code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Union[str, Any] = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class _lowercase : '''simple docstring''' _A = 42 _A = None _A = None _A = None _A = None def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : List[str] = _str_to_version_tuple(self.version_str ) def __repr__( self )-> str: return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def lowerCAmelCase__ ( self )-> Dict: return self.major, self.minor, self.patch def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: if isinstance(__UpperCamelCase , __UpperCamelCase ): return Version(__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): return other raise TypeError(F"{other} (type {type(__UpperCamelCase )}) cannot be compared to version." ) def __eq__( self , __UpperCamelCase )-> Optional[int]: try: UpperCAmelCase__ : Any = self._validate_operand(__UpperCamelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , __UpperCamelCase )-> List[str]: UpperCAmelCase__ : Any = self._validate_operand(__UpperCamelCase ) return self.tuple < other.tuple def __hash__( self )-> Optional[Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase )-> Dict: UpperCAmelCase__ : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowerCAmelCase__ ( self )-> str: return self.version_str def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Dict = _VERSION_REG.match(lowerCAmelCase ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(lowerCAmelCase ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def a__ ( lowerCAmelCase : Union[str, Any] ): '''simple docstring''' return ".".join(str(lowerCAmelCase ) for v in version_tuple )
716
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
660
0
"""simple docstring""" from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter A__ : int = logging.get_logger(__name__) A__ : Dict[Optional[str], Type[Formatter]] = {} A__ : Dict[Optional[str], str] = {} A__ : Dict[Optional[str], Exception] = {} def a__ ( lowerCAmelCase : type , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[List[str]] = None , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) UpperCAmelCase__ : Union[str, Any] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) UpperCAmelCase__ : Union[str, Any] = format_type def a__ ( lowerCAmelCase : Exception , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[List[str]] = None ): '''simple docstring''' UpperCAmelCase__ : Dict = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): UpperCAmelCase__ : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: A__ : Union[str, Any] = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: A__ : Union[str, Any] = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: A__ : Any = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def a__ ( lowerCAmelCase : Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def a__ ( lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = get_format_type_from_alias(lowerCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
717
"""simple docstring""" from manim import * class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : str = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[Any] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : int = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("CPU" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Union[str, Any] = Text("GPU" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Model" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): rect.set_stroke(__UpperCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase__ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCamelCase , buff=0.0 ) self.add(__UpperCamelCase ) cpu_targs.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Any = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , aligned_edge=__UpperCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : str = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase__ : Optional[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.play(Write(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = fill.copy().set_fill(__UpperCamelCase , opacity=0.7 ) target.move_to(__UpperCamelCase ) first_animations.append(GrowFromCenter(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
660
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : List[Any] = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } A__ : int = { """Salesforce/codegen-350M-mono""": 2_048, } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] _A = CodeGenTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase="<|endoftext|>" , __UpperCamelCase=False , **__UpperCamelCase , )-> Dict: super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) if kwargs.pop("add_bos_token" , __UpperCamelCase ): UpperCAmelCase__ : Any = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" F"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" F"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) UpperCAmelCase__ : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: UpperCAmelCase__ : Union[str, Any] = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase__ : Union[str, Any] = add_prefix_space UpperCAmelCase__ : str = pre_tok_class(**__UpperCamelCase ) UpperCAmelCase__ : int = add_prefix_space def lowerCAmelCase__ ( self , *__UpperCamelCase , **__UpperCamelCase )-> BatchEncoding: UpperCAmelCase__ : Optional[Any] = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , *__UpperCamelCase , **__UpperCamelCase )-> BatchEncoding: UpperCAmelCase__ : Optional[int] = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: UpperCAmelCase__ : Dict = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: UpperCAmelCase__ : int = super().decode( token_ids=__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , **__UpperCamelCase , ) if truncate_before_pattern is not None and len(__UpperCamelCase ) > 0: UpperCAmelCase__ : Tuple = self.truncate(__UpperCamelCase , __UpperCamelCase ) return decoded_text def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> Any: def find_re(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Dict = pattern.search(__UpperCamelCase , __UpperCamelCase ) return m.start() if m else -1 UpperCAmelCase__ : str = [re.compile(__UpperCamelCase , re.MULTILINE ) for pattern in truncate_before_pattern] UpperCAmelCase__ : List[str] = list(re.finditer("^print" , __UpperCamelCase , re.MULTILINE ) ) if len(__UpperCamelCase ) > 1: UpperCAmelCase__ : Any = completion[: prints[1].start()] UpperCAmelCase__ : Optional[Any] = list(re.finditer("^def" , __UpperCamelCase , re.MULTILINE ) ) if len(__UpperCamelCase ) > 1: UpperCAmelCase__ : Dict = completion[: defs[1].start()] UpperCAmelCase__ : str = 0 UpperCAmelCase__ : Any = [ pos for pos in [find_re(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for terminal in terminals] if pos != -1 ] if len(__UpperCamelCase ) > 0: return completion[: min(__UpperCamelCase )] else: return completion
718
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : nn.ModuleList , lowerCAmelCase : nn.ModuleList , lowerCAmelCase : List[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F"{len(lowerCAmelCase )} != {len(lowerCAmelCase )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): '''simple docstring''' try: UpperCAmelCase__ : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : int , lowerCAmelCase : Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( lowerCAmelCase : Union[str, PreTrainedModel] , lowerCAmelCase : Union[str, Path] = "student" , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"teacher must be a model or string got type {type(lowerCAmelCase )}" UpperCAmelCase__ : int = teacher.config.to_diff_dict() try: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ : Tuple = teacher_e if d is None: UpperCAmelCase__ : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ : Optional[Any] = teacher_e if d is None: UpperCAmelCase__ : Optional[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights UpperCAmelCase__ : Tuple = teacher.config_class(**lowerCAmelCase ) UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ : Optional[int] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ , UpperCAmelCase__ : int = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) UpperCAmelCase__ : int = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
660
0
"""simple docstring""" from manim import * class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : str = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[Any] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : int = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("CPU" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Union[str, Any] = Text("GPU" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Model" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): rect.set_stroke(__UpperCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase__ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCamelCase , buff=0.0 ) self.add(__UpperCamelCase ) cpu_targs.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Any = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , aligned_edge=__UpperCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : str = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase__ : Optional[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.play(Write(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = fill.copy().set_fill(__UpperCamelCase , opacity=0.7 ) target.move_to(__UpperCamelCase ) first_animations.append(GrowFromCenter(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
719
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Tuple = ort.SessionOptions() UpperCAmelCase__ : List[str] = False return options def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : Tuple = np.random.RandomState(0 ) UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images UpperCAmelCase__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : List[str] = np.random.RandomState(0 ) UpperCAmelCase__ : str = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : int = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
660
0
"""simple docstring""" from math import isqrt def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def a__ ( lowerCAmelCase : int = 10**8 ): '''simple docstring''' UpperCAmelCase__ : Dict = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
720
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'table-transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=1_00 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , )-> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : int = backbone_config.get("model_type" ) UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : int = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = None, None, None UpperCAmelCase__ : Optional[int] = use_timm_backbone UpperCAmelCase__ : Dict = backbone_config UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : int = d_model UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : str = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = auxiliary_loss UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[str] = backbone UpperCAmelCase__ : List[Any] = use_pretrained_backbone UpperCAmelCase__ : List[str] = dilation # Hungarian matcher UpperCAmelCase__ : Dict = class_cost UpperCAmelCase__ : Any = bbox_cost UpperCAmelCase__ : Tuple = giou_cost # Loss coefficients UpperCAmelCase__ : Any = mask_loss_coefficient UpperCAmelCase__ : Dict = dice_loss_coefficient UpperCAmelCase__ : Any = bbox_loss_coefficient UpperCAmelCase__ : Tuple = giou_loss_coefficient UpperCAmelCase__ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> int: return self.encoder_attention_heads @property def lowerCAmelCase__ ( self )-> int: return self.d_model class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-5 @property def lowerCAmelCase__ ( self )-> int: return 12
660
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : str = """▁""" A__ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} A__ : Optional[Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } A__ : Dict = { """xlm-roberta-base""": 512, """xlm-roberta-large""": 512, """xlm-roberta-large-finetuned-conll02-dutch""": 512, """xlm-roberta-large-finetuned-conll02-spanish""": 512, """xlm-roberta-large-finetuned-conll03-english""": 512, """xlm-roberta-large-finetuned-conll03-german""": 512, } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self , __UpperCamelCase , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase = None , **__UpperCamelCase , )-> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Any = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token UpperCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) UpperCAmelCase__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) UpperCAmelCase__ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ : int = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ : Tuple = 1 UpperCAmelCase__ : Optional[int] = len(self.sp_model ) + self.fairseq_offset UpperCAmelCase__ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self )-> Any: UpperCAmelCase__ : Union[str, Any] = self.__dict__.copy() UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Optional[int] = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[int]: UpperCAmelCase__ : List[Any] = [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self )-> Dict: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : List[str] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : str = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> str: UpperCAmelCase__ : List[Any] = "".join(__UpperCamelCase ).replace(__UpperCamelCase , " " ).strip() return out_string def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
721
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) A__ : int = getLogger(__name__) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 1024 , lowerCAmelCase : List[Any]="val" , lowerCAmelCase : str=None , lowerCAmelCase : int=False , lowerCAmelCase : Dict="summarization" , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict = None , lowerCAmelCase : List[str]="" , **lowerCAmelCase : int , ): '''simple docstring''' UpperCAmelCase__ : Dict = str(lowerCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=lowerCAmelCase ) UpperCAmelCase__ : List[str] = Path(lowerCAmelCase ) UpperCAmelCase__ : str = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).cuda() if fpaa: UpperCAmelCase__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase , lowerCAmelCase ) # update config with task specific params UpperCAmelCase__ : List[Any] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase__ : Any = num_return_sequences UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase__ : int = tokenizer.model_max_length if prefix is None: UpperCAmelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase__ : str = SeqaSeqDataset( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , max_target_length=1024 , type_path=lowerCAmelCase , n_obs=lowerCAmelCase , prefix=lowerCAmelCase , **lowerCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase__ : Union[str, Any] = ds.make_sortish_sampler(lowerCAmelCase , distributed=lowerCAmelCase , add_extra_examples=lowerCAmelCase , shuffle=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = DataLoader(lowerCAmelCase , sampler=lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn ) UpperCAmelCase__ : str = [] for batch in tqdm(lowerCAmelCase ): UpperCAmelCase__ : Dict = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=lowerCAmelCase , num_beams=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase__ : int = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) UpperCAmelCase__ : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase__ : str = chunks(lowerCAmelCase , lowerCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(lowerCAmelCase , lowerCAmelCase ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' UpperCAmelCase__ : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=lowerCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument( "--type_path" , type=lowerCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowerCAmelCase , default=8 , required=lowerCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=lowerCAmelCase , default=1 , required=lowerCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=lowerCAmelCase , default=600 , required=lowerCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument( "--prefix" , type=lowerCAmelCase , required=lowerCAmelCase , default=lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_known_args() UpperCAmelCase__ : int = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase__ : Dict = Path(args.save_dir + "_tmp" ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) # this handles locking. UpperCAmelCase__ : List[str] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase__ : List[str] = {} if args.src_lang is not None: UpperCAmelCase__ : str = args.src_lang if args.tgt_lang is not None: UpperCAmelCase__ : List[str] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = eval_data_dir( args.data_dir , lowerCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase , **lowerCAmelCase , ) if args.local_rank <= 0: UpperCAmelCase__ : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ : Tuple = gather_results_from_each_node(lowerCAmelCase , lowerCAmelCase , args.sync_timeout ) UpperCAmelCase__ : Union[str, Any] = combine_partial_results(lowerCAmelCase ) if args.num_return_sequences > 1: UpperCAmelCase__ : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase , lowerCAmelCase ) return UpperCAmelCase__ : Optional[Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(lowerCAmelCase ) as f: UpperCAmelCase__ : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase__ : List[Any] = "translation" in args.task UpperCAmelCase__ : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase__ : Optional[Any] = "bleu" if calc_bleu else "rouge" UpperCAmelCase__ : Dict = score_fn(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = time.time() - start_time UpperCAmelCase__ : Optional[int] = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase__ : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) print(lowerCAmelCase ) write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase ) def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = [] for partial_result in partial_results: records.extend(lowerCAmelCase ) UpperCAmelCase__ : Dict = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["id"] ) UpperCAmelCase__ : List[str] = [x["pred"] for x in records] return preds def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): '''simple docstring''' # WAIT FOR lots of .json files UpperCAmelCase__ : int = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase__ : Dict = None while (time.time() - start_wait) < timeout: UpperCAmelCase__ : str = list(save_dir.glob("rank_*.json" ) ) if len(lowerCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase__ : Union[str, Any] = lmap(lowerCAmelCase , lowerCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
660
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['image_processor', 'tokenizer'] _A = 'BlipImageProcessor' _A = 'AutoTokenizer' def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Any: super().__init__(__UpperCamelCase , __UpperCamelCase ) # add QFormer tokenizer UpperCAmelCase__ : Optional[Any] = qformer_tokenizer def __call__( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) UpperCAmelCase__ : Dict = BatchFeature() if text is not None: UpperCAmelCase__ : List[str] = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) encoding.update(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.qformer_tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) UpperCAmelCase__ : Any = qformer_text_encoding.pop("input_ids" ) UpperCAmelCase__ : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: UpperCAmelCase__ : Tuple = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) encoding.update(__UpperCamelCase ) return encoding def lowerCAmelCase__ ( self , *__UpperCamelCase , **__UpperCamelCase )-> List[Any]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , *__UpperCamelCase , **__UpperCamelCase )-> List[str]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : List[str] = self.tokenizer.model_input_names UpperCAmelCase__ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> Optional[int]: if os.path.isfile(__UpperCamelCase ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) UpperCAmelCase__ : int = os.path.join(__UpperCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__UpperCamelCase ) return super().save_pretrained(__UpperCamelCase , **__UpperCamelCase ) @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , **__UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(__UpperCamelCase , subfolder="qformer_tokenizer" ) UpperCAmelCase__ : Tuple = cls._get_arguments_from_pretrained(__UpperCamelCase , **__UpperCamelCase ) args.append(__UpperCamelCase ) return cls(*__UpperCamelCase )
700
"""simple docstring""" from timeit import timeit def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Tuple = 0 while number: number &= number - 1 result += 1 return result def a__ ( lowerCAmelCase : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) UpperCAmelCase__ : Union[str, Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): '''simple docstring''' def do_benchmark(lowerCAmelCase : int ) -> None: UpperCAmelCase__ : Dict = "import __main__ as z" print(F"Benchmark when {number = }:" ) print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase ) print(F"timeit() runs in {timing} seconds" ) print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" ) UpperCAmelCase__ : Any = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , ) print(F"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
660
0
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = (DDIMParallelScheduler,) _A = (('eta', 0.0), ('num_inference_steps', 50)) def lowerCAmelCase__ ( self , **__UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__UpperCamelCase ) return config def lowerCAmelCase__ ( self , **__UpperCamelCase )-> int: UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase__ : Union[str, Any] = self.get_scheduler_config(**__UpperCamelCase ) UpperCAmelCase__ : List[str] = scheduler_class(**__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = 10, 0.0 UpperCAmelCase__ : Optional[int] = self.dummy_model() UpperCAmelCase__ : int = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for t in scheduler.timesteps: UpperCAmelCase__ : List[Any] = model(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Any = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def lowerCAmelCase__ ( self )-> str: for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__UpperCamelCase ) UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ : Optional[Any] = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def lowerCAmelCase__ ( self )-> List[Any]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[int]: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Tuple: self.check_over_configs(thresholding=__UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , ) def lowerCAmelCase__ ( self )-> Optional[Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__UpperCamelCase , num_inference_steps=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[Any]: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__UpperCamelCase , eta=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase__ : Dict = self.get_scheduler_config() UpperCAmelCase__ : List[str] = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config() UpperCAmelCase__ : str = scheduler_class(**__UpperCamelCase ) UpperCAmelCase__ : Dict = 10, 0.0 scheduler.set_timesteps(__UpperCamelCase ) UpperCAmelCase__ : str = self.dummy_model() UpperCAmelCase__ : Tuple = self.dummy_sample_deter UpperCAmelCase__ : Dict = self.dummy_sample_deter + 0.1 UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter - 0.1 UpperCAmelCase__ : Dict = samplea.shape[0] UpperCAmelCase__ : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase__ : Any = torch.arange(__UpperCamelCase )[0:3, None].repeat(1 , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase__ : Tuple = scheduler.batch_step_no_noise(__UpperCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __UpperCamelCase ) UpperCAmelCase__ : Tuple = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Tuple = self.full_loop() UpperCAmelCase__ : Tuple = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCAmelCase__ : Any = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : str = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase__ : List[str] = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCAmelCase__ : List[Any] = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def lowerCAmelCase__ ( self )-> List[Any]: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ : Tuple = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.01 ) UpperCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCAmelCase__ : Dict = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ : str = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.01 ) UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCAmelCase__ : int = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
701
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class _lowercase ( unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Optional[Any] = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase__ : List[str] = load_tool("text-classification" , remote=__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: UpperCAmelCase__ : Dict = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : List[Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> Optional[int]: UpperCAmelCase__ : Any = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" ) def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : str = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__UpperCamelCase , "positive" )
660
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class _lowercase : '''simple docstring''' @staticmethod def lowerCAmelCase__ ( *__UpperCamelCase , **__UpperCamelCase )-> str: pass def a__ ( lowerCAmelCase : Image ): '''simple docstring''' UpperCAmelCase__ : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def a__ ( lowerCAmelCase : Image ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.array(lowerCAmelCase ) UpperCAmelCase__ : List[str] = npimg.shape return {"hash": hashimage(lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' _A = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _A = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCAmelCase__ : Union[str, Any] = MaskGenerationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> int: pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCAmelCase__ ( self )-> List[str]: pass @slow @require_torch def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Union[str, Any] = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCAmelCase__ : Any = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_56 ) # Shortening by hashing UpperCAmelCase__ : Dict = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_80, 6_40)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (4_80, 6_40)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_80, 6_40)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (4_80, 6_40)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (4_80, 6_40)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (4_80, 6_40)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (4_80, 6_40)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (4_80, 6_40)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_80, 6_40)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (4_80, 6_40)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (4_80, 6_40)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_80, 6_40)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (4_80, 6_40)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (4_80, 6_40)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_80, 6_40)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_80, 6_40)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_80, 6_40)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (4_80, 6_40)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_80, 6_40)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (4_80, 6_40)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (4_80, 6_40)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_80, 6_40)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (4_80, 6_40)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_80, 6_40)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (4_80, 6_40)}, "scores": 0.8871} ] , ) # fmt: on @require_torch @slow def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : int = "facebook/sam-vit-huge" UpperCAmelCase__ : Any = pipeline("mask-generation" , model=__UpperCamelCase ) UpperCAmelCase__ : List[str] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing UpperCAmelCase__ : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0053}, ] , )
702
"""simple docstring""" def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(lowerCAmelCase , lowerCAmelCase ) ) ) def a__ ( lowerCAmelCase : list[float] ): '''simple docstring''' if point: if isinstance(lowerCAmelCase , lowerCAmelCase ): for item in point: if not isinstance(lowerCAmelCase , (int, float) ): UpperCAmelCase__ : Tuple = ( "Expected a list of numbers as input, found " F"{type(lowerCAmelCase ).__name__}" ) raise TypeError(lowerCAmelCase ) else: UpperCAmelCase__ : Dict = F"Expected a list of numbers as input, found {type(lowerCAmelCase ).__name__}" raise TypeError(lowerCAmelCase ) else: raise ValueError("Missing an input" ) def a__ ( lowerCAmelCase : list , lowerCAmelCase : list ): '''simple docstring''' _validate_point(lowerCAmelCase ) _validate_point(lowerCAmelCase ) if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(lowerCAmelCase , lowerCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
def a__ ( lowerCAmelCase : int = 200 ): '''simple docstring''' UpperCAmelCase__ : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] UpperCAmelCase__ : List[str] = [0] * (pence + 1) UpperCAmelCase__ : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
703
"""simple docstring""" import math def a__ ( lowerCAmelCase : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( lowerCAmelCase : int = 1_0001 ): '''simple docstring''' try: UpperCAmelCase__ : List[str] = int(lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : str = 2 while len(lowerCAmelCase ) < nth: if is_prime(lowerCAmelCase ): primes.append(lowerCAmelCase ) num += 1 else: num += 1 return primes[len(lowerCAmelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask A__ : int = logging.getLogger(__name__) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '''token-classification''' def __init__( self , __UpperCamelCase )-> Union[str, Any]: if type(__UpperCamelCase ) == dict: UpperCAmelCase__ : int = Namespace(**__UpperCamelCase ) UpperCAmelCase__ : Dict = import_module("tasks" ) try: UpperCAmelCase__ : Optional[int] = getattr(__UpperCamelCase , hparams.task_type ) UpperCAmelCase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " F"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) UpperCAmelCase__ : List[Any] = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase__ : Optional[int] = CrossEntropyLoss().ignore_index super().__init__(__UpperCamelCase , len(self.labels ) , self.mode ) def lowerCAmelCase__ ( self , **__UpperCamelCase )-> Dict: return self.model(**__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : int = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase__ : Any = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase__ : Union[str, Any] = self(**__UpperCamelCase ) UpperCAmelCase__ : List[str] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : str = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase__ : Any = self._feature_file(__UpperCamelCase ) if os.path.exists(__UpperCamelCase ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , __UpperCamelCase ) UpperCAmelCase__ : str = torch.load(__UpperCamelCase ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) UpperCAmelCase__ : List[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = self.token_classification_task.convert_examples_to_features( __UpperCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__UpperCamelCase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , __UpperCamelCase ) torch.save(__UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False )-> DataLoader: UpperCAmelCase__ : Optional[Any] = self._feature_file(__UpperCamelCase ) logger.info("Loading features from cached file %s" , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = torch.load(__UpperCamelCase ) UpperCAmelCase__ : Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase__ : Optional[int] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase__ : str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase__ : Optional[Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase__ : Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , batch_size=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> str: """Compute validation""" "" UpperCAmelCase__ : Tuple = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase__ : List[Any] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase__ : Dict = self(**__UpperCamelCase ) UpperCAmelCase__ : str = outputs[:2] UpperCAmelCase__ : str = logits.detach().cpu().numpy() UpperCAmelCase__ : Optional[int] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : List[Any] = torch.stack([x["val_loss"] for x in outputs] ).mean() UpperCAmelCase__ : Optional[Any] = np.concatenate([x["pred"] for x in outputs] , axis=0 ) UpperCAmelCase__ : int = np.argmax(__UpperCamelCase , axis=2 ) UpperCAmelCase__ : Any = np.concatenate([x["target"] for x in outputs] , axis=0 ) UpperCAmelCase__ : Dict = dict(enumerate(self.labels ) ) UpperCAmelCase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase__ : List[Any] = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(__UpperCamelCase , __UpperCamelCase ), "precision": precision_score(__UpperCamelCase , __UpperCamelCase ), "recall": recall_score(__UpperCamelCase , __UpperCamelCase ), "f1": fa_score(__UpperCamelCase , __UpperCamelCase ), } UpperCAmelCase__ : Union[str, Any] = dict(results.items() ) UpperCAmelCase__ : Dict = results return ret, preds_list, out_label_list def lowerCAmelCase__ ( self , __UpperCamelCase )-> Any: # when stable UpperCAmelCase__ : Optional[Any] = self._eval_end(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase__ : List[str] = self._eval_end(__UpperCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase__ : List[str] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[int]: # Add NER specific options BaseTransformer.add_model_specific_args(__UpperCamelCase , __UpperCamelCase ) parser.add_argument( "--task_type" , default="NER" , type=__UpperCamelCase , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=1_28 , type=__UpperCamelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=__UpperCamelCase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=__UpperCamelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) A__ : str = NERTransformer.add_model_specific_args(parser, os.getcwd()) A__ : Dict = parser.parse_args() A__ : Union[str, Any] = NERTransformer(args) A__ : str = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 A__ : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) A__ : str = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
704
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=0.6 , __UpperCamelCase=None , )-> List[Any]: UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : int = mask_ratio UpperCAmelCase__ : Tuple = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self )-> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = ViTMAEModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : List[Any] = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : str = ViTMAEForPreTraining(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) UpperCAmelCase__ : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = config_and_inputs UpperCAmelCase__ : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _A = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} _A = False _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ : Any = ViTMAEModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase__ ( self )-> Dict: pass def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Dict = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Dict: UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Dict: # make masks reproducible np.random.seed(2 ) UpperCAmelCase__ : Tuple = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase__ : Union[str, Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : str = torch.from_numpy(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Optional[Any] = pt_noise super().check_pt_tf_models(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self )-> List[Any]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = outputs[0].cpu().numpy() UpperCAmelCase__ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model_class.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) # Make sure we don't have nans UpperCAmelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> List[str]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Any: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase__ ( self )-> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase__ ( self )-> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self )-> Union[str, Any]: pass @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ViTMAEModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase__ ( self )-> List[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self )-> Optional[int]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase__ : Any = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCamelCase ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Optional[Any] = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : List[Any] = ViTMAEConfig() UpperCAmelCase__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[int] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**__UpperCamelCase , noise=torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase ) ) # verify the logits UpperCAmelCase__ : str = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCamelCase ) , atol=1E-4 ) )
660
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def a__ ( lowerCAmelCase : str , lowerCAmelCase : float | Decimal , lowerCAmelCase : float = 10**-10 ): '''simple docstring''' UpperCAmelCase__ : str = a while True: UpperCAmelCase__ : Tuple = Decimal(lowerCAmelCase ) - ( Decimal(eval(lowerCAmelCase ) ) / Decimal(eval(str(diff(lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowerCAmelCase ) ) < precision: # noqa: S307 return float(lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
705
