] return result def __neg__( self )-> Matrix: UpperCAmelCase__ : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ : List[Any] = -self[r, c] return result def __sub__( self , __UpperCamelCase )-> Matrix: return self + (-another) def __mul__( self , __UpperCamelCase )-> Matrix: if isinstance(__UpperCamelCase , (int, float) ): # Scalar multiplication UpperCAmelCase__ : Any = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ : Optional[int] = self[r, c] * another return result elif isinstance(__UpperCamelCase , __UpperCamelCase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase__ : int = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase__ : List[str] = F"Unsupported type given for another ({type(__UpperCamelCase )})" raise TypeError(__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Matrix: UpperCAmelCase__ : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ : List[str] = self[r, c] return result def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> Any: assert isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase__ : List[str] = v.transpose() UpperCAmelCase__ : Dict = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Matrix(3 , 3 , 0 ) for i in range(3 ): UpperCAmelCase__ : List[str] = 1 print(F"a^(-1) is {ainv}" ) # u, v UpperCAmelCase__ : str = Matrix(3 , 1 , 0 ) UpperCAmelCase__ : Union[str, Any] = 1, 2, -3 UpperCAmelCase__ : int = Matrix(3 , 1 , 0 ) UpperCAmelCase__ : List[Any] = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase , lowerCAmelCase )}" ) def a__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
715
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = np.full((len(lowerCAmelCase ), sequence_length, 2) , lowerCAmelCase ) else: UpperCAmelCase__ : Optional[Any] = np.full((len(lowerCAmelCase ), sequence_length) , lowerCAmelCase ) for i, tensor in enumerate(lowerCAmelCase ): if padding_side == "right": if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Dict = tensor[:sequence_length] else: UpperCAmelCase__ : Tuple = tensor[:sequence_length] else: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase__ : int = tensor[:sequence_length] return out_tensor.tolist() def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = ord(lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCAmelCase__ : Optional[Any] = unicodedata.category(lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -100 _A = "pt" def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: import torch UpperCAmelCase__ : Optional[Any] = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase__ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase__ : str = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch UpperCAmelCase__ : Optional[Any] = torch.tensor(batch["entity_ids"] ).shape[1] UpperCAmelCase__ : int = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase__ : int = [ list(__UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) for label in labels ] else: UpperCAmelCase__ : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) + list(__UpperCamelCase ) for label in labels ] UpperCAmelCase__ : Optional[Any] = [feature["ner_tags"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , -1 , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = [feature["original_entity_spans"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , (-1, -1) , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {k: torch.tensor(__UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
660
0