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class _lowercase : '''simple docstring''' _A = 42 # setable values _A = 42 _A = 42 _A = None @classmethod def lowerCAmelCase__ ( cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: return cls(common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase ) @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' _A = [e.name for e in FlaxKarrasDiffusionSchedulers] _A = 42 @property def lowerCAmelCase__ ( self )-> Optional[int]: return True @register_to_config def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = 0.0001 , __UpperCamelCase = 0.02 , __UpperCamelCase = "linear" , __UpperCamelCase = None , __UpperCamelCase = "fixed_small" , __UpperCamelCase = True , __UpperCamelCase = "epsilon" , __UpperCamelCase = jnp.floataa , )-> List[str]: UpperCAmelCase__ : int = dtype def lowerCAmelCase__ ( self , __UpperCamelCase = None )-> DDPMSchedulerState: if common is None: UpperCAmelCase__ : int = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCamelCase , init_noise_sigma=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> jnp.ndarray: return sample def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = () )-> DDPMSchedulerState: UpperCAmelCase__ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Optional[int] = (jnp.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCamelCase , timesteps=__UpperCamelCase , ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None )-> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : Dict = jnp.clip(__UpperCamelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Tuple = jnp.log(jnp.clip(__UpperCamelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Union[str, Any] = state.common.betas[t] UpperCAmelCase__ : Optional[int] = (predicted_variance + 1) / 2 UpperCAmelCase__ : Any = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , )-> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase__ : List[str] = timestep if key is None: UpperCAmelCase__ : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = jnp.split(__UpperCamelCase , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : Optional[Any] = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Tuple = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase__ : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : Any = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : List[Any] = jnp.clip(__UpperCamelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : Any = jax.random.split(__UpperCamelCase , num=1 ) UpperCAmelCase__ : int = jax.random.normal(__UpperCamelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__UpperCamelCase , __UpperCamelCase , predicted_variance=__UpperCamelCase ) ** 0.5) * noise UpperCAmelCase__ : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase , state=__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return add_noise_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> jnp.ndarray: return get_velocity_common(state.common , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __len__( self )-> Tuple: return self.config.num_train_timesteps
660
0
from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'dandelin/vilt-b32-finetuned-vqa' _A = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) _A = 'image_qa' _A = AutoProcessor _A = AutoModelForVisualQuestionAnswering _A = ['image', 'text'] _A = ['text'] def __init__( self , *__UpperCamelCase , **__UpperCamelCase )-> List[str]: requires_backends(self , ["vision"] ) super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> Any: return self.pre_processor(__UpperCamelCase , __UpperCamelCase , return_tensors="pt" ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: with torch.no_grad(): return self.model(**__UpperCamelCase ).logits def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Optional[int] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
706
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = '' _A = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> str: super().__init__(self , **__UpperCamelCase ) UpperCAmelCase__ : int = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Optional[Any] = None def lowerCAmelCase__ ( self )-> Optional[Any]: if self.dir_cache is None: UpperCAmelCase__ : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : str = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = "rb" , **__UpperCamelCase , )-> List[Any]: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Union[str, Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self , __UpperCamelCase , **__UpperCamelCase )-> List[str]: self._get_dirs() UpperCAmelCase__ : Union[str, Any] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> str: self._get_dirs() UpperCAmelCase__ : str = PurePosixPath(path.strip("/" ) ) UpperCAmelCase__ : Optional[Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : Optional[int] = PurePosixPath(p.strip("/" ) ) UpperCAmelCase__ : Dict = p.parent if root == path: UpperCAmelCase__ : Tuple = f UpperCAmelCase__ : List[Any] = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
660
0
from __future__ import annotations from typing import Any class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase )-> None: UpperCAmelCase__ : Any = num_of_nodes UpperCAmelCase__ : list[list[int]] = [] UpperCAmelCase__ : dict[int, int] = {} def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> None: self.m_edges.append([u_node, v_node, weight] ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> None: if self.m_component[u_node] != u_node: for k in self.m_component: UpperCAmelCase__ : List[Any] = self.find_component(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> None: if component_size[u_node] <= component_size[v_node]: UpperCAmelCase__ : str = v_node component_size[v_node] += component_size[u_node] self.set_component(__UpperCamelCase ) elif component_size[u_node] >= component_size[v_node]: UpperCAmelCase__ : str = self.find_component(__UpperCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(__UpperCamelCase ) def lowerCAmelCase__ ( self )-> None: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = 0 UpperCAmelCase__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) UpperCAmelCase__ : Tuple = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: UpperCAmelCase__ : str = edge UpperCAmelCase__ : List[Any] = self.m_component[u] UpperCAmelCase__ : Tuple = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): UpperCAmelCase__ : Dict = [u, v, w] for edge in minimum_weight_edge: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : str = edge UpperCAmelCase__ : Any = self.m_component[u] UpperCAmelCase__ : List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) print(F"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 UpperCAmelCase__ : Union[str, Any] = [-1] * self.m_num_of_nodes print(F"The total weight of the minimal spanning tree is: {mst_weight}" ) def a__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A__ : Dict = logging.get_logger(__name__) def a__ ( lowerCAmelCase : Optional[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCAmelCase ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['pixel_values'] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_56} UpperCAmelCase__ : List[Any] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : List[str] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCAmelCase__ : int = get_size_dict(__UpperCamelCase , param_name="crop_size" ) UpperCAmelCase__ : Dict = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : List[Any] = do_center_crop UpperCAmelCase__ : str = crop_size UpperCAmelCase__ : Optional[int] = resample UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : Union[str, Any] = offset UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(__UpperCamelCase , size["shortest_edge"] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: UpperCAmelCase__ : Any = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: UpperCAmelCase__ : Optional[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> Tuple: UpperCAmelCase__ : str = image.astype(np.floataa ) if offset: UpperCAmelCase__ : Tuple = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , )-> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = to_numpy_array(__UpperCamelCase ) if do_resize: UpperCAmelCase__ : Union[str, Any] = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: UpperCAmelCase__ : int = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: UpperCAmelCase__ : List[str] = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: UpperCAmelCase__ : List[Any] = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) UpperCAmelCase__ : Dict = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> PIL.Image.Image: UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : Optional[int] = offset if offset is not None else self.offset UpperCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Optional[int] = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) UpperCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : Tuple = get_size_dict(__UpperCamelCase , param_name="crop_size" ) if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCAmelCase__ : List[str] = make_batched(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] UpperCAmelCase__ : Dict = {"pixel_values": videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
660
0
"""simple docstring""" def a__ ( lowerCAmelCase : str ): '''simple docstring''' if n_term == "": return [] UpperCAmelCase__ : list = [] for temp in range(int(lowerCAmelCase ) ): series.append(F"1/{temp + 1}" if series else "1" ) return series if __name__ == "__main__": A__ : List[str] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
708
"""simple docstring""" def a__ ( lowerCAmelCase : int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(lowerCAmelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
660
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast A__ : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class _lowercase ( datasets.BuilderConfig ): '''simple docstring''' _A = 1_0000 _A = None _A = None class _lowercase ( datasets.ArrowBasedBuilder ): '''simple docstring''' _A = ParquetConfig def lowerCAmelCase__ ( self )-> List[str]: return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) UpperCAmelCase__ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): UpperCAmelCase__ : List[Any] = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase__ : Any = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__UpperCamelCase ): with open(__UpperCamelCase , "rb" ) as f: UpperCAmelCase__ : Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(__UpperCamelCase ) ) break splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={"files": files} ) ) return splits def lowerCAmelCase__ ( self , __UpperCamelCase )-> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase__ : Union[str, Any] = table_cast(__UpperCamelCase , self.info.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : Union[str, Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): with open(__UpperCamelCase , "rb" ) as f: UpperCAmelCase__ : Any = pq.ParquetFile(__UpperCamelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCAmelCase__ : Union[str, Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"{file_idx}_{batch_idx}", self._cast_table(__UpperCamelCase ) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}" ) raise
709
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml A__ : Optional[Any] = logging.get_logger(__name__) def a__ ( lowerCAmelCase : bool , lowerCAmelCase : bool ): '''simple docstring''' def run_func(lowerCAmelCase : Dict ): @wraps(lowerCAmelCase ) def run_in_eager_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict ): return func(*lowerCAmelCase , **lowerCAmelCase ) @wraps(lowerCAmelCase ) @tf.function(experimental_compile=lowerCAmelCase ) def run_in_graph_mode(*lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any] ): return func(*lowerCAmelCase , **lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def a__ ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Dict = random.Random() UpperCAmelCase__ : List[str] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = 42 _A = "TensorFlow" @property def lowerCAmelCase__ ( self )-> Optional[int]: return tf.__version__ def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: # initialize GPU on separate process UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Union[str, Any] = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: UpperCAmelCase__ : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : List[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_speed(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Any = self._prepare_inference_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_inference ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __UpperCamelCase ) UpperCAmelCase__ : Any = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) UpperCAmelCase__ : Optional[Any] = self._prepare_train_func(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return self._measure_memory(_train ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Optional[int] = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : str = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : Any = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Dict = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : Any = TF_MODEL_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : int = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Optional[Any] = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , training=__UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__UpperCamelCase , training=__UpperCamelCase ) UpperCAmelCase__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Callable[[], None]: UpperCAmelCase__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) UpperCAmelCase__ : Any = ( hasattr(__UpperCamelCase , "architectures" ) and isinstance(config.architectures , __UpperCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase__ : Any = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase__ : int = __import__("transformers" , fromlist=[model_class] ) UpperCAmelCase__ : int = getattr(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = model_cls(__UpperCamelCase ) except ImportError: raise ImportError( F"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: UpperCAmelCase__ : List[str] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__UpperCamelCase ) # encoder-decoder has vocab size saved differently UpperCAmelCase__ : Union[str, Any] = config.vocab_size if hasattr(__UpperCamelCase , "vocab_size" ) else config.encoder.vocab_size UpperCAmelCase__ : Dict = random_input_ids(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Union[str, Any] = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase__ : Union[str, Any] = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase )[0] UpperCAmelCase__ : Any = tf.gradients(__UpperCamelCase , model.trainable_variables ) return gradients UpperCAmelCase__ : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase__ ( self , __UpperCamelCase )-> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__UpperCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase__ : Optional[Any] = timeit.repeat( __UpperCamelCase , repeat=self.args.repeat , number=10 , ) return min(__UpperCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) UpperCAmelCase__ : List[str] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) UpperCAmelCase__ : Optional[int] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() UpperCAmelCase__ : Any = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase__ : Optional[int] = nvml.nvmlDeviceGetMemoryInfo(__UpperCamelCase ) UpperCAmelCase__ : str = meminfo.used UpperCAmelCase__ : int = Memory(__UpperCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) UpperCAmelCase__ : Any = None else: UpperCAmelCase__ : List[Any] = measure_peak_memory_cpu(__UpperCamelCase ) UpperCAmelCase__ : Optional[Any] = Memory(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase__ : Optional[Any] = stop_memory_tracing(__UpperCamelCase ) if memory is None: UpperCAmelCase__ : Tuple = summary.total else: UpperCAmelCase__ : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"Doesn't fit on GPU. {e}" ) return "N/A", None
660
0
"""simple docstring""" from maths.prime_check import is_prime def a__ ( lowerCAmelCase : int ): '''simple docstring''' if not isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase ) if is_prime(lowerCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule A__ : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
660
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = 13 UpperCAmelCase__ : Union[str, Any] = 7 UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Union[str, Any] = 99 UpperCAmelCase__ : Any = 3_84 UpperCAmelCase__ : Optional[int] = 2 UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 37 UpperCAmelCase__ : Union[str, Any] = "gelu" UpperCAmelCase__ : Dict = 0.1 UpperCAmelCase__ : Optional[int] = 0.1 UpperCAmelCase__ : Optional[int] = 5_12 UpperCAmelCase__ : List[str] = 16 UpperCAmelCase__ : Union[str, Any] = 2 UpperCAmelCase__ : List[str] = 0.02 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : str = 1_28 UpperCAmelCase__ : List[str] = 2 UpperCAmelCase__ : List[str] = 9 UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Any = None def lowerCAmelCase__ ( self )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : str = None if self.use_labels: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Dict = TFConvBertModel(config=__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase__ : str = [input_ids, input_mask] UpperCAmelCase__ : str = model(__UpperCamelCase ) UpperCAmelCase__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Dict = TFConvBertForMaskedLM(config=__UpperCamelCase ) UpperCAmelCase__ : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : Tuple = TFConvBertForSequenceClassification(config=__UpperCamelCase ) UpperCAmelCase__ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_choices UpperCAmelCase__ : str = TFConvBertForMultipleChoice(config=__UpperCamelCase ) UpperCAmelCase__ : Any = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : List[str] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : List[Any] = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase__ : Dict = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : Dict = TFConvBertForTokenClassification(config=__UpperCamelCase ) UpperCAmelCase__ : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : List[str] = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: '''simple docstring''' UpperCAmelCase__ : int = TFConvBertForQuestionAnswering(config=__UpperCamelCase ) UpperCAmelCase__ : Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ : Tuple = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Dict = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _A = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False _A = False def lowerCAmelCase__ ( self )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFConvBertModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def lowerCAmelCase__ ( self )-> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> str: '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def lowerCAmelCase__ ( self )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def lowerCAmelCase__ ( self )-> Dict: '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[int] = True if hasattr(__UpperCamelCase , "use_cache" ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : Any = getattr(self.model_tester , "key_length" , __UpperCamelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ : Tuple = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model_class(__UpperCamelCase ) UpperCAmelCase__ : str = len(model(__UpperCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase , saved_model=__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = os.path.join(__UpperCamelCase , "saved_model" , "1" ) UpperCAmelCase__ : int = tf.keras.models.load_model(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = model(__UpperCamelCase ) if self.is_encoder_decoder: UpperCAmelCase__ : Optional[int] = outputs["encoder_hidden_states"] UpperCAmelCase__ : Tuple = outputs["encoder_attentions"] else: UpperCAmelCase__ : List[Any] = outputs["hidden_states"] UpperCAmelCase__ : Union[str, Any] = outputs["attentions"] self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase__ ( self )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__UpperCamelCase ) def lowerCAmelCase__ ( self )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[Any] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : int = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase__ : Union[str, Any] = getattr(self.model_tester , "key_length" , __UpperCamelCase ) UpperCAmelCase__ : Any = getattr(self.model_tester , "key_length" , __UpperCamelCase ) def check_decoder_attentions_output(__UpperCamelCase ): UpperCAmelCase__ : str = len(__UpperCamelCase ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase__ : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[int] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[Any] = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: UpperCAmelCase__ : List[str] = model_class(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Optional[Any] = model_class(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Dict = model_class(__UpperCamelCase ) UpperCAmelCase__ : Any = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCAmelCase__ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ : int = model(__UpperCamelCase )[0] UpperCAmelCase__ : Any = [1, 6, 7_68] self.assertEqual(output.shape , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 )
711
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowercase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self , __UpperCamelCase = 7_68 , )-> Union[str, Any]: super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) UpperCAmelCase__ : Optional[int] = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowerCAmelCase__ ( self , __UpperCamelCase = None , __UpperCamelCase = None , )-> Any: UpperCAmelCase__ : Dict = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) UpperCAmelCase__ : Any = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowerCAmelCase__ ( self , __UpperCamelCase )-> Union[str, Any]: UpperCAmelCase__ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[Any]: UpperCAmelCase__ : Any = (embeds * self.std) + self.mean return embeds
660
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = ['image_processor', 'tokenizer'] _A = 'BlipImageProcessor' _A = 'AutoTokenizer' def __init__( self , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCAmelCase__ : List[Any] = False super().__init__(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : str = self.image_processor def __call__( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , )-> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: UpperCAmelCase__ : Optional[Any] = self.tokenizer UpperCAmelCase__ : str = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) return text_encoding # add pixel_values UpperCAmelCase__ : List[str] = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) if text is not None: UpperCAmelCase__ : Any = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) else: UpperCAmelCase__ : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def lowerCAmelCase__ ( self , *__UpperCamelCase , **__UpperCamelCase )-> str: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase__ ( self , *__UpperCamelCase , **__UpperCamelCase )-> Optional[Any]: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase__ ( self )-> int: UpperCAmelCase__ : int = self.tokenizer.model_input_names UpperCAmelCase__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
712
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ): '''simple docstring''' # Construct model if gpta_config_file == "": UpperCAmelCase__ : Optional[int] = GPTaConfig() else: UpperCAmelCase__ : Dict = GPTaConfig.from_json_file(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model UpperCAmelCase__ : Optional[int] = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) A__ : Optional[Any] = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
660
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A__ : Optional[int] = ["""small""", """medium""", """large"""] A__ : Optional[int] = """lm_head.decoder.weight""" A__ : Dict = """lm_head.weight""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = d.pop(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) A__ : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: A__ : Tuple = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A__ : str = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
713
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME A__ : Optional[int] = ["""small""", """medium""", """large"""] A__ : Optional[int] = """lm_head.decoder.weight""" A__ : Dict = """lm_head.weight""" def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = d.pop(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) A__ : Tuple = parser.parse_args() for MODEL in DIALOGPT_MODELS: A__ : Tuple = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A__ : str = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
660
0
"""simple docstring""" from string import ascii_uppercase A__ : Optional[Any] = {char: i for i, char in enumerate(ascii_uppercase)} A__ : Optional[Any] = dict(enumerate(ascii_uppercase)) def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Any = len(lowerCAmelCase ) UpperCAmelCase__ : Any = 0 while True: if x == i: UpperCAmelCase__ : Union[str, Any] = 0 if len(lowerCAmelCase ) == len(lowerCAmelCase ): break key += key[i] i += 1 return key def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = "" UpperCAmelCase__ : Tuple = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCAmelCase__ : List[str] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def a__ ( lowerCAmelCase : str , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = "" UpperCAmelCase__ : Tuple = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCAmelCase__ : List[str] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def a__ ( ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = "THE GERMAN ATTACK" UpperCAmelCase__ : Optional[int] = "SECRET" UpperCAmelCase__ : Union[str, Any] = generate_key(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = cipher_text(lowerCAmelCase , lowerCAmelCase ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(lowerCAmelCase , lowerCAmelCase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
714
"""simple docstring""" from math import isqrt def a__ ( lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : List[Any] = False return [i for i in range(2 , lowerCAmelCase ) if is_prime[i]] def a__ ( lowerCAmelCase : int = 10**8 ): '''simple docstring''' UpperCAmelCase__ : Dict = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = len(lowerCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
660
0
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def a__ ( lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = hf_hub_url(repo_id=lowerCAmelCase , path=lowerCAmelCase , revision=lowerCAmelCase ) assert url == F"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(lowerCAmelCase )}"
715
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def a__ ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = np.full((len(lowerCAmelCase ), sequence_length, 2) , lowerCAmelCase ) else: UpperCAmelCase__ : Optional[Any] = np.full((len(lowerCAmelCase ), sequence_length) , lowerCAmelCase ) for i, tensor in enumerate(lowerCAmelCase ): if padding_side == "right": if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Dict = tensor[:sequence_length] else: UpperCAmelCase__ : Tuple = tensor[:sequence_length] else: if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Optional[Any] = tensor[:sequence_length] else: UpperCAmelCase__ : int = tensor[:sequence_length] return out_tensor.tolist() def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Tuple = ord(lowerCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCAmelCase__ : Optional[Any] = unicodedata.category(lowerCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 42 _A = True _A = None _A = None _A = -100 _A = "pt" def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[str]: import torch UpperCAmelCase__ : Optional[Any] = "label" if "label" in features[0].keys() else "labels" UpperCAmelCase__ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCAmelCase__ : str = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch UpperCAmelCase__ : Optional[Any] = torch.tensor(batch["entity_ids"] ).shape[1] UpperCAmelCase__ : int = self.tokenizer.padding_side if padding_side == "right": UpperCAmelCase__ : int = [ list(__UpperCamelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) for label in labels ] else: UpperCAmelCase__ : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCamelCase )) + list(__UpperCamelCase ) for label in labels ] UpperCAmelCase__ : Optional[Any] = [feature["ner_tags"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , -1 , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = [feature["original_entity_spans"] for feature in features] UpperCAmelCase__ : int = padding_tensor(__UpperCamelCase , (-1, -1) , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Optional[int] = {k: torch.tensor(__UpperCamelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
660
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def a__ ( lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : Optional[Any] = job["started_at"] UpperCAmelCase__ : Tuple = job["completed_at"] UpperCAmelCase__ : str = date_parser.parse(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = date_parser.parse(lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase__ : Union[str, Any] = start UpperCAmelCase__ : Tuple = end UpperCAmelCase__ : Optional[int] = duration_in_min return job_info def a__ ( lowerCAmelCase : Tuple , lowerCAmelCase : Any=None ): '''simple docstring''' UpperCAmelCase__ : int = None if token is not None: UpperCAmelCase__ : Union[str, Any] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} UpperCAmelCase__ : Dict = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCAmelCase__ : Optional[Any] = requests.get(lowerCAmelCase , headers=lowerCAmelCase ).json() UpperCAmelCase__ : Optional[Any] = {} try: job_time.update({job["name"]: extract_time_from_single_job(lowerCAmelCase ) for job in result["jobs"]} ) UpperCAmelCase__ : int = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = requests.get(url + F"&page={i + 2}" , headers=lowerCAmelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(lowerCAmelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") A__ : Dict = parser.parse_args() A__ : Optional[Any] = get_job_time(args.workflow_run_id) A__ : str = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
716
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
660
0
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : nn.ModuleList , lowerCAmelCase : nn.ModuleList , lowerCAmelCase : List[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F"{len(lowerCAmelCase )} != {len(lowerCAmelCase )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): '''simple docstring''' try: UpperCAmelCase__ : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : int , lowerCAmelCase : Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( lowerCAmelCase : Union[str, PreTrainedModel] , lowerCAmelCase : Union[str, Path] = "student" , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"teacher must be a model or string got type {type(lowerCAmelCase )}" UpperCAmelCase__ : int = teacher.config.to_diff_dict() try: UpperCAmelCase__ : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ : Tuple = teacher_e if d is None: UpperCAmelCase__ : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ : Optional[Any] = teacher_e if d is None: UpperCAmelCase__ : Optional[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights UpperCAmelCase__ : Tuple = teacher.config_class(**lowerCAmelCase ) UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ : Optional[int] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ : int = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) UpperCAmelCase__ : int = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
717
"""simple docstring""" from manim import * class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : str = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[Any] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : int = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("CPU" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Union[str, Any] = Text("GPU" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : List[str] = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Model" , font_size=24 ) UpperCAmelCase__ : Dict = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__UpperCamelCase ) UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): rect.set_stroke(__UpperCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase__ : int = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__UpperCamelCase , buff=0.0 ) self.add(__UpperCamelCase ) cpu_targs.append(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Any = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase__ : Any = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , aligned_edge=__UpperCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Any = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : str = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase__ : Optional[Any] = MarkupText( F"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.play(Write(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : List[str] = [] for i, rect in enumerate(__UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = fill.copy().set_fill(__UpperCamelCase , opacity=0.7 ) target.move_to(__UpperCamelCase ) first_animations.append(GrowFromCenter(__UpperCamelCase , run_time=1 ) ) UpperCAmelCase__ : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
660
0
"""simple docstring""" class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase )-> None: UpperCAmelCase__ : Any = len(__UpperCamelCase ) UpperCAmelCase__ : str = [0] * len_array if len_array > 0: UpperCAmelCase__ : List[Any] = array[0] for i in range(1 , __UpperCamelCase ): UpperCAmelCase__ : Any = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase )-> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase__ ( self , __UpperCamelCase )-> bool: UpperCAmelCase__ : str = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(__UpperCamelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A__ : Tuple = logging.get_logger(__name__) def a__ ( lowerCAmelCase : nn.ModuleList , lowerCAmelCase : nn.ModuleList , lowerCAmelCase : List[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F"{len(lowerCAmelCase )} != {len(lowerCAmelCase )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) A__ : List[Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A__ : List[Any] = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): '''simple docstring''' try: UpperCAmelCase__ : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase ) ) def a__ ( lowerCAmelCase : int , lowerCAmelCase : Tuple ): '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( lowerCAmelCase : Union[str, PreTrainedModel] , lowerCAmelCase : Union[str, Path] = "student" , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : Union[int, None] = None , lowerCAmelCase : List[str]=False , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"teacher must be a model or string got type {type(lowerCAmelCase )}" UpperCAmelCase__ : int = teacher.config.to_diff_dict() try: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCAmelCase__ : Tuple = teacher_e if d is None: UpperCAmelCase__ : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCAmelCase__ : Optional[Any] = teacher_e if d is None: UpperCAmelCase__ : Optional[Any] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights UpperCAmelCase__ : Tuple = teacher.config_class(**lowerCAmelCase ) UpperCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCAmelCase__ : Optional[int] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCAmelCase__ , UpperCAmelCase__ : int = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: UpperCAmelCase__ : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) UpperCAmelCase__ : int = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
660
0
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder A__ : Optional[Any] = datasets.utils.logging.get_logger(__name__) class _lowercase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' _A = None _A = None class _lowercase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' _A = datasets.Audio() _A = 'audio' _A = AudioFolderConfig _A = 42 # definition at the bottom of the script _A = AudioClassification(audio_column='audio' , label_column='label' ) A__ : Union[str, Any] = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] A__ : str = AUDIO_EXTENSIONS
719
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self )-> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self )-> Any: UpperCAmelCase__ : Tuple = ort.SessionOptions() UpperCAmelCase__ : List[str] = False return options def lowerCAmelCase__ ( self )-> List[str]: UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : Tuple = np.random.RandomState(0 ) UpperCAmelCase__ : Any = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images UpperCAmelCase__ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self )-> Tuple: UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase__ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCAmelCase__ : int = "A red cat sitting on a park bench" UpperCAmelCase__ : List[str] = np.random.RandomState(0 ) UpperCAmelCase__ : str = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__UpperCamelCase , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images UpperCAmelCase__ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ : int = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
660
0
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 32 , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_55 , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = [0.4814_5466, 0.457_8275, 0.4082_1073] , __UpperCamelCase = [0.2686_2954, 0.2613_0258, 0.2757_7711] , __UpperCamelCase = True , __UpperCamelCase=7 , __UpperCamelCase=30 , __UpperCamelCase=4_00 , __UpperCamelCase=3 , )-> List[str]: UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Any = do_resize UpperCAmelCase__ : Tuple = size if size is not None else {"shortest_edge": 2_88} UpperCAmelCase__ : int = size_divisor UpperCAmelCase__ : Optional[int] = do_rescale UpperCAmelCase__ : int = rescale_factor UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : List[Any] = do_center_crop UpperCAmelCase__ : Optional[int] = image_mean UpperCAmelCase__ : Any = image_std UpperCAmelCase__ : Union[str, Any] = do_pad UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : str = min_resolution UpperCAmelCase__ : Optional[Any] = max_resolution def lowerCAmelCase__ ( self )-> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False )-> Dict: if not batched: UpperCAmelCase__ : str = self.size["shortest_edge"] UpperCAmelCase__ : List[Any] = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ : Union[str, Any] = image.shape[1], image.shape[2] UpperCAmelCase__ : List[str] = size / min(__UpperCamelCase , __UpperCamelCase ) if h < w: UpperCAmelCase__ : Dict = size, scale * w else: UpperCAmelCase__ : Optional[Any] = scale * h, size UpperCAmelCase__ : List[Any] = int((13_33 / 8_00) * size ) if max(__UpperCamelCase , __UpperCamelCase ) > max_size: UpperCAmelCase__ : int = max_size / max(__UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Any = newh * scale UpperCAmelCase__ : Union[str, Any] = neww * scale UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase__ : Optional[Any] = [] for image in image_inputs: UpperCAmelCase__ : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : List[str] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0] UpperCAmelCase__ : Optional[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _lowercase ( lowerCAmelCase_ , unittest.TestCase ): _A = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self )-> Optional[Any]: UpperCAmelCase__ : str = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase__ ( self )-> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self )-> str: UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size_divisor" ) ) def lowerCAmelCase__ ( self )-> Optional[int]: pass def lowerCAmelCase__ ( self )-> Any: # Initialize image processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Union[str, Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values UpperCAmelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self )-> List[Any]: # Initialize image processor UpperCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Optional[int] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self )-> Any: # Initialize image processor UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Optional[int] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values UpperCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
720
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Optional[int] = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = 'table-transformer' _A = ['past_key_values'] _A = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=3 , __UpperCamelCase=1_00 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=6 , __UpperCamelCase=20_48 , __UpperCamelCase=8 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1.0 , __UpperCamelCase=False , __UpperCamelCase="sine" , __UpperCamelCase="resnet50" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=1 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , **__UpperCamelCase , )-> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ : Any = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : int = backbone_config.get("model_type" ) UpperCAmelCase__ : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : int = config_class.from_dict(__UpperCamelCase ) # set timm attributes to None UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = None, None, None UpperCAmelCase__ : Optional[int] = use_timm_backbone UpperCAmelCase__ : Dict = backbone_config UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : int = d_model UpperCAmelCase__ : Optional[int] = encoder_ffn_dim UpperCAmelCase__ : str = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_layers UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Tuple = attention_dropout UpperCAmelCase__ : List[Any] = activation_dropout UpperCAmelCase__ : Dict = activation_function UpperCAmelCase__ : Optional[Any] = init_std UpperCAmelCase__ : List[str] = init_xavier_std UpperCAmelCase__ : int = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = auxiliary_loss UpperCAmelCase__ : Union[str, Any] = position_embedding_type UpperCAmelCase__ : List[str] = backbone UpperCAmelCase__ : List[Any] = use_pretrained_backbone UpperCAmelCase__ : List[str] = dilation # Hungarian matcher UpperCAmelCase__ : Dict = class_cost UpperCAmelCase__ : Any = bbox_cost UpperCAmelCase__ : Tuple = giou_cost # Loss coefficients UpperCAmelCase__ : Any = mask_loss_coefficient UpperCAmelCase__ : Dict = dice_loss_coefficient UpperCAmelCase__ : Any = bbox_loss_coefficient UpperCAmelCase__ : Tuple = giou_loss_coefficient UpperCAmelCase__ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase__ ( self )-> int: return self.encoder_attention_heads @property def lowerCAmelCase__ ( self )-> int: return self.d_model class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = version.parse('1.11' ) @property def lowerCAmelCase__ ( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase__ ( self )-> float: return 1E-5 @property def lowerCAmelCase__ ( self )-> int: return 12
660
0
"""simple docstring""" from __future__ import annotations import math class _lowercase : '''simple docstring''' def __init__( self , __UpperCamelCase )-> None: UpperCAmelCase__ : Union[str, Any] = size # approximate the overall size of segment tree with given value UpperCAmelCase__ : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase__ : Optional[int] = [0 for i in range(0 , 4 * size )] UpperCAmelCase__ : Union[str, Any] = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: return idx * 2 def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: return idx * 2 + 1 def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> None: if left_element == right_element: UpperCAmelCase__ : Optional[int] = a[left_element - 1] else: UpperCAmelCase__ : List[Any] = (left_element + right_element) // 2 self.build(self.left(__UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.build(self.right(__UpperCamelCase ) , mid + 1 , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Tuple = max( self.segment_tree[self.left(__UpperCamelCase )] , self.segment_tree[self.right(__UpperCamelCase )] ) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> bool: if self.flag[idx] is True: UpperCAmelCase__ : List[Any] = self.lazy[idx] UpperCAmelCase__ : str = False if left_element != right_element: UpperCAmelCase__ : Optional[Any] = self.lazy[idx] UpperCAmelCase__ : Dict = self.lazy[idx] UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : List[str] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase__ : Any = val if left_element != right_element: UpperCAmelCase__ : Dict = val UpperCAmelCase__ : Tuple = val UpperCAmelCase__ : Any = True UpperCAmelCase__ : Any = True return True UpperCAmelCase__ : Optional[Any] = (left_element + right_element) // 2 self.update(self.left(__UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.update(self.right(__UpperCamelCase ) , mid + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : List[Any] = max( self.segment_tree[self.left(__UpperCamelCase )] , self.segment_tree[self.right(__UpperCamelCase )] ) return True def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int | float: if self.flag[idx] is True: UpperCAmelCase__ : Union[str, Any] = self.lazy[idx] UpperCAmelCase__ : List[str] = False if left_element != right_element: UpperCAmelCase__ : Any = self.lazy[idx] UpperCAmelCase__ : List[Any] = self.lazy[idx] UpperCAmelCase__ : int = True UpperCAmelCase__ : Dict = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase__ : Optional[Any] = (left_element + right_element) // 2 UpperCAmelCase__ : str = self.query(self.left(__UpperCamelCase ) , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCAmelCase__ : Dict = self.query(self.right(__UpperCamelCase ) , mid + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return max(__UpperCamelCase , __UpperCamelCase ) def __str__( self )-> str: return str([self.query(1 , 1 , self.size , __UpperCamelCase , __UpperCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": A__ : Optional[Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] A__ : str = 15 A__ : Union[str, Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
721
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) A__ : int = getLogger(__name__) def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 1024 , lowerCAmelCase : List[Any]="val" , lowerCAmelCase : str=None , lowerCAmelCase : int=False , lowerCAmelCase : Dict="summarization" , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict = None , lowerCAmelCase : List[str]="" , **lowerCAmelCase : int , ): '''simple docstring''' UpperCAmelCase__ : Dict = str(lowerCAmelCase ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=lowerCAmelCase ) UpperCAmelCase__ : List[str] = Path(lowerCAmelCase ) UpperCAmelCase__ : str = save_dir.joinpath(F"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).cuda() if fpaa: UpperCAmelCase__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase , lowerCAmelCase ) # update config with task specific params UpperCAmelCase__ : List[Any] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: UpperCAmelCase__ : Any = num_return_sequences UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: UpperCAmelCase__ : int = tokenizer.model_max_length if prefix is None: UpperCAmelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or "" UpperCAmelCase__ : str = SeqaSeqDataset( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , max_target_length=1024 , type_path=lowerCAmelCase , n_obs=lowerCAmelCase , prefix=lowerCAmelCase , **lowerCAmelCase , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCAmelCase__ : Union[str, Any] = ds.make_sortish_sampler(lowerCAmelCase , distributed=lowerCAmelCase , add_extra_examples=lowerCAmelCase , shuffle=lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = DataLoader(lowerCAmelCase , sampler=lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn ) UpperCAmelCase__ : str = [] for batch in tqdm(lowerCAmelCase ): UpperCAmelCase__ : Dict = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=lowerCAmelCase , num_beams=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase__ : int = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) UpperCAmelCase__ : int = batch["ids"] if num_return_sequences > 1: UpperCAmelCase__ : str = chunks(lowerCAmelCase , lowerCAmelCase ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(lowerCAmelCase , lowerCAmelCase ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' UpperCAmelCase__ : str = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=lowerCAmelCase , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=lowerCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=lowerCAmelCase , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=lowerCAmelCase , default=lowerCAmelCase ) parser.add_argument( "--type_path" , type=lowerCAmelCase , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=lowerCAmelCase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowerCAmelCase , default=8 , required=lowerCAmelCase , help="batch size" ) parser.add_argument( "--local_rank" , type=lowerCAmelCase , default=-1 , required=lowerCAmelCase , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=lowerCAmelCase , default=1 , required=lowerCAmelCase , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=lowerCAmelCase , default=600 , required=lowerCAmelCase , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument("--tgt_lang" , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase ) parser.add_argument( "--prefix" , type=lowerCAmelCase , required=lowerCAmelCase , default=lowerCAmelCase , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_known_args() UpperCAmelCase__ : int = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase ) if generate_kwargs and args.local_rank <= 0: print(F"parsed the following generate kwargs: {generate_kwargs}" ) UpperCAmelCase__ : Dict = Path(args.save_dir + "_tmp" ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) # this handles locking. UpperCAmelCase__ : List[str] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(F"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCAmelCase__ : List[str] = {} if args.src_lang is not None: UpperCAmelCase__ : str = args.src_lang if args.tgt_lang is not None: UpperCAmelCase__ : List[str] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = eval_data_dir( args.data_dir , lowerCAmelCase , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase , **lowerCAmelCase , ) if args.local_rank <= 0: UpperCAmelCase__ : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase ) UpperCAmelCase__ : Tuple = gather_results_from_each_node(lowerCAmelCase , lowerCAmelCase , args.sync_timeout ) UpperCAmelCase__ : Union[str, Any] = combine_partial_results(lowerCAmelCase ) if args.num_return_sequences > 1: UpperCAmelCase__ : int = save_dir.joinpath("pseudolabel_results.json" ) print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase , lowerCAmelCase ) return UpperCAmelCase__ : Optional[Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(lowerCAmelCase ) as f: UpperCAmelCase__ : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase )] # Calculate metrics, save metrics, and save _generations.txt UpperCAmelCase__ : List[Any] = "translation" in args.task UpperCAmelCase__ : Optional[Any] = calculate_bleu if calc_bleu else calculate_rouge UpperCAmelCase__ : Optional[Any] = "bleu" if calc_bleu else "rouge" UpperCAmelCase__ : Dict = score_fn(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = time.time() - start_time UpperCAmelCase__ : Optional[int] = round(runtime / metrics["n_obs"] , 4 ) UpperCAmelCase__ : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCAmelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase , lowerCAmelCase , indent=lowerCAmelCase ) print(lowerCAmelCase ) write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase , save_dir.joinpath(F"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase ) def a__ ( lowerCAmelCase : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = [] for partial_result in partial_results: records.extend(lowerCAmelCase ) UpperCAmelCase__ : Dict = sorted(lowerCAmelCase , key=lambda lowerCAmelCase : x["id"] ) UpperCAmelCase__ : List[str] = [x["pred"] for x in records] return preds def a__ ( lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): '''simple docstring''' # WAIT FOR lots of .json files UpperCAmelCase__ : int = time.time() logger.info("waiting for all nodes to finish" ) UpperCAmelCase__ : Dict = None while (time.time() - start_wait) < timeout: UpperCAmelCase__ : str = list(save_dir.glob("rank_*.json" ) ) if len(lowerCAmelCase ) < num_replicas: continue try: # make sure all json files are fully saved UpperCAmelCase__ : Union[str, Any] = lmap(lowerCAmelCase , lowerCAmelCase ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
660
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def A__ ( lowercase: Namespace ) -> Optional[Any]: return ConvertCommand( args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name ) _lowercase : Optional[int] =''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict: A : Any =parser.add_parser( 'convert' , help='CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.' , ) train_parser.add_argument('--model_type' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Model\'s type.' ) train_parser.add_argument( '--tf_checkpoint' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='TensorFlow checkpoint path or folder.' ) train_parser.add_argument( '--pytorch_dump_output' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Path to the PyTorch saved model output.' ) train_parser.add_argument('--config' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Configuration file path or folder.' ) train_parser.add_argument( '--finetuning_task_name' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='Optional fine-tuning task name if the TF model was a finetuned model.' , ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : Tuple , ) -> Tuple: A : Optional[Any] =logging.get_logger('transformers-cli/converting' ) self._logger.info(f'Loading model {model_type}' ) A : List[Any] =model_type A : Any =tf_checkpoint A : Optional[int] =pytorch_dump_output A : Dict =config A : str =finetuning_task_name def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) if "ckpt" in self._tf_checkpoint.lower(): A : Optional[int] =self._tf_checkpoint A : Optional[Any] ='' else: A : str =self._tf_checkpoint A : Dict ='' convert_transfo_xl_checkpoint_to_pytorch( SCREAMING_SNAKE_CASE__ , self._config , self._pytorch_dump_output , SCREAMING_SNAKE_CASE__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]' )
661
_lowercase : Dict ='''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
661
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowercase : Dict ={'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' lowercase : Dict = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase : Optional[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase : str = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]: A : Dict =pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' ) A : Tuple =text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) A : Union[str, Any] =text_classifier('This is great !' , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}] ) A : Dict =text_classifier(['This is great !', 'This is bad'] , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], ] , ) A : Optional[Any] =text_classifier('This is great !' , top_k=1 ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) # Legacy behavior A : Optional[Any] =text_classifier('This is great !' , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) A : Optional[int] =text_classifier('This is great !' , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}]] ) A : str =text_classifier(['This is great !', 'Something else'] , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], [{'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_1', 'score': 0.4_9_6}], ] , ) A : int =text_classifier(['This is great !', 'Something else'] , return_all_scores=SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [ {'label': 'LABEL_0', 'score': 0.5_0_4}, {'label': 'LABEL_0', 'score': 0.5_0_4}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: import torch A : Dict =pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu' ) , ) A : str =text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str: A : Any =pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf' ) A : List[str] =text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'LABEL_0', 'score': 0.5_0_4}] ) @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : str =pipeline('text-classification' ) A : Union[str, Any] =text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'POSITIVE', 'score': 1.0}] ) A : Any =text_classifier('This is bad !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) A : List[Any] =text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'POSITIVE', 'score': 0.9_8_8}] ) @slow @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: A : str =pipeline('text-classification' , framework='tf' ) A : Tuple =text_classifier('This is great !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'POSITIVE', 'score': 1.0}] ) A : List[str] =text_classifier('This is bad !' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'NEGATIVE', 'score': 1.0}] ) A : Optional[int] =text_classifier('Birds are a type of animal' ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': 'POSITIVE', 'score': 0.9_8_8}] ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: A : Any =TextClassificationPipeline(model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: A : Tuple =text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 A : Union[str, Any] ='HuggingFace is in' A : List[Any] =text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual(nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) A : Dict =['HuggingFace is in ', 'Paris is in France'] A : Optional[Any] =text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}, {'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format A : Tuple =text_classifier(SCREAMING_SNAKE_CASE__ , top_k=SCREAMING_SNAKE_CASE__ ) A : int =len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [[{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] * N, [{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] * N] , ) A : str ={'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} A : Dict =text_classifier(SCREAMING_SNAKE_CASE__ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , {'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. A : List[str] =[['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): text_classifier(SCREAMING_SNAKE_CASE__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility A : List[str] =text_classifier([[['HuggingFace is in ', 'Paris is in France']]] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , [{'label': ANY(SCREAMING_SNAKE_CASE__ ), 'score': ANY(SCREAMING_SNAKE_CASE__ )}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values() )
661
from typing import List from .keymap import KEYMAP, get_character def A__ ( lowercase: str ) -> List[str]: def decorator(lowercase: int ): A : Tuple =getattr(lowercase, 'handle_key', [] ) handle += [key] setattr(lowercase, 'handle_key', lowercase ) return func return decorator def A__ ( *lowercase: List[str] ) -> Dict: def decorator(lowercase: Union[str, Any] ): A : Optional[int] =getattr(lowercase, 'handle_key', [] ) handle += keys setattr(lowercase, 'handle_key', lowercase ) return func return decorator class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ): setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} ) setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] ) for key in handled_keys: A : str =value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any: A : str =get_character() if char != KEYMAP["undefined"]: A : List[str] =ord(SCREAMING_SNAKE_CASE__ ) A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ ) if handler: A : List[str] =char return handler(cls ) else: return None def A__ ( cls: Optional[int] ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
661
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def A__ ( lowercase: List[Any] ) -> str: if "model" in orig_key: A : int =orig_key.replace('model.', '' ) if "norm1" in orig_key: A : Tuple =orig_key.replace('norm1', 'attention.output.LayerNorm' ) if "norm2" in orig_key: A : List[Any] =orig_key.replace('norm2', 'output.LayerNorm' ) if "norm" in orig_key: A : List[str] =orig_key.replace('norm', 'LayerNorm' ) if "transformer" in orig_key: A : int =orig_key.split('.' )[0].split('_' )[-1] A : int =orig_key.replace(F'transformer_{layer_num}', F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: A : List[Any] =orig_key.replace('mha.attn', 'attention.self' ) if "mha" in orig_key: A : List[Any] =orig_key.replace('mha', 'attention' ) if "W_q" in orig_key: A : List[str] =orig_key.replace('W_q', 'self.query' ) if "W_k" in orig_key: A : int =orig_key.replace('W_k', 'self.key' ) if "W_v" in orig_key: A : List[Any] =orig_key.replace('W_v', 'self.value' ) if "ff1" in orig_key: A : Tuple =orig_key.replace('ff1', 'intermediate.dense' ) if "ff2" in orig_key: A : Dict =orig_key.replace('ff2', 'output.dense' ) if "ff" in orig_key: A : Tuple =orig_key.replace('ff', 'output.dense' ) if "mlm_class" in orig_key: A : Union[str, Any] =orig_key.replace('mlm.mlm_class', 'cls.predictions.decoder' ) if "mlm" in orig_key: A : Any =orig_key.replace('mlm', 'cls.predictions.transform' ) if "cls" not in orig_key: A : List[Any] ='yoso.' + orig_key return orig_key def A__ ( lowercase: List[Any], lowercase: str ) -> str: for key in orig_state_dict.copy().keys(): A : Any =orig_state_dict.pop(lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: A : List[Any] =val A : Optional[Any] =orig_state_dict['cls.predictions.decoder.bias'] A : Any =torch.arange(lowercase ).expand((1, -1) ) + 2 return orig_state_dict def A__ ( lowercase: List[Any], lowercase: int, lowercase: Dict ) -> Union[str, Any]: A : int =torch.load(lowercase, map_location='cpu' )['model_state_dict'] A : List[Any] =YosoConfig.from_json_file(lowercase ) A : Tuple =YosoForMaskedLM(lowercase ) A : Tuple =convert_checkpoint_helper(config.max_position_embeddings, lowercase ) print(model.load_state_dict(lowercase ) ) model.eval() model.save_pretrained(lowercase ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": _lowercase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[str] =parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
661
import math def A__ ( lowercase: int ) -> list: A : Optional[Any] =[True] * n A : Tuple =False A : List[Any] =False A : Dict =True for i in range(3, int(n**0.5 + 1 ), 2 ): A : Dict =i * 2 while index < n: A : Dict =False A : Dict =index + i A : Tuple =[2] for i in range(3, lowercase, 2 ): if is_prime[i]: primes.append(lowercase ) return primes def A__ ( lowercase: int = 999_966_663_333 ) -> int: A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100 A : Optional[int] =prime_sieve(lowercase ) A : Optional[Any] =0 A : List[Any] =0 A : Union[str, Any] =primes[prime_index] while (last_prime**2) <= limit: A : Tuple =primes[prime_index + 1] A : Optional[int] =last_prime**2 A : Tuple =next_prime**2 # Get numbers divisible by lps(current) A : int =lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A : List[Any] =upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A : Any =0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A : List[str] =next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
661
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _lowercase : Any =argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') _lowercase : List[str] =parser.parse_args() _lowercase : Any ='''cpu''' _lowercase : List[str] ='''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' _lowercase : Tuple ='''path-to-your-trained-model''' _lowercase : int =StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _lowercase : List[str] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _lowercase : List[Any] =pipe.to(device) # to channels last _lowercase : int =pipe.unet.to(memory_format=torch.channels_last) _lowercase : Union[str, Any] =pipe.vae.to(memory_format=torch.channels_last) _lowercase : Union[str, Any] =pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _lowercase : Union[str, Any] =pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _lowercase : List[Any] =torch.randn(2, 4, 6_4, 6_4) _lowercase : Tuple =torch.rand(1) * 9_9_9 _lowercase : str =torch.randn(2, 7_7, 7_6_8) _lowercase : List[str] =(sample, timestep, encoder_hidden_status) try: _lowercase : Dict =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _lowercase : str =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : Tuple =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _lowercase : Union[str, Any] =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _lowercase : str =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _lowercase : Dict =6_6_6 _lowercase : List[str] =torch.Generator(device).manual_seed(seed) _lowercase : Any ={'''generator''': generator} if args.steps is not None: _lowercase : Tuple =args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _lowercase : Any =pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
661
import heapq def A__ ( lowercase: dict ) -> set[int]: A : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] ) # chosen_vertices = set of chosen vertices A : Dict =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A : List[str] =heapq.heappop(lowercase )[1][0] chosen_vertices.add(lowercase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A : str =elem[1][1].index(lowercase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
661
1
def A__ ( lowercase: str, lowercase: str ) -> int: if len(lowercase ) != len(lowercase ): raise ValueError('String lengths must match!' ) A : List[Any] =0 for chara, chara in zip(lowercase, lowercase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
661
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowercase : List[Any] =logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: A : Tuple =feature_size A : int =sampling_rate A : List[str] =padding_value A : Tuple =kwargs.pop('padding_side' , 'right' ) A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ ) super().__init__(**SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): A : Tuple ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) A : Dict =processed_features[self.model_input_names[0]] A : int =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE__ ) == 0: if return_attention_mask: A : List[Any] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch A : List[str] =required_input[0] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. A : Any =0 while len(required_input[index] ) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE__ ): A : Dict =required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE__ ): A : List[Any] ='tf' elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): A : Optional[int] ='pt' elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ): A : Union[str, Any] ='np' else: raise ValueError( f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): A : int =to_numpy(SCREAMING_SNAKE_CASE__ ) else: A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value] # Convert padding_strategy in PaddingStrategy A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =processed_features[self.model_input_names[0]] A : List[str] =len(SCREAMING_SNAKE_CASE__ ) if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) A : Tuple =[] for i in range(SCREAMING_SNAKE_CASE__ ): A : int ={k: v[i] for k, v in processed_features.items()} # truncation A : List[Any] =self._truncate( SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , ) truncated_inputs.append(SCREAMING_SNAKE_CASE__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) A : Optional[Any] =PaddingStrategy.MAX_LENGTH A : List[Any] ={} for i in range(SCREAMING_SNAKE_CASE__ ): # padding A : Optional[Any] =self._pad( truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) for key, value in outputs.items(): if key not in batch_outputs: A : Dict =[] if value.dtype is np.dtype(np.floataa ): A : Tuple =value.astype(np.floataa ) batch_outputs[key].append(SCREAMING_SNAKE_CASE__ ) return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict: A : Optional[int] =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: A : List[str] =len(SCREAMING_SNAKE_CASE__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa ) if needs_to_be_padded: A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ ) if self.padding_side == "right": if return_attention_mask: A : Dict =np.pad( processed_features['attention_mask'] , (0, difference) ) A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) A : Tuple =np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: A : List[Any] =np.pad( processed_features['attention_mask'] , (difference, 0) ) A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) A : Tuple =np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) A : Tuple =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length if needs_to_be_truncated: A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: A : Dict =processed_features['attention_mask'][:max_length] return processed_features def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Optional[int] =padding else: A : List[str] =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
661
1
def A__ ( lowercase: list[int], lowercase: list[int] ) -> tuple[float, float]: # Check if the input is valid if not len(lowercase ) == len(lowercase ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients A , A , A : Dict =equationa A , A , A : str =equationa # Calculate the determinants of the matrices A : Tuple =aa * ba - aa * ba A : List[str] =ca * ba - ca * ba A : List[str] =aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: A : Optional[Any] =determinant_x / determinant A : Any =determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
661
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : List[str] ={ '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : int = "deberta-v2" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ ) A : Dict =hidden_size A : Optional[Any] =num_hidden_layers A : Optional[int] =num_attention_heads A : Optional[int] =intermediate_size A : Any =hidden_act A : Any =hidden_dropout_prob A : Union[str, Any] =attention_probs_dropout_prob A : Optional[Any] =max_position_embeddings A : Tuple =type_vocab_size A : Tuple =initializer_range A : int =relative_attention A : int =max_relative_positions A : Optional[Any] =pad_token_id A : Union[str, Any] =position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE__ ) == str: A : Any =[x.strip() for x in pos_att_type.lower().split('|' )] A : Any =pos_att_type A : Tuple =vocab_size A : Any =layer_norm_eps A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ ) A : str =pooler_dropout A : Any =pooler_hidden_act class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'} else: A : int ={0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> int: return 12 def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
661
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase : List[str] ={ '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict =[ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =[ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =[ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys _lowercase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]: super().__init__() A : str =prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) A : List[Any] =prefix_inner_dim A : Dict =prefix_hidden_dim A : List[str] =( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Optional[int] =( nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Dict =GPTaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , ) A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]: A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ ) A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 ) A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor: return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: return self.encode_prefix(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 ) A : int =[] A : Optional[int] =[] for feature in features: A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature # Only support beam search for now A , A : Dict =self.generate_beam( input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A : str =torch.stack(SCREAMING_SNAKE_CASE__ ) A : int =torch.stack(SCREAMING_SNAKE_CASE__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict: A : Dict =eos_token_id A : str =None A : List[Any] =None A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int ) A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool ) if input_embeds is not None: A : Any =input_embeds else: A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ ) A : str =outputs.logits A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A : List[str] =logits.softmax(-1 ).log() if scores is None: A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 ) A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] ) A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A : Union[str, Any] =next_tokens else: A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] ) A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 ) else: A : Optional[Any] =-float(np.inf ) A : Tuple =0 A : Optional[Any] =scores[:, None] + logits seq_lengths[~is_stopped] += 1 A : int =scores_sum / seq_lengths[:, None] A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 ) A : Dict =next_tokens // scores_sum.shape[1] A : Optional[Any] =seq_lengths[next_tokens_source] A : Tuple =next_tokens % scores_sum.shape[1] A : Optional[Any] =next_tokens.unsqueeze(1 ) A : Optional[Any] =tokens[next_tokens_source] A : Any =torch.cat((tokens, next_tokens) , dim=1 ) A : List[str] =generated[next_tokens_source] A : List[Any] =scores_sum_average * seq_lengths A : Optional[Any] =is_stopped[next_tokens_source] A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A : Any =torch.cat((generated, next_token_embed) , dim=1 ) A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze() if is_stopped.all(): break A : Optional[Any] =scores / seq_lengths A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ ) # tokens tensors are already padded to max_seq_length A : Optional[Any] =[tokens[i] for i in order] A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 ) A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
661
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
661
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[str] = XLMRobertaTokenizer lowercase : Dict = XLMRobertaTokenizerFast lowercase : str = True lowercase : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: A : List[str] ='<pad>' A : int =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: A : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : str =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=True A : Optional[int] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=False A : List[Any] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name ) A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ ) A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ ) pickle.loads(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: if not self.test_rust_tokenizer: return A : Union[str, Any] =self.get_tokenizer() A : int =self.get_rust_tokenizer() A : List[str] ='I was born in 92000, and this is falsé.' A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.get_rust_tokenizer() A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: A : Any ='Hello World!' A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: A : Any =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A : int =[ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: # fmt: off A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
661
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowercase : List[Any] =TypeVar('''T''') class SCREAMING_SNAKE_CASE_ ( Generic[T] ): '''simple docstring''' lowercase : deque[T] # Cache store of keys lowercase : set[T] # References of the keys in cache lowercase : int = 10 # Maximum capacity of cache def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> None: A : Optional[int] =deque() A : List[str] =set() if not n: A : Optional[Any] =sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: A : List[Any] =n def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: A : Any =self.dq_store.pop() self.key_reference.remove(SCREAMING_SNAKE_CASE__ ) else: self.dq_store.remove(SCREAMING_SNAKE_CASE__ ) self.dq_store.appendleft(SCREAMING_SNAKE_CASE__ ) self.key_reference.add(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> None: for k in self.dq_store: print(SCREAMING_SNAKE_CASE__ ) def __repr__( self : List[Any] ) -> str: return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() _lowercase : LRUCache[str | int] =LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
661
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Dict ={ '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "xglm" lowercase : Any = ["past_key_values"] lowercase : Dict = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: A : str =vocab_size A : Union[str, Any] =max_position_embeddings A : Optional[Any] =d_model A : Optional[int] =ffn_dim A : int =num_layers A : Any =attention_heads A : Dict =activation_function A : List[Any] =dropout A : str =attention_dropout A : List[Any] =activation_dropout A : List[Any] =layerdrop A : List[Any] =init_std A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True A : List[str] =use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
661
1
from __future__ import annotations def A__ ( lowercase: int | str ) -> bool: A : List[str] =str(lowercase ) return n == n[::-1] def A__ ( lowercase: int = 1_000_000 ) -> Dict: A : Dict =0 for i in range(1, lowercase ): if is_palindrome(lowercase ) and is_palindrome(bin(lowercase ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
661
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def A__ ( ) -> List[Any]: A : Any =_ask_options( 'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A : Tuple =get_sagemaker_input() else: A : str =get_cluster_input() return config def A__ ( lowercase: int=None ) -> str: if subparsers is not None: A : List[str] =subparsers.add_parser('config', description=lowercase ) else: A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase ) parser.add_argument( '--config_file', default=lowercase, help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ), ) if subparsers is not None: parser.set_defaults(func=lowercase ) return parser def A__ ( lowercase: Tuple ) -> List[Any]: A : Union[str, Any] =get_user_input() if args.config_file is not None: A : Optional[Any] =args.config_file else: if not os.path.isdir(lowercase ): os.makedirs(lowercase ) A : Union[str, Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase ) else: config.to_yaml_file(lowercase ) print(F'accelerate configuration saved at {config_file}' ) def A__ ( ) -> Optional[int]: A : Any =config_command_parser() A : int =parser.parse_args() config_command(lowercase ) if __name__ == "__main__": main()
661
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Tuple ={ '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =[ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import collections import importlib.util import os import re from pathlib import Path _lowercase : List[str] ='''src/transformers''' # Matches is_xxx_available() _lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowercase : Optional[Any] =re.compile(R'''^\s*try:''') # Catches a line with else: _lowercase : List[Any] =re.compile(R'''^\s*else:''') def A__ ( lowercase: Dict ) -> int: if _re_test_backend.search(lowercase ) is None: return None A : Any =[b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def A__ ( lowercase: Any ) -> List[Any]: with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f: A : Optional[Any] =f.readlines() A : Dict =0 while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure A : Optional[int] =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: A : int =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): A : int =_re_one_line_import_struct.search(lowercase ).groups()[0] A : int =re.findall('\[([^\]]+)\]', lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue A : Optional[int] =_re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 A : str ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. A : Optional[int] =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : str =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): A : Optional[Any] =lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' ) A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' ) A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 A : Optional[Any] =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A : Optional[Any] =[] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): A : Any =lines[line_index] A : Optional[int] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 A : Optional[Any] ={'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. A : str =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : Optional[Any] =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): A : Any =lines[line_index] A : Any =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 A : Dict =objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowercase: Any, lowercase: int ) -> Dict: def find_duplicates(lowercase: List[str] ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A : List[Any] =[] for key in import_dict_objects.keys(): A : List[Any] =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) A : Tuple =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A : Tuple ='base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A__ ( ) -> List[str]: A : Dict =[] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: A : Any =os.path.join(lowercase, '__init__.py' ) A : Union[str, Any] =parse_init(lowercase ) if objects is not None: A : str =analyze_results(*lowercase ) if len(lowercase ) > 0: A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowercase ) ) if len(lowercase ) > 0: raise ValueError('\n\n'.join(lowercase ) ) def A__ ( ) -> int: A : List[str] =[] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0: continue A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) ) A : List[str] =short_path.replace(os.path.sep, '.' ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) ) A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase ) return submodules _lowercase : Tuple =[ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def A__ ( ) -> Tuple: # This is to make sure the transformers module imported is the one in the repo. A : str =importlib.util.spec_from_file_location( 'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : Any =spec.loader.load_module() A : Any =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase ) > 0: A : Dict ='\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
661
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowercase : int ={ '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =['''ConvNextFeatureExtractor'''] _lowercase : Optional[int] =['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =[ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =[ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
661
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowercase : Any =logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} ) lowercase : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) lowercase : Optional[str] = field( default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
661
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowercase : List[Any] =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Dict , **SCREAMING_SNAKE_CASE__ : Any ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: A : Dict ={} A : Dict ={} A : int ={} # preprocess args if "points_per_batch" in kwargs: A : int =kwargs['points_per_batch'] if "points_per_crop" in kwargs: A : Any =kwargs['points_per_crop'] if "crops_n_layers" in kwargs: A : Any =kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: A : Optional[Any] =kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: A : Tuple =kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: A : Optional[Any] =kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: A : Union[str, Any] =kwargs['stability_score_offset'] if "mask_threshold" in kwargs: A : List[Any] =kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: A : Any =kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: A : Union[str, Any] =kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: A : Dict =kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: A : Optional[int] =kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , *SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: return super().__call__(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=64 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : float = 5_12 / 15_00 , SCREAMING_SNAKE_CASE__ : Optional[int] = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = 1 , ) -> Optional[int]: A : Tuple =load_image(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.image_processor.size['longest_edge'] A , A , A , A : str =self.image_processor.generate_crop_boxes( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Dict =self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": A : Optional[Any] =self.get_inference_context() with inference_context(): A : Any =self._ensure_tensor_on_device(SCREAMING_SNAKE_CASE__ , device=self.device ) A : List[str] =self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) A : int =image_embeddings A : str =grid_points.shape[1] A : Tuple =points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Dict =grid_points[:, i : i + points_per_batch, :, :] A : Optional[int] =input_labels[:, i : i + points_per_batch] A : List[Any] =i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.8_8 , SCREAMING_SNAKE_CASE__ : Any=0.9_5 , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Dict=1 , ) -> int: A : Union[str, Any] =model_inputs.pop('input_boxes' ) A : List[str] =model_inputs.pop('is_last' ) A : Dict =model_inputs.pop('original_sizes' ).tolist() A : Optional[Any] =model_inputs.pop('reshaped_input_sizes' ).tolist() A : Tuple =self.model(**SCREAMING_SNAKE_CASE__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks A : Any =model_outputs['pred_masks'] A : Optional[int] =self.image_processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , binarize=SCREAMING_SNAKE_CASE__ ) A : str =model_outputs['iou_scores'] A , A , A : List[Any] =self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=0.7 , ) -> str: A : Union[str, Any] =[] A : Optional[Any] =[] A : Any =[] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) A : Optional[Any] =torch.cat(SCREAMING_SNAKE_CASE__ ) A : str =torch.cat(SCREAMING_SNAKE_CASE__ ) A , A , A , A : List[Any] =self.image_processor.post_process_for_mask_generation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : int =defaultdict(SCREAMING_SNAKE_CASE__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(SCREAMING_SNAKE_CASE__ ) A : Dict ={} if output_rle_mask: A : Optional[Any] =rle_mask if output_bboxes_mask: A : List[str] =bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
661
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : int =2 class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]: A , A , A , A : Optional[Any] =bos, unk, pad, eos A : Dict =[] A : Union[str, Any] =[] A : Any ={} A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =len(self.symbols ) def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.indices == other.indices def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: A : Union[str, Any] =cls() d.add_from_file(SCREAMING_SNAKE_CASE__ ) return d def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: if word in self.indices and not overwrite: A : int =self.indices[word] A : Union[str, Any] =self.count[idx] + n return idx else: A : Tuple =len(self.symbols ) A : str =idx self.symbols.append(SCREAMING_SNAKE_CASE__ ) self.count.append(SCREAMING_SNAKE_CASE__ ) return idx def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) ) return A : str =f.readlines() A : int =self._load_meta(SCREAMING_SNAKE_CASE__ ) for line in lines[indices_start_line:]: try: A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A : int =True A , A : Optional[Any] =line.rsplit(' ' , 1 ) else: A : Any =False A : Tuple =int(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) ) self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A__ ( lowercase: Union[str, Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() ) A : int ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : List[Any] =d[k] # restore return da def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str: # prep if not os.path.exists(lowercase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase, exist_ok=lowercase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[str] =os.path.join(lowercase, 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Optional[Any] =torch.load(lowercase, map_location='cpu' ) A : Any =chkpt['cfg']['model'] # dicts A : Any =os.path.join(lowercase, 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Dict =Dictionary.load(lowercase ) A : Optional[Any] =rewrite_dict_keys(src_dict.indices ) A : Tuple =len(lowercase ) A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) A : List[str] =os.path.join(lowercase, 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase, lowercase ) # model config A : Tuple =os.path.join(lowercase, 'config.json' ) A : Tuple ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config A : int =os.path.join(lowercase, lowercase ) A : List[str] ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model A : List[Any] =chkpt['model'] # remove unneeded keys A : List[Any] =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) A : str =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A : Union[str, Any] =model_state_dict.pop(lowercase ) else: A : List[str] =model_state_dict.pop(lowercase ) A : Any =BioGptConfig.from_pretrained(lowercase ) A : str =BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save A : Tuple =os.path.join(lowercase, lowercase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase, lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[Any] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
661
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Optional[int] ={ '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _lowercase : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters _lowercase : str =False _lowercase : Optional[Any] =False def A__ ( lowercase: Namespace ) -> Optional[int]: return TrainCommand(lowercase ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict: A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]: A : Optional[int] =logging.get_logger('transformers-cli/training' ) A : Dict ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =args.output A : List[str] =args.column_label A : int =args.column_text A : Union[str, Any] =args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) A : Tuple =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Dict =None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) A : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Optional[Any] =args.validation_split A : str =args.train_batch_size A : Any =args.valid_batch_size A : Dict =args.learning_rate A : List[str] =args.adam_epsilon def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]: raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
661
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters _lowercase : str =False _lowercase : Optional[Any] =False def A__ ( lowercase: Namespace ) -> Optional[int]: return TrainCommand(lowercase ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict: A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]: A : Optional[int] =logging.get_logger('transformers-cli/training' ) A : Dict ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =args.output A : List[str] =args.column_label A : int =args.column_text A : Union[str, Any] =args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) A : Tuple =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Dict =None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) A : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Optional[Any] =args.validation_split A : str =args.train_batch_size A : Any =args.valid_batch_size A : Dict =args.learning_rate A : List[str] =args.adam_epsilon def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]: raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
661
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} A : Union[str, Any] =parent A : Union[str, Any] =batch_size A : Union[str, Any] =num_channels A : int =min_resolution A : List[Any] =max_resolution A : Dict =do_resize A : Tuple =size A : List[str] =do_normalize A : List[Any] =image_mean A : Dict =image_std A : Any =do_rescale A : List[str] =rescale_factor A : Optional[Any] =do_pad def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict: if not batched: A : Any =image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ): A , A : Union[str, Any] =image.size else: A , A : Tuple =image.shape[1], image.shape[2] if w < h: A : Any =int(self.size['shortest_edge'] * h / w ) A : Any =self.size['shortest_edge'] elif w > h: A : Dict =self.size['shortest_edge'] A : Dict =int(self.size['shortest_edge'] * w / h ) else: A : List[str] =self.size['shortest_edge'] A : Dict =self.size['shortest_edge'] else: A : List[Any] =[] for image in image_inputs: A , A : int =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0] A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: A : str =ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: A : Tuple =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: A : int =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) A : str =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: # Initialize image_processing A : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing A : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]: # prepare image and target A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: A : List[Any] =json.loads(f.read() ) A : Any ={'image_id': 3_97_69, 'annotations': target} # encode them A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # verify pixel values A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ ) A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) # verify area A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes A : str =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # verify image_id A : Dict =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) ) # verify orig_size A : List[Any] =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) ) # verify size A : int =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: # prepare image, target and masks_path A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: A : Optional[int] =json.loads(f.read() ) A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' ) A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # verify pixel values A : Dict =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ ) A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) # verify area A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes A : List[Any] =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ ) A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # verify image_id A : List[Any] =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd A : Any =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels A : str =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) ) # verify masks A : int =82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ ) # verify orig_size A : Any =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) ) # verify size A : str =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
661
1
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowercase : Tuple =argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') _lowercase , _lowercase : Tuple =parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') _lowercase : Any =rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: _lowercase : Any =rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowercase : str =args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
661
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : List[Any] =1_6 _lowercase : Union[str, Any] =3_2 def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]: A : List[Any] =AutoTokenizer.from_pretrained(lowercase ) A : Any =load_dataset('glue', 'mrpc' ) def tokenize_function(lowercase: Any ): # max_length=None => use the model max length (it's actually the default) A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A : Any =datasets.map( lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : Dict =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowercase: Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' ) return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' ) # Instantiate dataloaders. A : Union[str, Any] =DataLoader( tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) A : str =DataLoader( tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple: model.eval() A : Tuple =0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A : Tuple =model(**lowercase ) A : Tuple =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A , A : Union[str, Any] =accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase ) - 1: A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen] A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase, references=lowercase, ) A : Union[str, Any] =metric.compute() return eval_metric["accuracy"] def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]: # Initialize accelerator A : Optional[int] =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : int =config['lr'] A : Optional[Any] =int(config['num_epochs'] ) A : Union[str, Any] =int(config['seed'] ) A : List[str] =int(config['batch_size'] ) A : Optional[Any] =args.model_name_or_path set_seed(lowercase ) A , A : str =get_dataloaders(lowercase, lowercase, lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase ) # Instantiate optimizer A : Any =( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A : Dict =1 A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A : List[Any] =get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, ) else: A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A : Optional[int] =accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # We need to keep track of how many total steps we have iterated over A : Tuple =0 # We also need to keep track of the stating epoch so files are named properly A : List[str] =0 A : Tuple =evaluate.load('glue', 'mrpc' ) A : Optional[int] =num_epochs if args.partial_train_epoch is not None: A : Dict =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1] A : List[Any] ='' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A : Union[str, Any] =int(lowercase ) + 1 A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase ) accelerator.print('resumed checkpoint performance:', lowercase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f: A : Union[str, Any] =json.load(lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A : str ={} for epoch in range(lowercase, lowercase ): model.train() for step, batch in enumerate(lowercase ): A : Tuple =model(**lowercase ) A : List[Any] =outputs.loss A : Any =loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A : Union[str, Any] =F'epoch_{epoch}' A : Optional[Any] =os.path.join(args.output_dir, lowercase ) accelerator.save_state(lowercase ) A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase ) A : Dict =accuracy A : Optional[Any] =lr_scheduler.get_lr()[0] A : Any =optimizer.param_groups[0]['lr'] A : str =epoch A : Dict =overall_step accelerator.print(F'epoch {epoch}:', lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f: json.dump(lowercase, lowercase ) def A__ ( ) -> Optional[int]: A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, ) parser.add_argument( '--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', ) parser.add_argument( '--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', ) parser.add_argument( '--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', ) parser.add_argument( '--num_epochs', type=lowercase, default=2, help='Number of train epochs.', ) A : str =parser.parse_args() A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
661
1
from __future__ import annotations from math import ceil, floor, sqrt def A__ ( lowercase: int = 2_000_000 ) -> int: A : list[int] =[0] A : int for idx in range(1, ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target A : int =0 # the area corresponding to the grid that gives the product closest to target A : int =0 # an estimate of b, using the quadratic formula A : float # the largest integer less than b_estimate A : int # the largest integer less than b_estimate A : int # the triangle number corresponding to b_floor A : int # the triangle number corresponding to b_ceil A : int for idx_a, triangle_a in enumerate(triangle_numbers[1:], 1 ): A : Any =(-1 + sqrt(1 + 8 * target / triangle_a )) / 2 A : Dict =floor(lowercase ) A : List[Any] =ceil(lowercase ) A : Optional[Any] =triangle_numbers[b_floor] A : int =triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): A : Optional[Any] =triangle_b_first_guess * triangle_a A : Union[str, Any] =idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): A : Tuple =triangle_b_second_guess * triangle_a A : Dict =idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
661
def A__ ( lowercase: int ) -> int: if not isinstance(lowercase, lowercase ) or number < 0: raise ValueError('Input must be a non-negative integer' ) A : Any =0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
661
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _lowercase : Tuple =logging.get_logger(__name__) _lowercase : Optional[int] ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowercase : Any ={ '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } _lowercase : Dict ={ '''distilbert-base-uncased''': 5_1_2, '''distilbert-base-uncased-distilled-squad''': 5_1_2, '''distilbert-base-cased''': 5_1_2, '''distilbert-base-cased-distilled-squad''': 5_1_2, '''distilbert-base-german-cased''': 5_1_2, '''distilbert-base-multilingual-cased''': 5_1_2, } _lowercase : Dict ={ '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Any = VOCAB_FILES_NAMES lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : int = PRETRAINED_INIT_CONFIGURATION lowercase : Optional[int] = ["input_ids", "attention_mask"] lowercase : List[str] = DistilBertTokenizer def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[int]="[UNK]" , SCREAMING_SNAKE_CASE__ : str="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[PAD]" , SCREAMING_SNAKE_CASE__ : str="[CLS]" , SCREAMING_SNAKE_CASE__ : Tuple="[MASK]" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> List[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) A : List[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): A : Dict =getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) ) A : Dict =do_lower_case A : Dict =strip_accents A : Optional[Any] =tokenize_chinese_chars A : Any =normalizer_class(**SCREAMING_SNAKE_CASE__ ) A : int =do_lower_case def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Union[str, Any]: A : List[str] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: A : List[Any] =[self.sep_token_id] A : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: A : Union[str, Any] =self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
661
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]: from .. import __version__ A : Optional[Any] =take_from A : Union[str, Any] =() if not isinstance(args[0], lowercase ): A : List[str] =(args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) A : Tuple =None if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase ),) A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(lowercase, lowercase ): values += (getattr(lowercase, lowercase ),) A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: A : List[Any] =warning + ' ' if standard_warn else '' warnings.warn(warning + message, lowercase, stacklevel=lowercase ) if isinstance(lowercase, lowercase ) and len(lowercase ) > 0: A : Any =inspect.getouterframes(inspect.currentframe() )[1] A : int =call_frame.filename A : int =call_frame.lineno A : Optional[int] =call_frame.function A , A : int =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(lowercase ) == 0: return elif len(lowercase ) == 1: return values[0] return values
661
1
from statistics import mean import numpy as np def A__ ( lowercase: list, lowercase: list, lowercase: list, lowercase: int ) -> list: A : int =0 # Number of processes finished A : Optional[int] =0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. A : int =[0] * no_of_process # List to include calculation results A : List[Any] =[0] * no_of_process # Sort by arrival time. A : Optional[int] =[burst_time[i] for i in np.argsort(lowercase )] A : Optional[int] =[process_name[i] for i in np.argsort(lowercase )] arrival_time.sort() while no_of_process > finished_process_count: A : Dict =0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: A : Dict =arrival_time[i] A : int =0 # Index showing the location of the process being performed A : Tuple =0 # Saves the current response ratio. A : Optional[Any] =0 for i in range(0, lowercase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: A : str =(burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: A : Any =temp A : Any =i # Calculate the turn around time A : Any =current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. A : Optional[Any] =1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A__ ( lowercase: list, lowercase: list, lowercase: list, lowercase: int ) -> list: A : Optional[Any] =[0] * no_of_process for i in range(0, lowercase ): A : Optional[int] =turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _lowercase : Optional[int] =5 _lowercase : Union[str, Any] =['''A''', '''B''', '''C''', '''D''', '''E'''] _lowercase : Union[str, Any] =[1, 2, 3, 4, 5] _lowercase : List[str] =[1, 2, 3, 4, 5] _lowercase : int =calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _lowercase : List[Any] =calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
661
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( lowercase: int, lowercase: str ) -> Dict: assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str: A : Any =tmp_path / 'cache' A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read() _check_json_dataset(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ], ) def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple: A : Tuple =tmp_path / 'cache' A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : Optional[Any] =features.copy() if features else default_expected_features A : Union[str, Any] =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() _check_json_dataset(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ], ) def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]: A : int =tmp_path / 'cache' A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} A : int =features.copy() if features else default_expected_features A : str =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} A : Dict =features.copy() A : List[str] =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : int =tmp_path / 'cache' A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]: A : Optional[int] =tmp_path / 'cache' A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read() _check_json_dataset(lowercase, lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]: if issubclass(lowercase, lowercase ): A : int =jsonl_path elif issubclass(lowercase, lowercase ): A : Any =[jsonl_path] A : Optional[Any] =tmp_path / 'cache' A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read() _check_json_dataset(lowercase, lowercase ) def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple: assert isinstance(lowercase, lowercase ) for split in splits: A : List[str] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str: A : List[str] =tmp_path / 'cache' A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read() _check_json_datasetdict(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ], ) def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple: A : Any =tmp_path / 'cache' A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : str =features.copy() if features else default_expected_features A : Dict =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read() _check_json_datasetdict(lowercase, lowercase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple: if split: A : Optional[int] ={split: jsonl_path} else: A : Dict ='train' A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path} A : Tuple =tmp_path / 'cache' A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read() _check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( lowercase: List[Any] ) -> Tuple: return json.load(lowercase ) def A__ ( lowercase: List[Any] ) -> Tuple: return [json.loads(lowercase ) for line in buffer] class SCREAMING_SNAKE_CASE_ : '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) A : int =load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) A : Any =load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) A : int =load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE__ ) == 10 def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}' A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' ) JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: A : str =f.read() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: A : List[str] =f.read() assert exported_content == original_content
661
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase : str ={ '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict =['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any =[ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[int] = DDIMPipeline lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowercase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: torch.manual_seed(0 ) A : str =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) A : Optional[int] =DDIMScheduler() A : Optional[Any] ={'unet': unet, 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) A : Optional[int] ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: A : Union[str, Any] ='cpu' A : Tuple =self.get_dummy_components() A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images A : Optional[Any] =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A : Optional[Any] =np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) A : str =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Any ='google/ddpm-cifar10-32' A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =DDIMScheduler() A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) ddim.to(SCREAMING_SNAKE_CASE__ ) ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Dict =torch.manual_seed(0 ) A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images A : str =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: A : Optional[int] ='google/ddpm-ema-bedroom-256' A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) ddpm.to(SCREAMING_SNAKE_CASE__ ) ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Any =torch.manual_seed(0 ) A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images A : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
661
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]: A : List[str] =tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) A : List[str] =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above A : str =tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above A : List[Any] =tf_top_k_top_p_filtering(SCREAMING_SNAKE_CASE__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) A : Dict =output[output != -float('inf' )] A : Dict =tf.cast( tf.where(tf.not_equal(SCREAMING_SNAKE_CASE__ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-12 ) tf.debugging.assert_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' if is_tf_available(): lowercase : Any = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: # TF-only test: tf.saved_model export A : List[Any] =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A : Optional[Any] =2 A : Union[str, Any] =2 class SCREAMING_SNAKE_CASE_ ( tf.Module ): '''simple docstring''' def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: super(SCREAMING_SNAKE_CASE__ , self ).__init__() A : str =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: A : str =self.model.generate( input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , max_new_tokens=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , ) return {"sequences": outputs["sequences"]} A : List[Any] =[[2, 0], [1_02, 1_03]] A : Dict =[[1, 0], [1, 1]] A : Optional[Any] =DummyModel(model=SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , signatures={'serving_default': dummy_model.serving} ) A : Union[str, Any] =tf.saved_model.load(SCREAMING_SNAKE_CASE__ ).signatures['serving_default'] for batch_size in range(1 , len(SCREAMING_SNAKE_CASE__ ) + 1 ): A : List[str] ={ 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } A : List[Any] =serving_func(**SCREAMING_SNAKE_CASE__ )['sequences'] A : Dict =test_model.generate(**SCREAMING_SNAKE_CASE__ , max_new_tokens=SCREAMING_SNAKE_CASE__ ) tf.debugging.assert_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[Any]: # TF-only test: tf.saved_model export A : List[str] =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A : Dict =1 A : str =2 class SCREAMING_SNAKE_CASE_ ( tf.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: super(SCREAMING_SNAKE_CASE__ , self ).__init__() A : Tuple =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: A : str =self.model.generate( input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , max_new_tokens=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , ) return {"sequences": outputs["sequences"]} A : int =[[2], [1_02, 1_03]] A : Optional[int] =[[1], [1, 1]] A : List[str] =DummyModel(model=SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , signatures={'serving_default': dummy_model.serving} ) A : List[Any] =tf.saved_model.load(SCREAMING_SNAKE_CASE__ ).signatures['serving_default'] for input_row in range(len(SCREAMING_SNAKE_CASE__ ) ): A : str ={ 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } A : List[str] =serving_func(**SCREAMING_SNAKE_CASE__ )['sequences'] A : Tuple =test_model.generate(**SCREAMING_SNAKE_CASE__ , max_new_tokens=SCREAMING_SNAKE_CASE__ ) tf.debugging.assert_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow @require_tensorflow_text def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] ) -> int: super().__init__() A : Union[str, Any] =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(SCREAMING_SNAKE_CASE__ , 'spiece.model' ) , 'rb' ).read() ) A : str =TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: A : str =self.tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) A , A : int =text.pad_model_inputs( SCREAMING_SNAKE_CASE__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) A : Any =self.model.generate(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) return self.tokenizer.detokenize(SCREAMING_SNAKE_CASE__ ) A : List[str] =CompleteSentenceTransformer() A : Tuple =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) A : Optional[Any] =complete_model(SCREAMING_SNAKE_CASE__ ) A : List[str] =tf.keras.Model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) keras_model.save(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: # Has PT equivalent: this test relies on random sampling A : Optional[int] ={ 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } A : Tuple =14 A : List[str] =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A : List[Any] ='Hello, my dog is cute and' A : str =tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) A : str =TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A : List[Any] =6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) A : Dict =model.generate(**SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) A : Union[str, Any] =[6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) A : Dict =model.generate(**SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str: # Has PT equivalent: ample use of framework-specific code A : Optional[int] =AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) A : Dict ='Hugging Face is a technology company based in New York and Paris.' A : Any =bart_tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' ).input_ids A : Any =TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) A : Dict =bart_model.generate(SCREAMING_SNAKE_CASE__ ).numpy() class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: return super().call(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) A : List[Any] =bart_model.generate(SCREAMING_SNAKE_CASE__ , foo='bar' ).numpy() self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) class SCREAMING_SNAKE_CASE_ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]: return super().call(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Any =FakeEncoder(bart_model.config , bart_model.model.shared ) A : Tuple =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) A : Tuple =bart_model.generate(SCREAMING_SNAKE_CASE__ ).numpy() with self.assertRaises(SCREAMING_SNAKE_CASE__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(SCREAMING_SNAKE_CASE__ , foo='bar' )
661
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: A : Dict =tempfile.mkdtemp() A : int =SamImageProcessor() A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: A : Optional[Any] =self.get_image_processor() A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Dict =self.prepare_image_inputs() A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any: A : str =self.get_image_processor() A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : str =[torch.ones((1, 3, 5, 5) )] A : Optional[Any] =[[17_64, 26_46]] A : List[Any] =[[6_83, 10_24]] A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A : str =[np.ones((1, 3, 5, 5) )] A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =[[1, 0], [0, 1]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: A : Tuple =tempfile.mkdtemp() A : Union[str, Any] =SamImageProcessor() A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: A : Any =self.get_image_processor() A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : int =self.prepare_image_inputs() A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: A : int =self.get_image_processor() A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =[tf.ones((1, 3, 5, 5) )] A : Tuple =[[17_64, 26_46]] A : Union[str, Any] =[[6_83, 10_24]] A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : List[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A : Any =[np.ones((1, 3, 5, 5) )] A : Optional[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =[[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A : List[str] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: A : Optional[int] =tempfile.mkdtemp() A : Union[str, Any] =SamImageProcessor() A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: A : Optional[Any] =self.get_image_processor() A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )] A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )] A : int =[[17_64, 26_46]] A : int =[[6_83, 10_24]] A : Dict =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) A : Optional[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: A : Union[str, Any] =self.get_image_processor() A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : int =self.prepare_image_inputs() A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
661
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : Dict =logging.get_logger(__name__) _lowercase : List[Any] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _lowercase : List[str] ={ '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _lowercase : Any ={ '''allenai/longformer-base-4096''': 4_0_9_6, '''allenai/longformer-large-4096''': 4_0_9_6, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_0_9_6, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_0_9_6, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A__ ( ) -> Dict: A : List[Any] =( list(range(ord('!' ), ord('~' ) + 1 ) ) + list(range(ord('¡' ), ord('¬' ) + 1 ) ) + list(range(ord('®' ), ord('ÿ' ) + 1 ) ) ) A : List[Any] =bs[:] A : Optional[Any] =0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 A : str =[chr(lowercase ) for n in cs] return dict(zip(lowercase, lowercase ) ) def A__ ( lowercase: List[Any] ) -> Tuple: A : Optional[Any] =set() A : Dict =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A : Tuple =char return pairs class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Dict = VOCAB_FILES_NAMES lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]="replace" , SCREAMING_SNAKE_CASE__ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE__ : List[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE__ : str="<unk>" , SCREAMING_SNAKE_CASE__ : str="<pad>" , SCREAMING_SNAKE_CASE__ : Any="<mask>" , SCREAMING_SNAKE_CASE__ : str=False , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[Any]: A : List[str] =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token A : Tuple =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token A : int =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token A : Dict =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token A : Union[str, Any] =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token A : Tuple =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A : List[str] =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as vocab_handle: A : List[Any] =json.load(SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] ={v: k for k, v in self.encoder.items()} A : List[str] =errors # how to handle errors in decoding A : Optional[Any] =bytes_to_unicode() A : List[str] ={v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as merges_handle: A : List[Any] =merges_handle.read().split('\n' )[1:-1] A : List[Any] =[tuple(merge.split() ) for merge in bpe_merges] A : Optional[int] =dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) A : List[Any] ={} A : Dict =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A : Any =re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[Any]: return len(self.encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Tuple: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: if token in self.cache: return self.cache[token] A : List[Any] =tuple(SCREAMING_SNAKE_CASE__ ) A : Any =get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: A : int =min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A : Optional[Any] =bigram A : Dict =[] A : Optional[Any] =0 while i < len(SCREAMING_SNAKE_CASE__ ): try: A : Tuple =word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A : List[str] =j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A : Optional[Any] =tuple(SCREAMING_SNAKE_CASE__ ) A : str =new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: A : str =get_pairs(SCREAMING_SNAKE_CASE__ ) A : int =' '.join(SCREAMING_SNAKE_CASE__ ) A : str =word return word def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: A : Tuple =[] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): A : Optional[int] =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(' ' ) ) return bpe_tokens def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: A : Optional[int] =''.join(SCREAMING_SNAKE_CASE__ ) A : str =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A : str =os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A : List[str] =os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '\n' ) A : Optional[int] =0 with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) A : Dict =token_index writer.write(' '.join(SCREAMING_SNAKE_CASE__ ) + '\n' ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A : str =[self.cls_token_id] A : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: A : List[Any] =[self.sep_token_id] A : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=False , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: A : Optional[int] =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): A : List[Any] =' ' + text return (text, kwargs)
661
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def A__ ( lowercase: Optional[int] ) -> Optional[int]: A : str =test_results.split(' ' ) A : List[str] =0 A : Tuple =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( lowercase: List[Any] ) -> str: A : Union[str, Any] ={} A : Optional[Any] =None A : Union[str, Any] =False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]', lowercase ): A : List[Any] =True A : Any =line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): A : Dict =line A : List[str] =False return failures class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: A : Tuple =title A : Dict =doc_test_results['time_spent'].split(',' )[0] A : Union[str, Any] =doc_test_results['success'] A : Any =doc_test_results['failures'] A : Optional[Any] =self.n_success + self.n_failures # Failures and success of the modeling tests A : Union[str, Any] =doc_test_results @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str: A : Any =[self._time_spent] A : List[str] =0 for time in time_spent: A : List[Any] =time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: A : List[str] =[0, 0, time_parts[0]] A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Tuple =40 A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} A : Any ='' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: A : Optional[int] =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: A : Tuple =[ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' A : Dict =client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: A : List[str] ='' for key, value in failures.items(): A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += f'*{key}*\n_{value}_\n\n' A : Union[str, Any] =job_name A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: A : int ={ 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) A : Union[str, Any] =self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): A : Any =f'*Num failures* :{len(job_result["failed"] )} \n' A : List[Any] =job_result['failures'] A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def A__ ( ) -> Union[str, Any]: A : Any =os.environ['GITHUB_RUN_ID'] A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' A : Union[str, Any] =requests.get(lowercase ).json() A : List[Any] ={} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) A : List[str] =math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowercase ): A : List[str] =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.', lowercase ) return {} def A__ ( lowercase: str ) -> Optional[Any]: A : Any ={} if os.path.exists(lowercase ): A : List[Any] =os.listdir(lowercase ) for file in files: try: with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f: A : Optional[int] =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e return _artifact def A__ ( ) -> int: class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: A : Dict =name A : Dict =[] def __str__( self : Optional[Any] ) -> List[str]: return self.name def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.paths.append({'name': self.name, 'path': path} ) A : Dict[str, Artifact] ={} A : str =filter(os.path.isdir, os.listdir() ) for directory in directories: A : Tuple =directory if artifact_name not in _available_artifacts: A : int =Artifact(lowercase ) _available_artifacts[artifact_name].add_path(lowercase ) return _available_artifacts if __name__ == "__main__": _lowercase : Optional[int] =get_job_links() _lowercase : str =retrieve_available_artifacts() _lowercase : List[Any] =collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _lowercase : Optional[Any] ={ v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _lowercase : List[Any] =github_actions_job_links.get('''run_doctests''') _lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _lowercase : Dict =retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats''']) _lowercase : Any =failed _lowercase : Union[str, Any] =success _lowercase : str =time_spent[1:-1] + ''', ''' _lowercase : Any =extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _lowercase : Tuple =line.replace('''FAILED ''', '''''') _lowercase : int =line.split()[0].replace('''\n''', '''''') if "::" in line: _lowercase , _lowercase : str =line.split('''::''') else: _lowercase , _lowercase : Union[str, Any] =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _lowercase : Any =docs[file_regex] doc_test_results[category]["failed"].append(test) _lowercase : Any =all_failures[test] if test in all_failures else '''N/A''' _lowercase : Tuple =failure break _lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
661
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=13 , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Dict=37 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , ) -> Union[str, Any]: A : Optional[Any] =parent A : Optional[Any] =batch_size A : List[Any] =seq_length A : int =is_training A : Optional[int] =use_attention_mask A : Optional[int] =use_token_type_ids A : str =use_labels A : List[Any] =vocab_size A : Optional[Any] =hidden_size A : Tuple =num_hidden_layers A : Optional[Any] =num_attention_heads A : int =intermediate_size A : int =hidden_act A : int =hidden_dropout_prob A : int =attention_probs_dropout_prob A : int =max_position_embeddings A : Optional[int] =type_vocab_size A : Any =type_sequence_label_size A : Tuple =initializer_range A : Union[str, Any] =num_choices def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Any: A : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Union[str, Any] =None if self.use_attention_mask: A : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) A : Union[str, Any] =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=SCREAMING_SNAKE_CASE__ , ) return config, input_ids, attention_mask def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int: A : int =self.prepare_config_and_inputs() A , A , A : Optional[Any] =config_and_inputs A : List[Any] ={'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Tuple = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]: A : Optional[Any] =FlaxDistilBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]: for model_class_name in self.all_model_classes: A : int =model_class_name.from_pretrained('distilbert-base-uncased' ) A : Optional[int] =model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]: A : Any =FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) A : List[str] =np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) A : Dict =np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A : Union[str, Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] A : Optional[int] =(1, 11, 7_68) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) A : str =np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
661
_lowercase : Dict ='''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
661
1
def A__ ( lowercase: list, lowercase: list, lowercase: int, lowercase: int, lowercase: int ) -> int: if index == number_of_items: return 0 A : Any =0 A : Optional[Any] =0 A : Dict =knapsack(lowercase, lowercase, lowercase, lowercase, index + 1 ) if weights[index] <= max_weight: A : List[Any] =values[index] + knapsack( lowercase, lowercase, lowercase, max_weight - weights[index], index + 1 ) return max(lowercase, lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
661
from typing import List from .keymap import KEYMAP, get_character def A__ ( lowercase: str ) -> List[str]: def decorator(lowercase: int ): A : Tuple =getattr(lowercase, 'handle_key', [] ) handle += [key] setattr(lowercase, 'handle_key', lowercase ) return func return decorator def A__ ( *lowercase: List[str] ) -> Dict: def decorator(lowercase: Union[str, Any] ): A : Optional[int] =getattr(lowercase, 'handle_key', [] ) handle += keys setattr(lowercase, 'handle_key', lowercase ) return func return decorator class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ): setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} ) setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] ) for key in handled_keys: A : str =value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any: A : str =get_character() if char != KEYMAP["undefined"]: A : List[str] =ord(SCREAMING_SNAKE_CASE__ ) A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ ) if handler: A : List[str] =char return handler(cls ) else: return None def A__ ( cls: Optional[int] ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
661
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool _lowercase : Optional[Any] ={ '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Dict = "facebook/nllb-200-distilled-600M" lowercase : Optional[Any] = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) lowercase : List[str] = "translator" lowercase : List[str] = AutoTokenizer lowercase : int = AutoModelForSeqaSeqLM lowercase : Dict = LANGUAGE_CODES lowercase : Dict = ["text", "text", "text"] lowercase : List[Any] = ["text"] def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: if src_lang not in self.lang_to_code: raise ValueError(f'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'{tgt_lang} is not a supported language.' ) A : str =self.lang_to_code[src_lang] A : Dict =self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( SCREAMING_SNAKE_CASE__ , return_tensors='pt' , src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: return self.model.generate(**SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
661
import math def A__ ( lowercase: int ) -> list: A : Optional[Any] =[True] * n A : Tuple =False A : List[Any] =False A : Dict =True for i in range(3, int(n**0.5 + 1 ), 2 ): A : Dict =i * 2 while index < n: A : Dict =False A : Dict =index + i A : Tuple =[2] for i in range(3, lowercase, 2 ): if is_prime[i]: primes.append(lowercase ) return primes def A__ ( lowercase: int = 999_966_663_333 ) -> int: A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100 A : Optional[int] =prime_sieve(lowercase ) A : Optional[Any] =0 A : List[Any] =0 A : Union[str, Any] =primes[prime_index] while (last_prime**2) <= limit: A : Tuple =primes[prime_index + 1] A : Optional[int] =last_prime**2 A : Tuple =next_prime**2 # Get numbers divisible by lps(current) A : int =lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A : List[Any] =upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A : Any =0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A : List[str] =next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
661
1
def A__ ( lowercase: int ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
661
import heapq def A__ ( lowercase: dict ) -> set[int]: A : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] ) # chosen_vertices = set of chosen vertices A : Dict =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A : List[str] =heapq.heappop(lowercase )[1][0] chosen_vertices.add(lowercase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A : str =elem[1][1].index(lowercase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
661
1
from collections.abc import Sequence def A__ ( lowercase: Sequence[float], lowercase: float ) -> float: return sum(c * (x**i) for i, c in enumerate(lowercase ) ) def A__ ( lowercase: Sequence[float], lowercase: float ) -> float: A : List[str] =0.0 for coeff in reversed(lowercase ): A : Union[str, Any] =result * x + coeff return result if __name__ == "__main__": _lowercase : List[str] =(0.0, 0.0, 5.0, 9.3, 7.0) _lowercase : Optional[Any] =1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
661
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowercase : List[Any] =logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: A : Tuple =feature_size A : int =sampling_rate A : List[str] =padding_value A : Tuple =kwargs.pop('padding_side' , 'right' ) A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ ) super().__init__(**SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): A : Tuple ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) A : Dict =processed_features[self.model_input_names[0]] A : int =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE__ ) == 0: if return_attention_mask: A : List[Any] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch A : List[str] =required_input[0] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. A : Any =0 while len(required_input[index] ) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE__ ): A : Dict =required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE__ ): A : List[Any] ='tf' elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): A : Optional[int] ='pt' elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ): A : Union[str, Any] ='np' else: raise ValueError( f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): A : int =to_numpy(SCREAMING_SNAKE_CASE__ ) else: A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value] # Convert padding_strategy in PaddingStrategy A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =processed_features[self.model_input_names[0]] A : List[str] =len(SCREAMING_SNAKE_CASE__ ) if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) A : Tuple =[] for i in range(SCREAMING_SNAKE_CASE__ ): A : int ={k: v[i] for k, v in processed_features.items()} # truncation A : List[Any] =self._truncate( SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , ) truncated_inputs.append(SCREAMING_SNAKE_CASE__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) A : Optional[Any] =PaddingStrategy.MAX_LENGTH A : List[Any] ={} for i in range(SCREAMING_SNAKE_CASE__ ): # padding A : Optional[Any] =self._pad( truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) for key, value in outputs.items(): if key not in batch_outputs: A : Dict =[] if value.dtype is np.dtype(np.floataa ): A : Tuple =value.astype(np.floataa ) batch_outputs[key].append(SCREAMING_SNAKE_CASE__ ) return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict: A : Optional[int] =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: A : List[str] =len(SCREAMING_SNAKE_CASE__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa ) if needs_to_be_padded: A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ ) if self.padding_side == "right": if return_attention_mask: A : Dict =np.pad( processed_features['attention_mask'] , (0, difference) ) A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) A : Tuple =np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: A : List[Any] =np.pad( processed_features['attention_mask'] , (difference, 0) ) A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) A : Tuple =np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) A : Tuple =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length if needs_to_be_truncated: A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: A : Dict =processed_features['attention_mask'][:max_length] return processed_features def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Optional[int] =padding else: A : List[str] =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
661
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _lowercase : List[Any] =( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A__ ( lowercase: str, lowercase: Optional[Any] ) -> Any: warnings.warn(lowercase, lowercase ) requires_backends(lowercase, 'sklearn' ) return (preds == labels).mean() def A__ ( lowercase: List[Any], lowercase: Union[str, Any] ) -> Optional[Any]: warnings.warn(lowercase, lowercase ) requires_backends(lowercase, 'sklearn' ) A : List[str] =simple_accuracy(lowercase, lowercase ) A : Union[str, Any] =fa_score(y_true=lowercase, y_pred=lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A__ ( lowercase: Optional[int], lowercase: int ) -> Union[str, Any]: warnings.warn(lowercase, lowercase ) requires_backends(lowercase, 'sklearn' ) A : str =pearsonr(lowercase, lowercase )[0] A : Dict =spearmanr(lowercase, lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A__ ( lowercase: Tuple, lowercase: List[Any], lowercase: Dict ) -> List[str]: warnings.warn(lowercase, lowercase ) requires_backends(lowercase, 'sklearn' ) assert len(lowercase ) == len(lowercase ), F'Predictions and labels have mismatched lengths {len(lowercase )} and {len(lowercase )}' if task_name == "cola": return {"mcc": matthews_corrcoef(lowercase, lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowercase, lowercase )} elif task_name == "mrpc": return acc_and_fa(lowercase, lowercase ) elif task_name == "sts-b": return pearson_and_spearman(lowercase, lowercase ) elif task_name == "qqp": return acc_and_fa(lowercase, lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowercase, lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowercase, lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(lowercase, lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(lowercase, lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(lowercase, lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(lowercase, lowercase )} else: raise KeyError(lowercase ) def A__ ( lowercase: int, lowercase: List[str], lowercase: str ) -> List[str]: warnings.warn(lowercase, lowercase ) requires_backends(lowercase, 'sklearn' ) if len(lowercase ) != len(lowercase ): raise ValueError(F'Predictions and labels have mismatched lengths {len(lowercase )} and {len(lowercase )}' ) if task_name == "xnli": return {"acc": simple_accuracy(lowercase, lowercase )} else: raise KeyError(lowercase )
661
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : List[str] ={ '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : int = "deberta-v2" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ ) A : Dict =hidden_size A : Optional[Any] =num_hidden_layers A : Optional[int] =num_attention_heads A : Optional[int] =intermediate_size A : Any =hidden_act A : Any =hidden_dropout_prob A : Union[str, Any] =attention_probs_dropout_prob A : Optional[Any] =max_position_embeddings A : Tuple =type_vocab_size A : Tuple =initializer_range A : int =relative_attention A : int =max_relative_positions A : Optional[Any] =pad_token_id A : Union[str, Any] =position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE__ ) == str: A : Any =[x.strip() for x in pos_att_type.lower().split('|' )] A : Any =pos_att_type A : Tuple =vocab_size A : Any =layer_norm_eps A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ ) A : str =pooler_dropout A : Any =pooler_hidden_act class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'} else: A : int ={0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> int: return 12 def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
661
1
from __future__ import annotations from collections import namedtuple def A__ ( lowercase: float, lowercase: float, lowercase: float ) -> tuple: A : List[Any] =namedtuple('result', 'name value' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('Only one argument must be 0' ) elif power < 0: raise ValueError( 'Power cannot be negative in any electrical/electronics system' ) elif voltage == 0: return result('voltage', power / current ) elif current == 0: return result('current', power / voltage ) elif power == 0: return result('power', float(round(abs(voltage * current ), 2 ) ) ) else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
661
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]: super().__init__() A : str =prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) A : List[Any] =prefix_inner_dim A : Dict =prefix_hidden_dim A : List[str] =( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Optional[int] =( nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Dict =GPTaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , ) A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]: A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ ) A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 ) A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor: return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: return self.encode_prefix(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 ) A : int =[] A : Optional[int] =[] for feature in features: A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature # Only support beam search for now A , A : Dict =self.generate_beam( input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A : str =torch.stack(SCREAMING_SNAKE_CASE__ ) A : int =torch.stack(SCREAMING_SNAKE_CASE__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict: A : Dict =eos_token_id A : str =None A : List[Any] =None A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int ) A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool ) if input_embeds is not None: A : Any =input_embeds else: A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ ) A : str =outputs.logits A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A : List[str] =logits.softmax(-1 ).log() if scores is None: A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 ) A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] ) A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A : Union[str, Any] =next_tokens else: A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] ) A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 ) else: A : Optional[Any] =-float(np.inf ) A : Tuple =0 A : Optional[Any] =scores[:, None] + logits seq_lengths[~is_stopped] += 1 A : int =scores_sum / seq_lengths[:, None] A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 ) A : Dict =next_tokens // scores_sum.shape[1] A : Optional[Any] =seq_lengths[next_tokens_source] A : Tuple =next_tokens % scores_sum.shape[1] A : Optional[Any] =next_tokens.unsqueeze(1 ) A : Optional[Any] =tokens[next_tokens_source] A : Any =torch.cat((tokens, next_tokens) , dim=1 ) A : List[str] =generated[next_tokens_source] A : List[Any] =scores_sum_average * seq_lengths A : Optional[Any] =is_stopped[next_tokens_source] A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A : Any =torch.cat((generated, next_token_embed) , dim=1 ) A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze() if is_stopped.all(): break A : Optional[Any] =scores / seq_lengths A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ ) # tokens tensors are already padded to max_seq_length A : Optional[Any] =[tokens[i] for i in order] A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 ) A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
661
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def A__ ( ) -> Optional[int]: raise RuntimeError('CUDA out of memory.' ) class SCREAMING_SNAKE_CASE_ ( nn.Module ): '''simple docstring''' def __init__( self : Dict ) -> Any: super().__init__() A : Tuple =nn.Linear(3 , 4 ) A : Union[str, Any] =nn.BatchNormad(4 ) A : Optional[int] =nn.Linear(4 , 5 ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(SCREAMING_SNAKE_CASE__ ) ) ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : Optional[int] =[] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Optional[Any] ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(SCREAMING_SNAKE_CASE__ , [1_28, 64, 32, 16, 8] ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: A : List[str] =[] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): nonlocal batch_sizes batch_sizes.append(SCREAMING_SNAKE_CASE__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga A , A : Tuple =mock_training_loop_function('hello' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): pass with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Optional[Any] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function(1_28 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Union[str, Any]: A : Tuple =torch.cuda.memory_allocated() A : Tuple =ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE__ ) A : str =release_memory(SCREAMING_SNAKE_CASE__ ) self.assertEqual(torch.cuda.memory_allocated() , SCREAMING_SNAKE_CASE__ )
661
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[str] = XLMRobertaTokenizer lowercase : Dict = XLMRobertaTokenizerFast lowercase : str = True lowercase : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: A : List[str] ='<pad>' A : int =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: A : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : str =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=True A : Optional[int] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=False A : List[Any] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name ) A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ ) A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ ) pickle.loads(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: if not self.test_rust_tokenizer: return A : Union[str, Any] =self.get_tokenizer() A : int =self.get_rust_tokenizer() A : List[str] ='I was born in 92000, and this is falsé.' A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.get_rust_tokenizer() A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: A : Any ='Hello World!' A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: A : Any =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A : int =[ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: # fmt: off A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
661
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = (DPMSolverSDEScheduler,) lowercase : Dict = 10 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: A : Dict ={ 'num_train_timesteps': 11_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**SCREAMING_SNAKE_CASE__ ) return config def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Tuple =self.scheduler_classes[0] A : Tuple =self.get_scheduler_config() A : Tuple =scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) A : Dict =self.dummy_model() A : Any =self.dummy_sample_deter * scheduler.init_noise_sigma A : Union[str, Any] =sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): A : Optional[int] =scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Tuple =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : List[str] =output.prev_sample A : Optional[Any] =torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) A : List[str] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1e-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: A : Any =self.scheduler_classes[0] A : Dict =self.get_scheduler_config(prediction_type='v_prediction' ) A : List[Any] =scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps ) A : Tuple =self.dummy_model() A : Dict =self.dummy_sample_deter * scheduler.init_noise_sigma A : List[str] =sample.to(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): A : Dict =scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Tuple =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Any =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Tuple =output.prev_sample A : Union[str, Any] =torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) A : List[Any] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1e-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]: A : Dict =self.scheduler_classes[0] A : str =self.get_scheduler_config() A : Optional[int] =scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.dummy_model() A : List[str] =self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: A : Union[str, Any] =scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : List[Any] =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =output.prev_sample A : Union[str, Any] =torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) A : Optional[int] =torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1e-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: A : List[str] =self.scheduler_classes[0] A : List[str] =self.get_scheduler_config() A : Optional[Any] =scheduler_class(**SCREAMING_SNAKE_CASE__ , use_karras_sigmas=SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =self.dummy_model() A : Tuple =self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE__ ) * scheduler.init_noise_sigma A : str =sample.to(SCREAMING_SNAKE_CASE__ ) for t in scheduler.timesteps: A : Any =scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Tuple =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =output.prev_sample A : Tuple =torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) A : str =torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1e-2
661
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Dict ={ '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "xglm" lowercase : Any = ["past_key_values"] lowercase : Dict = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: A : str =vocab_size A : Union[str, Any] =max_position_embeddings A : Optional[Any] =d_model A : Optional[int] =ffn_dim A : int =num_layers A : Any =attention_heads A : Dict =activation_function A : List[Any] =dropout A : str =attention_dropout A : List[Any] =activation_dropout A : List[Any] =layerdrop A : List[Any] =init_std A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True A : List[str] =use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
661
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : str ={ '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Dict = "wavlm" def __init__( self : str , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_68 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : List[Any]=30_72 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : int=1e-5 , SCREAMING_SNAKE_CASE__ : Dict="group" , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , SCREAMING_SNAKE_CASE__ : str=(10, 3, 3, 3, 3, 2, 2) , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=1_28 , SCREAMING_SNAKE_CASE__ : List[Any]=16 , SCREAMING_SNAKE_CASE__ : Tuple=3_20 , SCREAMING_SNAKE_CASE__ : List[Any]=8_00 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : List[str]=0.0_5 , SCREAMING_SNAKE_CASE__ : List[Any]=10 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : str=10 , SCREAMING_SNAKE_CASE__ : int=3_20 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=1_00 , SCREAMING_SNAKE_CASE__ : Tuple=2_56 , SCREAMING_SNAKE_CASE__ : List[Any]=2_56 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="mean" , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Any=2_56 , SCREAMING_SNAKE_CASE__ : Optional[int]=(5_12, 5_12, 5_12, 5_12, 15_00) , SCREAMING_SNAKE_CASE__ : Union[str, Any]=(5, 3, 3, 1, 1) , SCREAMING_SNAKE_CASE__ : Dict=(1, 2, 3, 1, 1) , SCREAMING_SNAKE_CASE__ : Tuple=5_12 , SCREAMING_SNAKE_CASE__ : Any=80 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) A : Tuple =hidden_size A : Union[str, Any] =feat_extract_norm A : Tuple =feat_extract_activation A : Any =list(SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =list(SCREAMING_SNAKE_CASE__ ) A : str =list(SCREAMING_SNAKE_CASE__ ) A : List[str] =conv_bias A : List[Any] =num_buckets A : str =max_bucket_distance A : int =num_conv_pos_embeddings A : Tuple =num_conv_pos_embedding_groups A : Any =len(self.conv_dim ) A : Any =num_hidden_layers A : Optional[Any] =intermediate_size A : Union[str, Any] =hidden_act A : Optional[int] =num_attention_heads A : Dict =hidden_dropout A : Optional[Any] =attention_dropout A : Optional[Any] =activation_dropout A : Optional[Any] =feat_proj_dropout A : Union[str, Any] =final_dropout A : Union[str, Any] =layerdrop A : Optional[Any] =layer_norm_eps A : Any =initializer_range A : List[str] =num_ctc_classes A : Dict =vocab_size A : List[str] =do_stable_layer_norm A : Dict =use_weighted_layer_sum A : Optional[Any] =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A : str =apply_spec_augment A : Any =mask_time_prob A : Any =mask_time_length A : int =mask_time_min_masks A : str =mask_feature_prob A : Optional[int] =mask_feature_length # parameters for pretraining with codevector quantized representations A : Union[str, Any] =num_codevectors_per_group A : Optional[Any] =num_codevector_groups A : List[Any] =contrastive_logits_temperature A : str =num_negatives A : Any =codevector_dim A : Dict =proj_codevector_dim A : List[Any] =diversity_loss_weight # ctc loss A : int =ctc_loss_reduction A : int =ctc_zero_infinity # adapter A : int =add_adapter A : Tuple =adapter_kernel_size A : Optional[Any] =adapter_stride A : Union[str, Any] =num_adapter_layers A : int =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A : List[str] =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A : Optional[int] =list(SCREAMING_SNAKE_CASE__ ) A : Any =list(SCREAMING_SNAKE_CASE__ ) A : str =list(SCREAMING_SNAKE_CASE__ ) A : List[str] =xvector_output_dim @property def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
661
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def A__ ( ) -> List[Any]: A : Any =_ask_options( 'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A : Tuple =get_sagemaker_input() else: A : str =get_cluster_input() return config def A__ ( lowercase: int=None ) -> str: if subparsers is not None: A : List[str] =subparsers.add_parser('config', description=lowercase ) else: A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase ) parser.add_argument( '--config_file', default=lowercase, help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ), ) if subparsers is not None: parser.set_defaults(func=lowercase ) return parser def A__ ( lowercase: Tuple ) -> List[Any]: A : Union[str, Any] =get_user_input() if args.config_file is not None: A : Optional[Any] =args.config_file else: if not os.path.isdir(lowercase ): os.makedirs(lowercase ) A : Union[str, Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase ) else: config.to_yaml_file(lowercase ) print(F'accelerate configuration saved at {config_file}' ) def A__ ( ) -> Optional[int]: A : Any =config_command_parser() A : int =parser.parse_args() config_command(lowercase ) if __name__ == "__main__": main()
661
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A__ ( lowercase: int ) -> int: A : List[Any] =filter(lambda lowercase : p.requires_grad, model.parameters() ) A : Tuple =sum([np.prod(p.size() ) for p in model_parameters] ) return params _lowercase : Tuple =logging.getLogger(__name__) def A__ ( lowercase: List[str], lowercase: Tuple ) -> int: if metric == "rouge2": A : Dict ='{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A : Optional[Any] ='{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A : List[Any] ='{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) A : List[str] =ModelCheckpoint( dirpath=lowercase, filename=lowercase, monitor=F'val_{metric}', mode='max', save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def A__ ( lowercase: List[str], lowercase: Dict ) -> Union[str, Any]: return EarlyStopping( monitor=F'val_{metric}', mode='min' if 'loss' in metric else 'max', patience=lowercase, verbose=lowercase, ) class SCREAMING_SNAKE_CASE_ ( pl.Callback ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: A : Optional[int] ={f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) A : List[str] =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A : Optional[int] =Path(pl_module.hparams.output_dir ) if type_path == "test": A : Any =od / 'test_results.txt' A : List[Any] =od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A : Tuple =od / f'{type_path}_results/{trainer.global_step:05d}.txt' A : int =od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'a+' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE__ ): if key in ["log", "progress_bar", "preds"]: continue A : List[str] =metrics[key] if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): A : List[Any] =val.item() A : List[str] =f'{key}: {val:.6f}\n' writer.write(SCREAMING_SNAKE_CASE__ ) if not save_generations: return if "preds" in metrics: A : Dict ='\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(SCREAMING_SNAKE_CASE__ ) @rank_zero_only def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> int: try: A : Optional[Any] =pl_module.model.model.num_parameters() except AttributeError: A : Tuple =pl_module.model.num_parameters() A : Tuple =count_trainable_parameters(SCREAMING_SNAKE_CASE__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : pl.LightningModule ) -> str: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'test' ) @rank_zero_only def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : pl.Trainer , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
661
import collections import importlib.util import os import re from pathlib import Path _lowercase : List[str] ='''src/transformers''' # Matches is_xxx_available() _lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowercase : Optional[Any] =re.compile(R'''^\s*try:''') # Catches a line with else: _lowercase : List[Any] =re.compile(R'''^\s*else:''') def A__ ( lowercase: Dict ) -> int: if _re_test_backend.search(lowercase ) is None: return None A : Any =[b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def A__ ( lowercase: Any ) -> List[Any]: with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f: A : Optional[Any] =f.readlines() A : Dict =0 while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure A : Optional[int] =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: A : int =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): A : int =_re_one_line_import_struct.search(lowercase ).groups()[0] A : int =re.findall('\[([^\]]+)\]', lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue A : Optional[int] =_re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 A : str ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. A : Optional[int] =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : str =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): A : Optional[Any] =lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' ) A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' ) A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 A : Optional[Any] =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A : Optional[Any] =[] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): A : Any =lines[line_index] A : Optional[int] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 A : Optional[Any] ={'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. A : str =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : Optional[Any] =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): A : Any =lines[line_index] A : Any =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 A : Dict =objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowercase: Any, lowercase: int ) -> Dict: def find_duplicates(lowercase: List[str] ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A : List[Any] =[] for key in import_dict_objects.keys(): A : List[Any] =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) A : Tuple =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A : Tuple ='base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A__ ( ) -> List[str]: A : Dict =[] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: A : Any =os.path.join(lowercase, '__init__.py' ) A : Union[str, Any] =parse_init(lowercase ) if objects is not None: A : str =analyze_results(*lowercase ) if len(lowercase ) > 0: A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowercase ) ) if len(lowercase ) > 0: raise ValueError('\n\n'.join(lowercase ) ) def A__ ( ) -> int: A : List[str] =[] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0: continue A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) ) A : List[str] =short_path.replace(os.path.sep, '.' ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) ) A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase ) return submodules _lowercase : Tuple =[ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def A__ ( ) -> Tuple: # This is to make sure the transformers module imported is the one in the repo. A : str =importlib.util.spec_from_file_location( 'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : Any =spec.loader.load_module() A : Any =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase ) > 0: A : Dict ='\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
661
1
from __future__ import annotations import numpy as np def A__ ( lowercase: list[float] ) -> Tuple: return np.maximum(0, lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
661
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowercase : Any =logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} ) lowercase : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) lowercase : Optional[str] = field( default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
661
1
from __future__ import annotations import os from collections.abc import Mapping _lowercase : str =tuple[int, int] class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : set[int] , SCREAMING_SNAKE_CASE__ : Mapping[EdgeT, int] ) -> None: A : set[int] =vertices A : dict[EdgeT, int] ={ (min(SCREAMING_SNAKE_CASE__ ), max(SCREAMING_SNAKE_CASE__ )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : EdgeT , SCREAMING_SNAKE_CASE__ : int ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) A : Dict =weight def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Graph: A : Graph =Graph({min(self.vertices )} , {} ) A : EdgeT A : int A : EdgeT A : int while len(subgraph.vertices ) < len(self.vertices ): A : List[Any] =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: A : Dict =edge A : str =weight subgraph.add_edge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return subgraph def A__ ( lowercase: str = "p107_network.txt" ) -> int: A : str =os.path.abspath(os.path.dirname(lowercase ) ) A : str =os.path.join(lowercase, lowercase ) A : dict[EdgeT, int] ={} A : list[str] A : int A : int with open(lowercase ) as f: A : Dict =f.read().strip().split('\n' ) A : int =[line.split(',' ) for line in data] for edgea in range(1, len(lowercase ) ): for edgea in range(lowercase ): if adjaceny_matrix[edgea][edgea] != "-": A : Dict =int(adjaceny_matrix[edgea][edgea] ) A : Graph =Graph(set(range(len(lowercase ) ) ), lowercase ) A : Graph =graph.prims_algorithm() A : int =sum(graph.edges.values() ) A : int =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
661
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : int =2 class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]: A , A , A , A : Optional[Any] =bos, unk, pad, eos A : Dict =[] A : Union[str, Any] =[] A : Any ={} A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =len(self.symbols ) def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.indices == other.indices def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: A : Union[str, Any] =cls() d.add_from_file(SCREAMING_SNAKE_CASE__ ) return d def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: if word in self.indices and not overwrite: A : int =self.indices[word] A : Union[str, Any] =self.count[idx] + n return idx else: A : Tuple =len(self.symbols ) A : str =idx self.symbols.append(SCREAMING_SNAKE_CASE__ ) self.count.append(SCREAMING_SNAKE_CASE__ ) return idx def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) ) return A : str =f.readlines() A : int =self._load_meta(SCREAMING_SNAKE_CASE__ ) for line in lines[indices_start_line:]: try: A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A : int =True A , A : Optional[Any] =line.rsplit(' ' , 1 ) else: A : Any =False A : Tuple =int(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) ) self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A__ ( lowercase: Union[str, Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() ) A : int ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : List[Any] =d[k] # restore return da def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str: # prep if not os.path.exists(lowercase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase, exist_ok=lowercase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[str] =os.path.join(lowercase, 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Optional[Any] =torch.load(lowercase, map_location='cpu' ) A : Any =chkpt['cfg']['model'] # dicts A : Any =os.path.join(lowercase, 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Dict =Dictionary.load(lowercase ) A : Optional[Any] =rewrite_dict_keys(src_dict.indices ) A : Tuple =len(lowercase ) A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) A : List[str] =os.path.join(lowercase, 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase, lowercase ) # model config A : Tuple =os.path.join(lowercase, 'config.json' ) A : Tuple ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config A : int =os.path.join(lowercase, lowercase ) A : List[str] ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model A : List[Any] =chkpt['model'] # remove unneeded keys A : List[Any] =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) A : str =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A : Union[str, Any] =model_state_dict.pop(lowercase ) else: A : List[str] =model_state_dict.pop(lowercase ) A : Any =BioGptConfig.from_pretrained(lowercase ) A : str =BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save A : Tuple =os.path.join(lowercase, lowercase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase, lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[Any] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
661
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase : Dict =True except ImportError: _lowercase : Union[str, Any] =False _lowercase : Any =logging.get_logger(__name__) # pylint: disable=invalid-name def A__ ( lowercase: Namespace ) -> Optional[Any]: return AddNewModelCommand(args.testing, args.testing_file, path=args.path ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Optional[int]: A : Tuple =parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' , action='store_true' , help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' , type=SCREAMING_SNAKE_CASE__ , help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' , type=SCREAMING_SNAKE_CASE__ , help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=None , *SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]: A : Union[str, Any] =testing A : str =testing_file A : List[Any] =path def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A : List[str] =[directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A : Optional[int] =( Path(SCREAMING_SNAKE_CASE__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A : int =path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(SCREAMING_SNAKE_CASE__ ) ) else: with open(self._testing_file , 'r' ) as configuration_file: A : List[str] =json.load(SCREAMING_SNAKE_CASE__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=SCREAMING_SNAKE_CASE__ , extra_context=SCREAMING_SNAKE_CASE__ , ) A : Optional[Any] =[directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' , 'r' ) as configuration_file: A : Union[str, Any] =json.load(SCREAMING_SNAKE_CASE__ ) A : List[str] =configuration['lowercase_modelname'] A : Tuple =configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f'{directory}/configuration.json' ) A : Union[str, Any] ='PyTorch' in generate_tensorflow_pytorch_and_flax A : List[Any] ='TensorFlow' in generate_tensorflow_pytorch_and_flax A : str ='Flax' in generate_tensorflow_pytorch_and_flax A : Tuple =f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=SCREAMING_SNAKE_CASE__ ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , 'w' ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: A : Union[str, Any] =f.readlines() with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(SCREAMING_SNAKE_CASE__ ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): # Create temp file A , A : Optional[int] =mkstemp() A : Union[str, Any] =False with fdopen(SCREAMING_SNAKE_CASE__ , 'w' ) as new_file: with open(SCREAMING_SNAKE_CASE__ ) as old_file: for line in old_file: new_file.write(SCREAMING_SNAKE_CASE__ ) if line_to_copy_below in line: A : List[Any] =True for line_to_copy in lines_to_copy: new_file.write(SCREAMING_SNAKE_CASE__ ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Remove original file remove(SCREAMING_SNAKE_CASE__ ) # Move new file move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def skip_units(SCREAMING_SNAKE_CASE__ : Any ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(SCREAMING_SNAKE_CASE__ : Tuple ): with open(SCREAMING_SNAKE_CASE__ ) as datafile: A : Any =[] A : Tuple =False A : int =False for line in datafile: if "# To replace in: " in line and "##" not in line: A : List[str] =line.split('"' )[1] A : Union[str, Any] =skip_units(SCREAMING_SNAKE_CASE__ ) elif "# Below: " in line and "##" not in line: A : Dict =line.split('"' )[1] A : str =skip_units(SCREAMING_SNAKE_CASE__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Any =[] elif "# Replace with" in line and "##" not in line: A : Optional[int] =[] elif "##" not in line: lines_to_copy.append(SCREAMING_SNAKE_CASE__ ) remove(SCREAMING_SNAKE_CASE__ ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(SCREAMING_SNAKE_CASE__ )
661
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters _lowercase : str =False _lowercase : Optional[Any] =False def A__ ( lowercase: Namespace ) -> Optional[int]: return TrainCommand(lowercase ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict: A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]: A : Optional[int] =logging.get_logger('transformers-cli/training' ) A : Dict ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =args.output A : List[str] =args.column_label A : int =args.column_text A : Union[str, Any] =args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) A : Tuple =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Dict =None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) A : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Optional[Any] =args.validation_split A : str =args.train_batch_size A : Any =args.valid_batch_size A : Dict =args.learning_rate A : List[str] =args.adam_epsilon def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]: raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
661
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Any ={ '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] =[ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _lowercase : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} A : Union[str, Any] =parent A : Union[str, Any] =batch_size A : Union[str, Any] =num_channels A : int =min_resolution A : List[Any] =max_resolution A : Dict =do_resize A : Tuple =size A : List[str] =do_normalize A : List[Any] =image_mean A : Dict =image_std A : Any =do_rescale A : List[str] =rescale_factor A : Optional[Any] =do_pad def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict: if not batched: A : Any =image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ): A , A : Union[str, Any] =image.size else: A , A : Tuple =image.shape[1], image.shape[2] if w < h: A : Any =int(self.size['shortest_edge'] * h / w ) A : Any =self.size['shortest_edge'] elif w > h: A : Dict =self.size['shortest_edge'] A : Dict =int(self.size['shortest_edge'] * w / h ) else: A : List[str] =self.size['shortest_edge'] A : Dict =self.size['shortest_edge'] else: A : List[Any] =[] for image in image_inputs: A , A : int =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0] A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: A : str =ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: A : Tuple =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: A : int =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) A : str =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: # Initialize image_processing A : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing A : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]: # prepare image and target A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: A : List[Any] =json.loads(f.read() ) A : Any ={'image_id': 3_97_69, 'annotations': target} # encode them A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # verify pixel values A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ ) A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) # verify area A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes A : str =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # verify image_id A : Dict =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) ) # verify orig_size A : List[Any] =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) ) # verify size A : int =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: # prepare image, target and masks_path A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: A : Optional[int] =json.loads(f.read() ) A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' ) A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # verify pixel values A : Dict =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ ) A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) # verify area A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes A : List[Any] =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ ) A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # verify image_id A : List[Any] =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd A : Any =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels A : str =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) ) # verify masks A : int =82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ ) # verify orig_size A : Any =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) ) # verify size A : str =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
661
1
import collections import importlib.util import os import re from pathlib import Path _lowercase : List[str] ='''src/transformers''' # Matches is_xxx_available() _lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowercase : Optional[Any] =re.compile(R'''^\s*try:''') # Catches a line with else: _lowercase : List[Any] =re.compile(R'''^\s*else:''') def A__ ( lowercase: Dict ) -> int: if _re_test_backend.search(lowercase ) is None: return None A : Any =[b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def A__ ( lowercase: Any ) -> List[Any]: with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f: A : Optional[Any] =f.readlines() A : Dict =0 while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure A : Optional[int] =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: A : int =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): A : int =_re_one_line_import_struct.search(lowercase ).groups()[0] A : int =re.findall('\[([^\]]+)\]', lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue A : Optional[int] =_re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 A : str ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. A : Optional[int] =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : str =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): A : Optional[Any] =lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' ) A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' ) A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 A : Optional[Any] =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A : Optional[Any] =[] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): A : Any =lines[line_index] A : Optional[int] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 A : Optional[Any] ={'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. A : str =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : Optional[Any] =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): A : Any =lines[line_index] A : Any =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 A : Dict =objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowercase: Any, lowercase: int ) -> Dict: def find_duplicates(lowercase: List[str] ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A : List[Any] =[] for key in import_dict_objects.keys(): A : List[Any] =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) A : Tuple =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A : Tuple ='base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A__ ( ) -> List[str]: A : Dict =[] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: A : Any =os.path.join(lowercase, '__init__.py' ) A : Union[str, Any] =parse_init(lowercase ) if objects is not None: A : str =analyze_results(*lowercase ) if len(lowercase ) > 0: A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowercase ) ) if len(lowercase ) > 0: raise ValueError('\n\n'.join(lowercase ) ) def A__ ( ) -> int: A : List[str] =[] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0: continue A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) ) A : List[str] =short_path.replace(os.path.sep, '.' ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) ) A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase ) return submodules _lowercase : Tuple =[ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def A__ ( ) -> Tuple: # This is to make sure the transformers module imported is the one in the repo. A : str =importlib.util.spec_from_file_location( 'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : Any =spec.loader.load_module() A : Any =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase ) > 0: A : Dict ='\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
661
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : List[Any] =1_6 _lowercase : Union[str, Any] =3_2 def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]: A : List[Any] =AutoTokenizer.from_pretrained(lowercase ) A : Any =load_dataset('glue', 'mrpc' ) def tokenize_function(lowercase: Any ): # max_length=None => use the model max length (it's actually the default) A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A : Any =datasets.map( lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : Dict =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowercase: Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' ) return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' ) # Instantiate dataloaders. A : Union[str, Any] =DataLoader( tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) A : str =DataLoader( tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple: model.eval() A : Tuple =0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A : Tuple =model(**lowercase ) A : Tuple =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A , A : Union[str, Any] =accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase ) - 1: A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen] A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase, references=lowercase, ) A : Union[str, Any] =metric.compute() return eval_metric["accuracy"] def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]: # Initialize accelerator A : Optional[int] =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : int =config['lr'] A : Optional[Any] =int(config['num_epochs'] ) A : Union[str, Any] =int(config['seed'] ) A : List[str] =int(config['batch_size'] ) A : Optional[Any] =args.model_name_or_path set_seed(lowercase ) A , A : str =get_dataloaders(lowercase, lowercase, lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase ) # Instantiate optimizer A : Any =( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A : Dict =1 A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A : List[Any] =get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, ) else: A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A : Optional[int] =accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # We need to keep track of how many total steps we have iterated over A : Tuple =0 # We also need to keep track of the stating epoch so files are named properly A : List[str] =0 A : Tuple =evaluate.load('glue', 'mrpc' ) A : Optional[int] =num_epochs if args.partial_train_epoch is not None: A : Dict =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1] A : List[Any] ='' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A : Union[str, Any] =int(lowercase ) + 1 A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase ) accelerator.print('resumed checkpoint performance:', lowercase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f: A : Union[str, Any] =json.load(lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A : str ={} for epoch in range(lowercase, lowercase ): model.train() for step, batch in enumerate(lowercase ): A : Tuple =model(**lowercase ) A : List[Any] =outputs.loss A : Any =loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A : Union[str, Any] =F'epoch_{epoch}' A : Optional[Any] =os.path.join(args.output_dir, lowercase ) accelerator.save_state(lowercase ) A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase ) A : Dict =accuracy A : Optional[Any] =lr_scheduler.get_lr()[0] A : Any =optimizer.param_groups[0]['lr'] A : str =epoch A : Dict =overall_step accelerator.print(F'epoch {epoch}:', lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f: json.dump(lowercase, lowercase ) def A__ ( ) -> Optional[int]: A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, ) parser.add_argument( '--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', ) parser.add_argument( '--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', ) parser.add_argument( '--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', ) parser.add_argument( '--num_epochs', type=lowercase, default=2, help='Number of train epochs.', ) A : str =parser.parse_args() A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
661
1
from __future__ import annotations import math def A__ ( lowercase: int, lowercase: int, lowercase: bool, lowercase: list[int], lowercase: float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(lowercase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, lowercase, lowercase, lowercase ), minimax(depth + 1, node_index * 2 + 1, lowercase, lowercase, lowercase ), ) return min( minimax(depth + 1, node_index * 2, lowercase, lowercase, lowercase ), minimax(depth + 1, node_index * 2 + 1, lowercase, lowercase, lowercase ), ) def A__ ( ) -> None: A : List[str] =[90, 23, 6, 33, 21, 65, 123, 34_423] A : List[str] =math.log(len(lowercase ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, lowercase, lowercase, lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
661
def A__ ( lowercase: int ) -> int: if not isinstance(lowercase, lowercase ) or number < 0: raise ValueError('Input must be a non-negative integer' ) A : Any =0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
661
1
import torch from torch import nn class SCREAMING_SNAKE_CASE_ ( nn.Module ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> List[Any]: super().__init__() A : Tuple =n_token A : Any =d_embed A : Dict =d_proj A : List[Any] =cutoffs + [n_token] A : str =[0] + self.cutoffs A : int =div_val A : Optional[int] =self.cutoffs[0] A : Any =len(self.cutoffs ) - 1 A : Optional[int] =self.shortlist_size + self.n_clusters if self.n_clusters > 0: A : Any =nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) A : Dict =nn.Parameter(torch.zeros(self.n_clusters ) ) A : Any =nn.ModuleList() A : str =nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) else: self.out_projs.append(SCREAMING_SNAKE_CASE__ ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) else: for i in range(len(self.cutoffs ) ): A , A : str =self.cutoff_ends[i], self.cutoff_ends[i + 1] A : List[str] =d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE__ , r_idx - l_idx ) ) A : List[Any] =keep_order def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: if proj is None: A : int =nn.functional.linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: A : Tuple =nn.functional.linear(SCREAMING_SNAKE_CASE__ , proj.t().contiguous() ) A : Any =nn.functional.linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Union[str, Any]: if labels is not None: # Shift so that tokens < n predict n A : Tuple =hidden[..., :-1, :].contiguous() A : Dict =labels[..., 1:].contiguous() A : Optional[int] =hidden.view(-1 , hidden.size(-1 ) ) A : List[Any] =labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: A : Dict =hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: A : Optional[Any] =self._compute_logit(SCREAMING_SNAKE_CASE__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: A : Any =labels != -1_00 A : Union[str, Any] =torch.zeros_like(SCREAMING_SNAKE_CASE__ , dtype=hidden.dtype , device=hidden.device ) A : Tuple =( -nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: A : Any =nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 ) else: # construct weights and biases A , A : Optional[Any] =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A , A : Optional[int] =self.cutoff_ends[i], self.cutoff_ends[i + 1] A : List[Any] =self.out_layers[0].weight[l_idx:r_idx] A : Optional[Any] =self.out_layers[0].bias[l_idx:r_idx] else: A : str =self.out_layers[i].weight A : List[Any] =self.out_layers[i].bias if i == 0: A : List[Any] =torch.cat([weight_i, self.cluster_weight] , dim=0 ) A : List[str] =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE__ ) biases.append(SCREAMING_SNAKE_CASE__ ) A , A , A : Any =weights[0], biases[0], self.out_projs[0] A : int =self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : List[Any] =nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) if labels is None: A : List[str] =hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: A : Tuple =torch.zeros_like(SCREAMING_SNAKE_CASE__ , dtype=hidden.dtype , device=hidden.device ) A : Optional[int] =0 A : List[str] =[0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): A , A : int =cutoff_values[i], cutoff_values[i + 1] if labels is not None: A : List[Any] =(labels >= l_idx) & (labels < r_idx) A : Any =mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue A : List[str] =labels.index_select(0 , SCREAMING_SNAKE_CASE__ ) - l_idx A : Optional[Any] =head_logprob.index_select(0 , SCREAMING_SNAKE_CASE__ ) A : Dict =hidden.index_select(0 , SCREAMING_SNAKE_CASE__ ) else: A : Optional[int] =hidden if i == 0: if labels is not None: A : Dict =head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: A : Dict =head_logprob[:, : self.cutoffs[0]] else: A , A , A : int =weights[i], biases[i], self.out_projs[i] A : Tuple =self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : int =nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) A : Any =self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: A : Tuple =head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: A : Dict =head_logprob[:, cluster_prob_idx, None] + tail_logprob_i A : Tuple =logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , SCREAMING_SNAKE_CASE__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if self.n_clusters == 0: A : str =self._compute_logit(SCREAMING_SNAKE_CASE__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 ) else: # construct weights and biases A , A : str =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: A , A : Tuple =self.cutoff_ends[i], self.cutoff_ends[i + 1] A : Tuple =self.out_layers[0].weight[l_idx:r_idx] A : Optional[Any] =self.out_layers[0].bias[l_idx:r_idx] else: A : Optional[Any] =self.out_layers[i].weight A : Any =self.out_layers[i].bias if i == 0: A : Tuple =torch.cat([weight_i, self.cluster_weight] , dim=0 ) A : List[Any] =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE__ ) biases.append(SCREAMING_SNAKE_CASE__ ) A , A , A : Optional[Any] =weights[0], biases[0], self.out_projs[0] A : Optional[int] =self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =hidden.new_empty((head_logit.size(0 ), self.n_token) ) A : Union[str, Any] =nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) A : str =[0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): A , A : Any =cutoff_values[i], cutoff_values[i + 1] if i == 0: A : int =head_logprob[:, : self.cutoffs[0]] else: A , A , A : Optional[int] =weights[i], biases[i], self.out_projs[i] A : List[str] =self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : List[str] =nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) A : Optional[int] =head_logprob[:, -i] + tail_logprob_i A : Optional[Any] =logprob_i return out
661
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]: from .. import __version__ A : Optional[Any] =take_from A : Union[str, Any] =() if not isinstance(args[0], lowercase ): A : List[str] =(args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) A : Tuple =None if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase ),) A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(lowercase, lowercase ): values += (getattr(lowercase, lowercase ),) A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: A : List[Any] =warning + ' ' if standard_warn else '' warnings.warn(warning + message, lowercase, stacklevel=lowercase ) if isinstance(lowercase, lowercase ) and len(lowercase ) > 0: A : Any =inspect.getouterframes(inspect.currentframe() )[1] A : int =call_frame.filename A : int =call_frame.lineno A : Optional[int] =call_frame.function A , A : int =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(lowercase ) == 0: return elif len(lowercase ) == 1: return values[0] return values
661
1
import math def A__ ( lowercase: int ) -> str: A : Optional[Any] =0 A : str =0 while num > 0: A : Dict =num % 8 A : Union[str, Any] =octal + (remainder * math.floor(math.pow(10, lowercase ) )) counter += 1 A : List[Any] =math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(lowercase )}' def A__ ( ) -> None: print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
661
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( lowercase: int, lowercase: str ) -> Dict: assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str: A : Any =tmp_path / 'cache' A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read() _check_json_dataset(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ], ) def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple: A : Tuple =tmp_path / 'cache' A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : Optional[Any] =features.copy() if features else default_expected_features A : Union[str, Any] =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() _check_json_dataset(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ], ) def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]: A : int =tmp_path / 'cache' A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} A : int =features.copy() if features else default_expected_features A : str =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} A : Dict =features.copy() A : List[str] =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : int =tmp_path / 'cache' A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]: A : Optional[int] =tmp_path / 'cache' A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read() _check_json_dataset(lowercase, lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]: if issubclass(lowercase, lowercase ): A : int =jsonl_path elif issubclass(lowercase, lowercase ): A : Any =[jsonl_path] A : Optional[Any] =tmp_path / 'cache' A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read() _check_json_dataset(lowercase, lowercase ) def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple: assert isinstance(lowercase, lowercase ) for split in splits: A : List[str] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str: A : List[str] =tmp_path / 'cache' A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read() _check_json_datasetdict(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ], ) def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple: A : Any =tmp_path / 'cache' A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : str =features.copy() if features else default_expected_features A : Dict =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read() _check_json_datasetdict(lowercase, lowercase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple: if split: A : Optional[int] ={split: jsonl_path} else: A : Dict ='train' A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path} A : Tuple =tmp_path / 'cache' A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read() _check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( lowercase: List[Any] ) -> Tuple: return json.load(lowercase ) def A__ ( lowercase: List[Any] ) -> Tuple: return [json.loads(lowercase ) for line in buffer] class SCREAMING_SNAKE_CASE_ : '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) A : int =load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) A : Any =load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) A : int =load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE__ ) == 10 def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}' A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' ) JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: A : str =f.read() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: A : List[str] =f.read() assert exported_content == original_content
661
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowercase : Optional[int] ={ '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict =[ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[int] = DDIMPipeline lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowercase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: torch.manual_seed(0 ) A : str =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) A : Optional[int] =DDIMScheduler() A : Optional[Any] ={'unet': unet, 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) A : Optional[int] ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: A : Union[str, Any] ='cpu' A : Tuple =self.get_dummy_components() A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images A : Optional[Any] =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A : Optional[Any] =np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) A : str =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Any ='google/ddpm-cifar10-32' A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =DDIMScheduler() A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) ddim.to(SCREAMING_SNAKE_CASE__ ) ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Dict =torch.manual_seed(0 ) A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images A : str =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: A : Optional[int] ='google/ddpm-ema-bedroom-256' A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) ddpm.to(SCREAMING_SNAKE_CASE__ ) ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Any =torch.manual_seed(0 ) A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images A : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
661
1
import math def A__ ( lowercase: int ) -> bool: assert isinstance(lowercase, lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False A : Optional[int] =range(3, int(math.sqrt(lowercase ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def A__ ( lowercase: List[Any], lowercase: List[str]=1, **lowercase: Tuple ) -> Dict: A : Dict =factor * value A : Any =value while not is_prime(lowercase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **lowercase ) return value
661
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: A : Dict =tempfile.mkdtemp() A : int =SamImageProcessor() A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: A : Optional[Any] =self.get_image_processor() A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Dict =self.prepare_image_inputs() A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any: A : str =self.get_image_processor() A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : str =[torch.ones((1, 3, 5, 5) )] A : Optional[Any] =[[17_64, 26_46]] A : List[Any] =[[6_83, 10_24]] A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A : str =[np.ones((1, 3, 5, 5) )] A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =[[1, 0], [0, 1]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: A : Tuple =tempfile.mkdtemp() A : Union[str, Any] =SamImageProcessor() A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: A : Any =self.get_image_processor() A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : int =self.prepare_image_inputs() A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: A : int =self.get_image_processor() A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =[tf.ones((1, 3, 5, 5) )] A : Tuple =[[17_64, 26_46]] A : Union[str, Any] =[[6_83, 10_24]] A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : List[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A : Any =[np.ones((1, 3, 5, 5) )] A : Optional[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =[[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A : List[str] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: A : Optional[int] =tempfile.mkdtemp() A : Union[str, Any] =SamImageProcessor() A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: A : Optional[Any] =self.get_image_processor() A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )] A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )] A : int =[[17_64, 26_46]] A : int =[[6_83, 10_24]] A : Dict =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) A : Optional[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: A : Union[str, Any] =self.get_image_processor() A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : int =self.prepare_image_inputs() A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
661
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Any ={ '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =[ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _lowercase : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def A__ ( lowercase: Optional[int] ) -> Optional[int]: A : str =test_results.split(' ' ) A : List[str] =0 A : Tuple =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( lowercase: List[Any] ) -> str: A : Union[str, Any] ={} A : Optional[Any] =None A : Union[str, Any] =False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]', lowercase ): A : List[Any] =True A : Any =line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): A : Dict =line A : List[str] =False return failures class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: A : Tuple =title A : Dict =doc_test_results['time_spent'].split(',' )[0] A : Union[str, Any] =doc_test_results['success'] A : Any =doc_test_results['failures'] A : Optional[Any] =self.n_success + self.n_failures # Failures and success of the modeling tests A : Union[str, Any] =doc_test_results @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str: A : Any =[self._time_spent] A : List[str] =0 for time in time_spent: A : List[Any] =time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: A : List[str] =[0, 0, time_parts[0]] A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Tuple =40 A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} A : Any ='' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: A : Optional[int] =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: A : Tuple =[ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' A : Dict =client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: A : List[str] ='' for key, value in failures.items(): A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += f'*{key}*\n_{value}_\n\n' A : Union[str, Any] =job_name A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: A : int ={ 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) A : Union[str, Any] =self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): A : Any =f'*Num failures* :{len(job_result["failed"] )} \n' A : List[Any] =job_result['failures'] A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def A__ ( ) -> Union[str, Any]: A : Any =os.environ['GITHUB_RUN_ID'] A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' A : Union[str, Any] =requests.get(lowercase ).json() A : List[Any] ={} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) A : List[str] =math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowercase ): A : List[str] =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.', lowercase ) return {} def A__ ( lowercase: str ) -> Optional[Any]: A : Any ={} if os.path.exists(lowercase ): A : List[Any] =os.listdir(lowercase ) for file in files: try: with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f: A : Optional[int] =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e return _artifact def A__ ( ) -> int: class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: A : Dict =name A : Dict =[] def __str__( self : Optional[Any] ) -> List[str]: return self.name def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.paths.append({'name': self.name, 'path': path} ) A : Dict[str, Artifact] ={} A : str =filter(os.path.isdir, os.listdir() ) for directory in directories: A : Tuple =directory if artifact_name not in _available_artifacts: A : int =Artifact(lowercase ) _available_artifacts[artifact_name].add_path(lowercase ) return _available_artifacts if __name__ == "__main__": _lowercase : Optional[int] =get_job_links() _lowercase : str =retrieve_available_artifacts() _lowercase : List[Any] =collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _lowercase : Optional[Any] ={ v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _lowercase : List[Any] =github_actions_job_links.get('''run_doctests''') _lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _lowercase : Dict =retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats''']) _lowercase : Any =failed _lowercase : Union[str, Any] =success _lowercase : str =time_spent[1:-1] + ''', ''' _lowercase : Any =extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _lowercase : Tuple =line.replace('''FAILED ''', '''''') _lowercase : int =line.split()[0].replace('''\n''', '''''') if "::" in line: _lowercase , _lowercase : str =line.split('''::''') else: _lowercase , _lowercase : Union[str, Any] =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _lowercase : Any =docs[file_regex] doc_test_results[category]["failed"].append(test) _lowercase : Any =all_failures[test] if test in all_failures else '''N/A''' _lowercase : Tuple =failure break _lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
661
1
def A__ ( lowercase: float, lowercase: float ) -> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
661
_lowercase : Dict ='''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
661
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : Any=7 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=36 , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : int=37 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : str=16 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : List[str]=0.0_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=6 , SCREAMING_SNAKE_CASE__ : Any=6 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=10_00 , ) -> Optional[Any]: A : List[str] =parent A : List[Any] =batch_size A : int =num_channels A : str =image_size A : str =patch_size A : str =text_seq_length A : Tuple =is_training A : List[str] =use_input_mask A : Any =use_token_type_ids A : Any =use_labels A : Optional[int] =vocab_size A : Any =hidden_size A : Union[str, Any] =num_hidden_layers A : Optional[Any] =num_attention_heads A : Tuple =intermediate_size A : int =hidden_act A : Any =hidden_dropout_prob A : Any =attention_probs_dropout_prob A : Tuple =max_position_embeddings A : int =type_vocab_size A : Any =type_sequence_label_size A : Any =initializer_range A : str =coordinate_size A : Tuple =shape_size A : int =num_labels A : Tuple =num_choices A : str =scope A : Optional[int] =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A : str =text_seq_length A : Optional[int] =(image_size // patch_size) ** 2 + 1 A : List[str] =self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]: A : Tuple =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A : int =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A : List[Any] =bbox[i, j, 3] A : List[str] =bbox[i, j, 1] A : List[str] =t if bbox[i, j, 2] < bbox[i, j, 0]: A : Optional[Any] =bbox[i, j, 2] A : Optional[int] =bbox[i, j, 0] A : Dict =t A : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Tuple =None if self.use_input_mask: A : str =random_attention_mask([self.batch_size, self.text_seq_length] ) A : List[str] =None if self.use_token_type_ids: A : Tuple =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A : List[Any] =None A : Optional[int] =None if self.use_labels: A : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Optional[int] =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A : Any =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> int: A : Union[str, Any] =LayoutLMvaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() # text + image A : int =model(SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) A : List[Any] =model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A : Dict =model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A : List[str] =model(pixel_values=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: A : Union[str, Any] =self.num_labels A : Optional[int] =LayoutLMvaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Optional[int] =model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[Any]: A : Optional[Any] =self.num_labels A : Dict =LayoutLMvaForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Tuple =model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: A : List[str] =LayoutLMvaForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : str =model( SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple: A : Tuple =self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : Any =config_and_inputs A : Tuple ={ 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Dict = False lowercase : str = False lowercase : Optional[int] = False lowercase : Optional[int] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase : Optional[int] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]: A : Any =LayoutLMvaModelTester(self ) A : Optional[Any] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> str: A : List[str] =copy.deepcopy(SCREAMING_SNAKE_CASE__ ) if model_class in get_values(SCREAMING_SNAKE_CASE__ ): A : Any ={ k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE__ ): A : int =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) elif model_class in get_values(SCREAMING_SNAKE_CASE__ ): A : Optional[int] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) A : Tuple =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) elif model_class in [ *get_values(SCREAMING_SNAKE_CASE__ ), ]: A : List[Any] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) elif model_class in [ *get_values(SCREAMING_SNAKE_CASE__ ), ]: A : List[str] =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ , ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]: A : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[Any]: A : Optional[Any] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A : int =type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> str: A : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str: A : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: A : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Tuple =LayoutLMvaModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def A__ ( ) -> List[str]: A : int =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: return LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE__ ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: A : List[str] =LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(SCREAMING_SNAKE_CASE__ ) A : str =self.default_image_processor A : Union[str, Any] =prepare_img() A : List[str] =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values.to(SCREAMING_SNAKE_CASE__ ) A : int =torch.tensor([[1, 2]] ) A : int =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass A : int =model( input_ids=input_ids.to(SCREAMING_SNAKE_CASE__ ) , bbox=bbox.to(SCREAMING_SNAKE_CASE__ ) , pixel_values=pixel_values.to(SCREAMING_SNAKE_CASE__ ) , ) # verify the logits A : int =torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) A : int =torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
661
from typing import List from .keymap import KEYMAP, get_character def A__ ( lowercase: str ) -> List[str]: def decorator(lowercase: int ): A : Tuple =getattr(lowercase, 'handle_key', [] ) handle += [key] setattr(lowercase, 'handle_key', lowercase ) return func return decorator def A__ ( *lowercase: List[str] ) -> Dict: def decorator(lowercase: Union[str, Any] ): A : Optional[int] =getattr(lowercase, 'handle_key', [] ) handle += keys setattr(lowercase, 'handle_key', lowercase ) return func return decorator class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ): setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} ) setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] ) for key in handled_keys: A : str =value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any: A : str =get_character() if char != KEYMAP["undefined"]: A : List[str] =ord(SCREAMING_SNAKE_CASE__ ) A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ ) if handler: A : List[str] =char return handler(cls ) else: return None def A__ ( cls: Optional[int] ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
661
1
_lowercase : List[Any] ={ '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
661
import math def A__ ( lowercase: int ) -> list: A : Optional[Any] =[True] * n A : Tuple =False A : List[Any] =False A : Dict =True for i in range(3, int(n**0.5 + 1 ), 2 ): A : Dict =i * 2 while index < n: A : Dict =False A : Dict =index + i A : Tuple =[2] for i in range(3, lowercase, 2 ): if is_prime[i]: primes.append(lowercase ) return primes def A__ ( lowercase: int = 999_966_663_333 ) -> int: A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100 A : Optional[int] =prime_sieve(lowercase ) A : Optional[Any] =0 A : List[Any] =0 A : Union[str, Any] =primes[prime_index] while (last_prime**2) <= limit: A : Tuple =primes[prime_index + 1] A : Optional[int] =last_prime**2 A : Tuple =next_prime**2 # Get numbers divisible by lps(current) A : int =lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A : List[Any] =upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A : Any =0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A : List[str] =next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
661
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Dict ={ '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "xglm" lowercase : Any = ["past_key_values"] lowercase : Dict = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: A : str =vocab_size A : Union[str, Any] =max_position_embeddings A : Optional[Any] =d_model A : Optional[int] =ffn_dim A : int =num_layers A : Any =attention_heads A : Dict =activation_function A : List[Any] =dropout A : str =attention_dropout A : List[Any] =activation_dropout A : List[Any] =layerdrop A : List[Any] =init_std A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True A : List[str] =use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
661
import heapq def A__ ( lowercase: dict ) -> set[int]: A : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] ) # chosen_vertices = set of chosen vertices A : Dict =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A : List[str] =heapq.heappop(lowercase )[1][0] chosen_vertices.add(lowercase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A : str =elem[1][1].index(lowercase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
661
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A__ ( lowercase: dict ) -> tuple: return (data["data"], data["target"]) def A__ ( lowercase: np.ndarray, lowercase: np.ndarray ) -> XGBClassifier: A : List[str] =XGBClassifier() classifier.fit(lowercase, lowercase ) return classifier def A__ ( ) -> None: A : Tuple =load_iris() A , A : List[str] =data_handling(lowercase ) A , A , A , A : List[Any] =train_test_split( lowercase, lowercase, test_size=0.25 ) A : List[str] =iris['target_names'] # Create an XGBoost Classifier from the training data A : List[Any] =xgboost(lowercase, lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase, lowercase, lowercase, display_labels=lowercase, cmap='Blues', normalize='true', ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
661
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowercase : List[Any] =logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: A : Tuple =feature_size A : int =sampling_rate A : List[str] =padding_value A : Tuple =kwargs.pop('padding_side' , 'right' ) A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ ) super().__init__(**SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): A : Tuple ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) A : Dict =processed_features[self.model_input_names[0]] A : int =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE__ ) == 0: if return_attention_mask: A : List[Any] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch A : List[str] =required_input[0] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. A : Any =0 while len(required_input[index] ) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE__ ): A : Dict =required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE__ ): A : List[Any] ='tf' elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): A : Optional[int] ='pt' elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ): A : Union[str, Any] ='np' else: raise ValueError( f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): A : int =to_numpy(SCREAMING_SNAKE_CASE__ ) else: A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value] # Convert padding_strategy in PaddingStrategy A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =processed_features[self.model_input_names[0]] A : List[str] =len(SCREAMING_SNAKE_CASE__ ) if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) A : Tuple =[] for i in range(SCREAMING_SNAKE_CASE__ ): A : int ={k: v[i] for k, v in processed_features.items()} # truncation A : List[Any] =self._truncate( SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , ) truncated_inputs.append(SCREAMING_SNAKE_CASE__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) A : Optional[Any] =PaddingStrategy.MAX_LENGTH A : List[Any] ={} for i in range(SCREAMING_SNAKE_CASE__ ): # padding A : Optional[Any] =self._pad( truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) for key, value in outputs.items(): if key not in batch_outputs: A : Dict =[] if value.dtype is np.dtype(np.floataa ): A : Tuple =value.astype(np.floataa ) batch_outputs[key].append(SCREAMING_SNAKE_CASE__ ) return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict: A : Optional[int] =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: A : List[str] =len(SCREAMING_SNAKE_CASE__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa ) if needs_to_be_padded: A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ ) if self.padding_side == "right": if return_attention_mask: A : Dict =np.pad( processed_features['attention_mask'] , (0, difference) ) A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) A : Tuple =np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: A : List[Any] =np.pad( processed_features['attention_mask'] , (difference, 0) ) A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) A : Tuple =np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) A : Tuple =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length if needs_to_be_truncated: A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: A : Dict =processed_features['attention_mask'][:max_length] return processed_features def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Optional[int] =padding else: A : List[str] =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
661
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=SCREAMING_SNAKE_CASE__ , ) assert hasattr(self , 'env' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: A : Optional[Any] =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings A : str ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=SCREAMING_SNAKE_CASE__ , instance_count=SCREAMING_SNAKE_CASE__ , instance_type=self.instance_type , debugger_hook_config=SCREAMING_SNAKE_CASE__ , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=SCREAMING_SNAKE_CASE__ , py_version='py36' , ) def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: TrainingJobAnalytics(SCREAMING_SNAKE_CASE__ ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: # create estimator A : Any =self.create_estimator(SCREAMING_SNAKE_CASE__ ) # run training estimator.fit() # result dataframe A : Union[str, Any] =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis A : Dict =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) A : str =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping A : str =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , SCREAMING_SNAKE_CASE__ )
661
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : List[str] ={ '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : int = "deberta-v2" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ ) A : Dict =hidden_size A : Optional[Any] =num_hidden_layers A : Optional[int] =num_attention_heads A : Optional[int] =intermediate_size A : Any =hidden_act A : Any =hidden_dropout_prob A : Union[str, Any] =attention_probs_dropout_prob A : Optional[Any] =max_position_embeddings A : Tuple =type_vocab_size A : Tuple =initializer_range A : int =relative_attention A : int =max_relative_positions A : Optional[Any] =pad_token_id A : Union[str, Any] =position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE__ ) == str: A : Any =[x.strip() for x in pos_att_type.lower().split('|' )] A : Any =pos_att_type A : Tuple =vocab_size A : Any =layer_norm_eps A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ ) A : str =pooler_dropout A : Any =pooler_hidden_act class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'} else: A : int ={0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> int: return 12 def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
661
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def A__ ( lowercase: Tuple ) -> Any: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def A__ ( ) -> List[str]: with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" A : List[str] =[1, 2, 3] with pytest.raises(lowercase ): with parallel_backend('unsupported backend' ): map_nested(lowercase, lowercase, num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend('unsupported backend' ): map_nested(lowercase, lowercase, num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc', [2, -1] ) def A__ ( lowercase: Optional[Any] ) -> Dict: A : List[Any] =[1, 2] A : str ={'a': 1, 'b': 2} A : str ={'a': [1, 2], 'b': [3, 4]} A : List[Any] ={'a': {'1': 1}, 'b': 2} A : List[str] ={'a': 1, 'b': 2, 'c': 3, 'd': 4} A : int =[2, 3] A : Optional[Any] ={'a': 2, 'b': 3} A : Any ={'a': [2, 3], 'b': [4, 5]} A : Optional[Any] ={'a': {'1': 2}, 'b': 3} A : Optional[Any] ={'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(lowercase, lowercase, num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase, lowercase, num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase, lowercase, num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase, lowercase, num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase, lowercase, num_proc=lowercase ) == expected_map_nested_sa
661
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]: super().__init__() A : str =prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' f' `n_embd`: {n_embd} are not equal.' ) A : List[Any] =prefix_inner_dim A : Dict =prefix_hidden_dim A : List[str] =( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Optional[int] =( nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) A : Dict =GPTaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , ) A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]: A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ ) A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device ) A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 ) A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor: return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: return self.encode_prefix(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 ) A : int =[] A : Optional[int] =[] for feature in features: A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature # Only support beam search for now A , A : Dict =self.generate_beam( input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) A : str =torch.stack(SCREAMING_SNAKE_CASE__ ) A : int =torch.stack(SCREAMING_SNAKE_CASE__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict: A : Dict =eos_token_id A : str =None A : List[Any] =None A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int ) A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool ) if input_embeds is not None: A : Any =input_embeds else: A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ ) A : str =outputs.logits A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0) A : List[str] =logits.softmax(-1 ).log() if scores is None: A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 ) A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] ) A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: A : Union[str, Any] =next_tokens else: A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] ) A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 ) else: A : Optional[Any] =-float(np.inf ) A : Tuple =0 A : Optional[Any] =scores[:, None] + logits seq_lengths[~is_stopped] += 1 A : int =scores_sum / seq_lengths[:, None] A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 ) A : Dict =next_tokens // scores_sum.shape[1] A : Optional[Any] =seq_lengths[next_tokens_source] A : Tuple =next_tokens % scores_sum.shape[1] A : Optional[Any] =next_tokens.unsqueeze(1 ) A : Optional[Any] =tokens[next_tokens_source] A : Any =torch.cat((tokens, next_tokens) , dim=1 ) A : List[str] =generated[next_tokens_source] A : List[Any] =scores_sum_average * seq_lengths A : Optional[Any] =is_stopped[next_tokens_source] A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) A : Any =torch.cat((generated, next_token_embed) , dim=1 ) A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze() if is_stopped.all(): break A : Optional[Any] =scores / seq_lengths A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ ) # tokens tensors are already padded to max_seq_length A : Optional[Any] =[tokens[i] for i in order] A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 ) A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
661
1
import logging import os from .state import PartialState class SCREAMING_SNAKE_CASE_ ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: A : Optional[int] =PartialState() return not main_process_only or (main_process_only and state.is_main_process) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) A : Union[str, Any] =kwargs.pop('main_process_only' , SCREAMING_SNAKE_CASE__ ) A : Optional[int] =kwargs.pop('in_order' , SCREAMING_SNAKE_CASE__ ) if self.isEnabledFor(SCREAMING_SNAKE_CASE__ ): if self._should_log(SCREAMING_SNAKE_CASE__ ): A , A : int =self.process(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.logger.log(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif in_order: A : Dict =PartialState() for i in range(state.num_processes ): if i == state.process_index: A , A : Tuple =self.process(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.logger.log(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) state.wait_for_everyone() def A__ ( lowercase: str, lowercase: str = None ) -> Dict: if log_level is None: A : Union[str, Any] =os.environ.get('ACCELERATE_LOG_LEVEL', lowercase ) A : List[Any] =logging.getLogger(lowercase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowercase, {} )
661
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[str] = XLMRobertaTokenizer lowercase : Dict = XLMRobertaTokenizerFast lowercase : str = True lowercase : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: A : List[str] ='<pad>' A : int =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: A : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : str =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=True A : Optional[int] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=False A : List[Any] =tempfile.mkdtemp() A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name ) A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ ) A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ ) pickle.loads(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: if not self.test_rust_tokenizer: return A : Union[str, Any] =self.get_tokenizer() A : int =self.get_rust_tokenizer() A : List[str] ='I was born in 92000, and this is falsé.' A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.get_rust_tokenizer() A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: A : Any ='Hello World!' A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: A : Any =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A : int =[ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: # fmt: off A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
661
1
from typing import Any def A__ ( lowercase: list ) -> list[Any]: if not input_list: return [] A : Optional[int] =[input_list.count(lowercase ) for value in input_list] A : Tuple =max(lowercase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
661
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Dict ={ '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = "xglm" lowercase : Any = ["past_key_values"] lowercase : Dict = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int: A : str =vocab_size A : Union[str, Any] =max_position_embeddings A : Optional[Any] =d_model A : Optional[int] =ffn_dim A : int =num_layers A : Any =attention_heads A : Dict =activation_function A : List[Any] =dropout A : str =attention_dropout A : List[Any] =activation_dropout A : List[Any] =layerdrop A : List[Any] =init_std A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True A : List[str] =use_cache super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
661
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : torch.FloatTensor class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[int] = (64,) , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "silu" , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : int = 2_56 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : float = 0.1_8_2_1_5 , SCREAMING_SNAKE_CASE__ : str = "group" , ) -> Tuple: super().__init__() # pass init params to Encoder A : Any =Encoder( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , down_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , double_z=SCREAMING_SNAKE_CASE__ , ) A : str =vq_embed_dim if vq_embed_dim is not None else latent_channels A : List[str] =nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) A : Tuple =VectorQuantizer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , beta=0.2_5 , remap=SCREAMING_SNAKE_CASE__ , sane_index_shape=SCREAMING_SNAKE_CASE__ ) A : Tuple =nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) # pass init params to Decoder A : Dict =Decoder( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , up_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , norm_type=SCREAMING_SNAKE_CASE__ , ) @apply_forward_hook def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> VQEncoderOutput: A : List[Any] =self.encoder(SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =self.quant_conv(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE__ ) @apply_forward_hook def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: A , A , A : Dict =self.quantize(SCREAMING_SNAKE_CASE__ ) else: A : Any =h A : List[str] =self.post_quant_conv(SCREAMING_SNAKE_CASE__ ) A : Any =self.decoder(SCREAMING_SNAKE_CASE__ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: A : Optional[Any] =sample A : List[Any] =self.encode(SCREAMING_SNAKE_CASE__ ).latents A : str =self.decode(SCREAMING_SNAKE_CASE__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ )
661
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def A__ ( ) -> List[Any]: A : Any =_ask_options( 'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A : Tuple =get_sagemaker_input() else: A : str =get_cluster_input() return config def A__ ( lowercase: int=None ) -> str: if subparsers is not None: A : List[str] =subparsers.add_parser('config', description=lowercase ) else: A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase ) parser.add_argument( '--config_file', default=lowercase, help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ), ) if subparsers is not None: parser.set_defaults(func=lowercase ) return parser def A__ ( lowercase: Tuple ) -> List[Any]: A : Union[str, Any] =get_user_input() if args.config_file is not None: A : Optional[Any] =args.config_file else: if not os.path.isdir(lowercase ): os.makedirs(lowercase ) A : Union[str, Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase ) else: config.to_yaml_file(lowercase ) print(F'accelerate configuration saved at {config_file}' ) def A__ ( ) -> Optional[int]: A : Any =config_command_parser() A : int =parser.parse_args() config_command(lowercase ) if __name__ == "__main__": main()
661
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]: A : Any =FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) A : Dict =AutoTokenizer.from_pretrained('google/mt5-small' ) A : str =tokenizer('Hello there' , return_tensors='np' ).input_ids A : Optional[Any] =tokenizer('Hi I am' , return_tensors='np' ).input_ids A : List[Any] =shift_tokens_right(SCREAMING_SNAKE_CASE__ , model.config.pad_token_id , model.config.decoder_start_token_id ) A : Optional[int] =model(SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ).logits A : str =optax.softmax_cross_entropy(SCREAMING_SNAKE_CASE__ , onehot(SCREAMING_SNAKE_CASE__ , logits.shape[-1] ) ).mean() A : str =-(labels.shape[-1] * loss.item()) A : List[Any] =-8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
661
import collections import importlib.util import os import re from pathlib import Path _lowercase : List[str] ='''src/transformers''' # Matches is_xxx_available() _lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _lowercase : Optional[Any] =re.compile(R'''^\s*try:''') # Catches a line with else: _lowercase : List[Any] =re.compile(R'''^\s*else:''') def A__ ( lowercase: Dict ) -> int: if _re_test_backend.search(lowercase ) is None: return None A : Any =[b[0] for b in _re_backend.findall(lowercase )] backends.sort() return "_and_".join(lowercase ) def A__ ( lowercase: Any ) -> List[Any]: with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f: A : Optional[Any] =f.readlines() A : Dict =0 while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase ): return None # First grab the objects without a specific backend in _import_structure A : Optional[int] =[] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: A : int =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase ): A : int =_re_one_line_import_struct.search(lowercase ).groups()[0] A : int =re.findall('\[([^\]]+)\]', lowercase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue A : Optional[int] =_re_import_struct_key_value.search(lowercase ) if single_line_import_search is not None: A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0] objects.extend(lowercase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 A : str ={'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. A : Optional[int] =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : str =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): A : Optional[Any] =lines[line_index] if _re_import_struct_add_one.search(lowercase ) is not None: objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase ) is not None: A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' ) A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_between_brackets.search(lowercase ) is not None: A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' ) A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0] objects.extend(lowercase ) elif _re_quote_object.search(lowercase ) is not None: objects.append(_re_quote_object.search(lowercase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 A : Optional[Any] =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A : Optional[Any] =[] while ( line_index < len(lowercase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): A : Any =lines[line_index] A : Optional[int] =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 A : Optional[Any] ={'none': objects} # Let's continue with backend-specific objects while line_index < len(lowercase ): # If the line is an if is_backend_available, we grab all objects associated. A : str =find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A : Optional[Any] =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A : List[str] =[] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): A : Any =lines[line_index] A : Any =_re_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 A : Dict =objects else: line_index += 1 return import_dict_objects, type_hint_objects def A__ ( lowercase: Any, lowercase: int ) -> Dict: def find_duplicates(lowercase: List[str] ): return [k for k, v in collections.Counter(lowercase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A : List[Any] =[] for key in import_dict_objects.keys(): A : List[Any] =find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) A : Tuple =find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A : Tuple ='base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def A__ ( ) -> List[str]: A : Dict =[] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: A : Any =os.path.join(lowercase, '__init__.py' ) A : Union[str, Any] =parse_init(lowercase ) if objects is not None: A : str =analyze_results(*lowercase ) if len(lowercase ) > 0: A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(lowercase ) ) if len(lowercase ) > 0: raise ValueError('\n\n'.join(lowercase ) ) def A__ ( ) -> int: A : List[str] =[] for path, directories, files in os.walk(lowercase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(lowercase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0: continue A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) ) A : List[str] =short_path.replace(os.path.sep, '.' ) submodules.append(lowercase ) for fname in files: if fname == "__init__.py": continue A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) ) A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(lowercase ) return submodules _lowercase : Tuple =[ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def A__ ( ) -> Tuple: # This is to make sure the transformers module imported is the one in the repo. A : str =importlib.util.spec_from_file_location( 'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : Any =spec.loader.load_module() A : Any =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(lowercase ) > 0: A : Dict ='\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
661
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int]=13 , SCREAMING_SNAKE_CASE__ : List[str]=7 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : Optional[int]=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=5 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , SCREAMING_SNAKE_CASE__ : Dict=37 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Any=50 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Tuple=None , ) -> List[Any]: A : int =parent A : Union[str, Any] =batch_size A : Tuple =seq_length A : List[Any] =is_training A : Optional[Any] =use_input_mask A : str =vocab_size A : Optional[int] =hidden_size A : Optional[int] =num_hidden_layers A : List[str] =num_attention_heads A : Dict =intermediate_size A : str =hidden_act A : Tuple =hidden_dropout_prob A : Union[str, Any] =attention_probs_dropout_prob A : Optional[Any] =max_position_embeddings A : Optional[Any] =initializer_range A : List[str] =use_labels A : Union[str, Any] =scope def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: A : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : Dict =None if self.use_input_mask: A : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : str =self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Any: ( ( A ) , ( A ) , ( A ) , ( A ) , ) : Optional[Any] =self.prepare_config_and_inputs() A : str =True A : Tuple =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> List[str]: A : Tuple =BertGenerationEncoder(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Any =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : int , ) -> List[str]: A : str =True A : str =BertGenerationEncoder(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Optional[int] =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) A : Optional[Any] =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Optional[int]: A : int =True A : Optional[Any] =True A : Union[str, Any] =BertGenerationDecoder(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass A : int =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , ) A : Optional[int] =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : Any =ids_tensor((self.batch_size, 3) , config.vocab_size ) A : Optional[int] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A : List[str] =torch.cat([input_ids, next_tokens] , dim=-1 ) A : int =torch.cat([input_mask, next_mask] , dim=-1 ) A : Union[str, Any] =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , )['hidden_states'][0] A : List[str] =model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , encoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , )['hidden_states'][0] # select random slice A : Optional[Any] =ids_tensor((1,) , output_from_past.shape[-1] ).item() A : Dict =output_from_no_past[:, -3:, random_slice_idx].detach() A : List[Any] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , *SCREAMING_SNAKE_CASE__ : List[str] , ) -> int: A : Optional[int] =BertGenerationDecoder(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple: A , A , A , A : Optional[Any] =self.prepare_config_and_inputs() A : List[Any] ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase : Optional[Any] = (BertGenerationDecoder,) if is_torch_available() else () lowercase : Dict = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: A : Union[str, Any] =BertGenerationEncoderTester(self ) A : int =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str: A : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: A , A , A , A : Dict =self.model_tester.prepare_config_and_inputs() A : Any ='bert' self.model_tester.create_and_check_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> str: A : str =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: A : Any =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : Any =self.model_tester.prepare_config_and_inputs_for_decoder() A : Union[str, Any] =None self.model_tester.create_and_check_model_as_decoder( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: A : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: A : Optional[Any] =BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: A : Optional[int] =BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) A : List[str] =torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): A : Optional[int] =model(SCREAMING_SNAKE_CASE__ )[0] A : Tuple =torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) A : List[Any] =torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: A : Tuple =BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) A : Union[str, Any] =torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): A : Dict =model(SCREAMING_SNAKE_CASE__ )[0] A : Optional[int] =torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) A : int =torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
661
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments _lowercase : Any =logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[float] = field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} ) lowercase : bool = field( default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} ) lowercase : Optional[float] = field( default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} ) lowercase : Optional[str] = field( default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
661
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : BigBirdConfig lowercase : jnp.dtype = jnp.floataa lowercase : bool = True def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]: super().setup() A : List[Any] =nn.Dense(5 , dtype=self.dtype ) def __call__( self : Any , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: A : Dict =super().__call__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : List[str] =self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def A__ ( lowercase: str, lowercase: Optional[int], lowercase: Tuple, lowercase: Dict, lowercase: Optional[Any], lowercase: Dict ) -> int: def cross_entropy(lowercase: Optional[int], lowercase: Dict, lowercase: List[str]=None ): A : Any =logits.shape[-1] A : List[Any] =(labels[..., None] == jnp.arange(lowercase )[None]).astype('f4' ) A : Union[str, Any] =jax.nn.log_softmax(lowercase, axis=-1 ) A : Union[str, Any] =-jnp.sum(labels * logits, axis=-1 ) if reduction is not None: A : List[Any] =reduction(lowercase ) return loss A : Union[str, Any] =partial(lowercase, reduction=jnp.mean ) A : Any =cross_entropy(lowercase, lowercase ) A : List[str] =cross_entropy(lowercase, lowercase ) A : Union[str, Any] =cross_entropy(lowercase, lowercase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : str = "google/bigbird-roberta-base" lowercase : int = 3000 lowercase : int = 10500 lowercase : int = 128 lowercase : int = 3 lowercase : int = 1 lowercase : int = 5 # tx_args lowercase : float = 3e-5 lowercase : float = 0.0 lowercase : int = 20000 lowercase : float = 0.0_0_9_5 lowercase : str = "bigbird-roberta-natural-questions" lowercase : str = "training-expt" lowercase : str = "data/nq-training.jsonl" lowercase : str = "data/nq-validation.jsonl" def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) A : Tuple =os.path.join(self.base_dir , self.save_dir ) A : Optional[Any] =self.batch_size_per_device * jax.device_count() @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : int lowercase : int = 4096 # no dynamic padding on TPUs def __call__( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: A : Dict =self.collate_fn(SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =jax.tree_util.tree_map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return batch def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: A , A : Optional[int] =self.fetch_inputs(features['input_ids'] ) A : Union[str, Any] ={ 'input_ids': jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ), 'attention_mask': jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : list ) -> Union[str, Any]: A : Tuple =[self._fetch_inputs(SCREAMING_SNAKE_CASE__ ) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : list ) -> Any: A : Any =[1 for _ in range(len(SCREAMING_SNAKE_CASE__ ) )] while len(SCREAMING_SNAKE_CASE__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A__ ( lowercase: Optional[Any], lowercase: List[Any], lowercase: Optional[Any]=None ) -> Union[str, Any]: if seed is not None: A : Dict =dataset.shuffle(seed=lowercase ) for i in range(len(lowercase ) // batch_size ): A : Optional[int] =dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase ) @partial(jax.pmap, axis_name='batch' ) def A__ ( lowercase: str, lowercase: str, **lowercase: Any ) -> Optional[int]: def loss_fn(lowercase: Dict ): A : Union[str, Any] =model_inputs.pop('start_labels' ) A : Optional[Any] =model_inputs.pop('end_labels' ) A : Any =model_inputs.pop('pooled_labels' ) A : List[Any] =state.apply_fn(**lowercase, params=lowercase, dropout_rng=lowercase, train=lowercase ) A , A , A : List[str] =outputs return state.loss_fn( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, ) A , A : Union[str, Any] =jax.random.split(lowercase ) A : Dict =jax.value_and_grad(lowercase ) A , A : str =grad_fn(state.params ) A : Any =jax.lax.pmean({'loss': loss}, axis_name='batch' ) A : Dict =jax.lax.pmean(lowercase, 'batch' ) A : List[str] =state.apply_gradients(grads=lowercase ) return state, metrics, new_drp_rng @partial(jax.pmap, axis_name='batch' ) def A__ ( lowercase: str, **lowercase: Tuple ) -> List[str]: A : List[str] =model_inputs.pop('start_labels' ) A : Union[str, Any] =model_inputs.pop('end_labels' ) A : Union[str, Any] =model_inputs.pop('pooled_labels' ) A : List[Any] =state.apply_fn(**lowercase, params=state.params, train=lowercase ) A , A , A : List[Any] =outputs A : Tuple =state.loss_fn(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) A : int =jax.lax.pmean({'loss': loss}, axis_name='batch' ) return metrics class SCREAMING_SNAKE_CASE_ ( train_state.TrainState ): '''simple docstring''' lowercase : Callable = struct.field(pytree_node=lowerCAmelCase_ ) @dataclass class SCREAMING_SNAKE_CASE_ : '''simple docstring''' lowercase : Args lowercase : Callable lowercase : Callable lowercase : Callable lowercase : Callable lowercase : wandb lowercase : Callable = None def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=None ) -> List[Any]: A : List[Any] =model.params A : int =TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE__ , tx=SCREAMING_SNAKE_CASE__ , loss_fn=SCREAMING_SNAKE_CASE__ , ) if ckpt_dir is not None: A , A , A , A , A : Dict =restore_checkpoint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : str ={ 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } A , A : Optional[int] =build_tx(**SCREAMING_SNAKE_CASE__ ) A : List[Any] =train_state.TrainState( step=SCREAMING_SNAKE_CASE__ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE__ , tx=SCREAMING_SNAKE_CASE__ , opt_state=SCREAMING_SNAKE_CASE__ , ) A : int =args A : List[str] =data_collator A : List[str] =lr A : Any =params A : Any =jax_utils.replicate(SCREAMING_SNAKE_CASE__ ) return state def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: A : Union[str, Any] =self.args A : Optional[int] =len(SCREAMING_SNAKE_CASE__ ) // args.batch_size A : Optional[int] =jax.random.PRNGKey(0 ) A : str =jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) for epoch in range(args.max_epochs ): A : Optional[Any] =jnp.array(0 , dtype=jnp.floataa ) A : Union[str, Any] =get_batched_dataset(SCREAMING_SNAKE_CASE__ , args.batch_size , seed=SCREAMING_SNAKE_CASE__ ) A : Any =0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , total=SCREAMING_SNAKE_CASE__ , desc=f'Running EPOCH-{epoch}' ): A : Dict =self.data_collator(SCREAMING_SNAKE_CASE__ ) A , A , A : Union[str, Any] =self.train_step_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: A : Union[str, Any] =jax_utils.unreplicate(state.step ) A : int =running_loss.item() / i A : List[Any] =self.scheduler_fn(state_step - 1 ) A : str =self.evaluate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Tuple ={ 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE__ ) ) self.logger.log(SCREAMING_SNAKE_CASE__ , commit=SCREAMING_SNAKE_CASE__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: A : List[Any] =get_batched_dataset(SCREAMING_SNAKE_CASE__ , self.args.batch_size ) A : str =len(SCREAMING_SNAKE_CASE__ ) // self.args.batch_size A : List[str] =jnp.array(0 , dtype=jnp.floataa ) A : Optional[int] =0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , total=SCREAMING_SNAKE_CASE__ , desc='Evaluating ... ' ): A : Dict =self.data_collator(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.val_step_fn(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> str: A : List[Any] =jax_utils.unreplicate(SCREAMING_SNAKE_CASE__ ) print(f'SAVING CHECKPOINT IN {save_dir}' , end=' ... ' ) self.model_save_fn(SCREAMING_SNAKE_CASE__ , params=state.params ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE__ , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE__ , 'data_collator.joblib' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , SCREAMING_SNAKE_CASE__ ) print('DONE' ) def A__ ( lowercase: Tuple, lowercase: Dict ) -> Optional[Any]: print(F'RESTORING CHECKPOINT FROM {save_dir}', end=' ... ' ) with open(os.path.join(lowercase, 'flax_model.msgpack' ), 'rb' ) as f: A : Tuple =from_bytes(state.params, f.read() ) with open(os.path.join(lowercase, 'opt_state.msgpack' ), 'rb' ) as f: A : List[str] =from_bytes(state.opt_state, f.read() ) A : Any =joblib.load(os.path.join(lowercase, 'args.joblib' ) ) A : Any =joblib.load(os.path.join(lowercase, 'data_collator.joblib' ) ) with open(os.path.join(lowercase, 'training_state.json' ), 'r' ) as f: A : List[str] =json.load(lowercase ) A : int =training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def A__ ( lowercase: Dict, lowercase: List[Any], lowercase: List[str], lowercase: List[str] ) -> int: A : str =num_train_steps - warmup_steps A : Any =optax.linear_schedule(init_value=lowercase, end_value=lowercase, transition_steps=lowercase ) A : str =optax.linear_schedule(init_value=lowercase, end_value=1e-7, transition_steps=lowercase ) A : int =optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps] ) return lr def A__ ( lowercase: Union[str, Any], lowercase: Union[str, Any], lowercase: Tuple, lowercase: Union[str, Any], lowercase: List[str] ) -> Union[str, Any]: def weight_decay_mask(lowercase: List[Any] ): A : Union[str, Any] =traverse_util.flatten_dict(lowercase ) A : List[str] ={k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase ) A : Dict =scheduler_fn(lowercase, lowercase, lowercase, lowercase ) A : List[str] =optax.adamw(learning_rate=lowercase, weight_decay=lowercase, mask=lowercase ) return tx, lr
661
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowercase : int =2 class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]: A , A , A , A : Optional[Any] =bos, unk, pad, eos A : Dict =[] A : Union[str, Any] =[] A : Any ={} A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(SCREAMING_SNAKE_CASE__ ) A : List[str] =len(self.symbols ) def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.indices == other.indices def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.symbols ) def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any: A : Union[str, Any] =cls() d.add_from_file(SCREAMING_SNAKE_CASE__ ) return d def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any: if word in self.indices and not overwrite: A : int =self.indices[word] A : Union[str, Any] =self.count[idx] + n return idx else: A : Tuple =len(self.symbols ) A : str =idx self.symbols.append(SCREAMING_SNAKE_CASE__ ) self.count.append(SCREAMING_SNAKE_CASE__ ) return idx def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: return 0 def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): try: with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd: self.add_from_file(SCREAMING_SNAKE_CASE__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) ) return A : str =f.readlines() A : int =self._load_meta(SCREAMING_SNAKE_CASE__ ) for line in lines[indices_start_line:]: try: A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": A : int =True A , A : Optional[Any] =line.rsplit(' ' , 1 ) else: A : Any =False A : Tuple =int(SCREAMING_SNAKE_CASE__ ) A : Optional[int] =line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) ) self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def A__ ( lowercase: Union[str, Any] ) -> str: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() ) A : int ='<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] A : List[Any] =d[k] # restore return da def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str: # prep if not os.path.exists(lowercase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowercase, exist_ok=lowercase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models A : List[str] =os.path.join(lowercase, 'checkpoint.pt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) A : Optional[Any] =torch.load(lowercase, map_location='cpu' ) A : Any =chkpt['cfg']['model'] # dicts A : Any =os.path.join(lowercase, 'dict.txt' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) A : Dict =Dictionary.load(lowercase ) A : Optional[Any] =rewrite_dict_keys(src_dict.indices ) A : Tuple =len(lowercase ) A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) A : List[str] =os.path.join(lowercase, 'bpecodes' ) if not os.path.isfile(lowercase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(lowercase, lowercase ) # model config A : Tuple =os.path.join(lowercase, 'config.json' ) A : Tuple ={ 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config A : int =os.path.join(lowercase, lowercase ) A : List[str] ={ 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model A : List[Any] =chkpt['model'] # remove unneeded keys A : List[Any] =[ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) A : str =list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): A : Union[str, Any] =model_state_dict.pop(lowercase ) else: A : List[str] =model_state_dict.pop(lowercase ) A : Any =BioGptConfig.from_pretrained(lowercase ) A : str =BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save A : Tuple =os.path.join(lowercase, lowercase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowercase, lowercase ) print('Conversion is done!' ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowercase : List[Any] =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
661
1
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : List[str]=18 , SCREAMING_SNAKE_CASE__ : str=30 , SCREAMING_SNAKE_CASE__ : str=4_00 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , ) -> Optional[Any]: A : str =size if size is not None else {'height': 18, 'width': 18} A : Union[str, Any] =parent A : Union[str, Any] =batch_size A : Tuple =num_channels A : Dict =image_size A : Any =min_resolution A : List[str] =max_resolution A : Optional[Any] =do_resize A : int =size A : Tuple =do_normalize A : Optional[Any] =image_mean A : Optional[int] =image_std def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[str] = DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: A : str =DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: A : str =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) A : int =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: # Initialize image_processing A : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : List[str] =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input A : Any =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[int]: # Initialize image_processing A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input A : Optional[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A : List[Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]: # Initialize image_processing A : int =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input A : Dict =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A : Any =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
661
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters _lowercase : str =False _lowercase : Optional[Any] =False def A__ ( lowercase: Namespace ) -> Optional[int]: return TrainCommand(lowercase ) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict: A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' ) train_parser.add_argument( '--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' ) train_parser.add_argument( '--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' ) train_parser.add_argument( '--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' ) train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' ) train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' ) train_parser.add_argument( '--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' ) train_parser.add_argument( '--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' ) train_parser.add_argument( '--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' ) train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' ) train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' ) train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' ) train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]: A : Optional[int] =logging.get_logger('transformers-cli/training' ) A : Dict ='tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =args.output A : List[str] =args.column_label A : int =args.column_text A : Union[str, Any] =args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) A : Tuple =Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Dict =None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) A : List[Any] =Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) A : Optional[Any] =args.validation_split A : str =args.train_batch_size A : Any =args.valid_batch_size A : Dict =args.learning_rate A : List[str] =args.adam_epsilon def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]: raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
661
1
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Dict = LongformerTokenizer lowercase : Optional[int] = True lowercase : Union[str, Any] = LongformerTokenizerFast lowercase : Any = True def SCREAMING_SNAKE_CASE_ ( self : str ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A : Tuple =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] A : Any =dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) A : List[Any] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] A : Dict ={'unk_token': '<unk>'} A : Union[str, Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A : str =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Dict: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> int: A : Union[str, Any] ='lower newer' A : Optional[Any] ='lower newer' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: A : Tuple =self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A : Union[str, Any] ='lower newer' A : Optional[int] =['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] A : Optional[int] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) # , add_prefix_space=True) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokens + [tokenizer.unk_token] A : Optional[int] =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: A : Dict =self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: A : Optional[Any] =self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) A : List[str] =tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A : Any =tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A : int =tokenizer.encode( 'sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) A : int =tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) A : List[str] =tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any: A : Any =self.get_tokenizer() A : int ='Encode this sequence.' A : str =tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments A : Optional[Any] =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) A : Union[str, Any] =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Testing spaces after special tokens A : Dict ='<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ )} ) # mask token has a left space A : List[str] =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) A : Any ='Encode <mask> sequence' A : int ='Encode <mask>sequence' A : Tuple =tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A : Dict =encoded.index(SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokenizer.encode(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =encoded.index(SCREAMING_SNAKE_CASE__ ) A : Dict =tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : List[str] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) A : int ='A, <mask> AllenNLP sentence.' A : Optional[Any] =tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) A : Any =tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) A : str =tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A : str =self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A : Any =json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(post_processor_state['add_prefix_space'] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(post_processor_state['trim_offsets'] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : Optional[int] ='hello' # `hello` is a token in the vocabulary of `pretrained_name` A : List[str] =f'{text_of_1_token} {text_of_1_token}' A : List[Any] =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) A : Tuple =tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ) + 1, len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) A : Tuple =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) A : List[str] =tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ) + 1, len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) A : Union[str, Any] =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) A : int =tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) A : Dict =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE__ ), len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) A : Any =f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A : int =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ) + 1, 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) A : Any =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) A : List[Any] =tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ), 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , ) A : Any =self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ ) A : Dict =tokenizer_r(SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE__ ), 1 + len(SCREAMING_SNAKE_CASE__ ) + 1 + len(SCREAMING_SNAKE_CASE__ )) , )
661
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33} A : Union[str, Any] =parent A : Union[str, Any] =batch_size A : Union[str, Any] =num_channels A : int =min_resolution A : List[Any] =max_resolution A : Dict =do_resize A : Tuple =size A : List[str] =do_normalize A : List[Any] =image_mean A : Dict =image_std A : Any =do_rescale A : List[str] =rescale_factor A : Optional[Any] =do_pad def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict: if not batched: A : Any =image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ): A , A : Union[str, Any] =image.size else: A , A : Tuple =image.shape[1], image.shape[2] if w < h: A : Any =int(self.size['shortest_edge'] * h / w ) A : Any =self.size['shortest_edge'] elif w > h: A : Dict =self.size['shortest_edge'] A : Dict =int(self.size['shortest_edge'] * w / h ) else: A : List[str] =self.size['shortest_edge'] A : Dict =self.size['shortest_edge'] else: A : List[Any] =[] for image in image_inputs: A , A : int =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0] A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: A : str =ConditionalDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: A : Tuple =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: A : int =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) A : str =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: # Initialize image_processing A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: # Initialize image_processing A : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing A : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]: # prepare image and target A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: A : List[Any] =json.loads(f.read() ) A : Any ={'image_id': 3_97_69, 'annotations': target} # encode them A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' ) A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # verify pixel values A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ ) A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) # verify area A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes A : str =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ ) A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # verify image_id A : Dict =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) ) # verify orig_size A : List[Any] =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) ) # verify size A : int =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: # prepare image, target and masks_path A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: A : Optional[int] =json.loads(f.read() ) A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target} A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' ) A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) # verify pixel values A : Dict =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ ) A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) # verify area A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes A : List[Any] =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ ) A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) # verify image_id A : List[Any] =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd A : Any =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels A : str =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) ) # verify masks A : int =82_28_73 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ ) # verify orig_size A : Any =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) ) # verify size A : str =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
661
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=32 , SCREAMING_SNAKE_CASE__ : Dict=5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=10 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Tuple=2 , ) -> int: A : List[Any] =parent A : Any =batch_size A : int =patch_size A : Union[str, Any] =max_length A : int =num_mel_bins A : Optional[Any] =is_training A : Optional[int] =use_labels A : Optional[int] =hidden_size A : Any =num_hidden_layers A : Any =num_attention_heads A : Optional[int] =intermediate_size A : str =hidden_act A : Optional[int] =hidden_dropout_prob A : Dict =attention_probs_dropout_prob A : Optional[int] =type_sequence_label_size A : Any =initializer_range A : List[str] =scope A : str =frequency_stride A : List[Any] =time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A : int =(self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 A : Tuple =(self.max_length - self.patch_size) // self.time_stride + 1 A : str =frequency_out_dimension * time_out_dimension A : int =num_patches + 2 def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: A : Any =floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) A : List[str] =None if self.use_labels: A : Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Optional[int] =self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: A : List[str] =ASTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() A : Dict =model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: A : str =self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ) : Any =config_and_inputs A : Any ={'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowercase : Dict = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) lowercase : Optional[int] = False lowercase : int = False lowercase : Dict = False lowercase : List[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any: A : Optional[int] =ASTModelTester(self ) A : Union[str, Any] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]: pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: A , A : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[str] =model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A : Tuple =model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[Any]: A , A : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Optional[Any] =model_class(SCREAMING_SNAKE_CASE__ ) A : Tuple =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Union[str, Any] =[*signature.parameters.keys()] A : Union[str, Any] =['input_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: A : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[str] =ASTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def A__ ( ) -> Optional[int]: A : Tuple =hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint', filename='sample_audio.flac', repo_type='dataset' ) A , A : str =torchaudio.load(lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: A : Dict =self.default_feature_extractor A : int =ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(SCREAMING_SNAKE_CASE__ ) A : Optional[Any] =self.default_feature_extractor A , A : Union[str, Any] =prepare_audio() A : Optional[int] =audio.squeeze().numpy() A : str =feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): A : Optional[Any] =model(**SCREAMING_SNAKE_CASE__ ) # verify the logits A : Dict =torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) A : Any =torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
661
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : List[Any] =1_6 _lowercase : Union[str, Any] =3_2 def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]: A : List[Any] =AutoTokenizer.from_pretrained(lowercase ) A : Any =load_dataset('glue', 'mrpc' ) def tokenize_function(lowercase: Any ): # max_length=None => use the model max length (it's actually the default) A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A : Any =datasets.map( lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : Dict =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowercase: Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' ) return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' ) # Instantiate dataloaders. A : Union[str, Any] =DataLoader( tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) A : str =DataLoader( tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple: model.eval() A : Tuple =0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A : Tuple =model(**lowercase ) A : Tuple =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A , A : Union[str, Any] =accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase ) - 1: A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen] A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase, references=lowercase, ) A : Union[str, Any] =metric.compute() return eval_metric["accuracy"] def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]: # Initialize accelerator A : Optional[int] =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : int =config['lr'] A : Optional[Any] =int(config['num_epochs'] ) A : Union[str, Any] =int(config['seed'] ) A : List[str] =int(config['batch_size'] ) A : Optional[Any] =args.model_name_or_path set_seed(lowercase ) A , A : str =get_dataloaders(lowercase, lowercase, lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase ) # Instantiate optimizer A : Any =( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A : Dict =1 A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A : List[Any] =get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, ) else: A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A : Optional[int] =accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # We need to keep track of how many total steps we have iterated over A : Tuple =0 # We also need to keep track of the stating epoch so files are named properly A : List[str] =0 A : Tuple =evaluate.load('glue', 'mrpc' ) A : Optional[int] =num_epochs if args.partial_train_epoch is not None: A : Dict =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1] A : List[Any] ='' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A : Union[str, Any] =int(lowercase ) + 1 A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase ) accelerator.print('resumed checkpoint performance:', lowercase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f: A : Union[str, Any] =json.load(lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A : str ={} for epoch in range(lowercase, lowercase ): model.train() for step, batch in enumerate(lowercase ): A : Tuple =model(**lowercase ) A : List[Any] =outputs.loss A : Any =loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A : Union[str, Any] =F'epoch_{epoch}' A : Optional[Any] =os.path.join(args.output_dir, lowercase ) accelerator.save_state(lowercase ) A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase ) A : Dict =accuracy A : Optional[Any] =lr_scheduler.get_lr()[0] A : Any =optimizer.param_groups[0]['lr'] A : str =epoch A : Dict =overall_step accelerator.print(F'epoch {epoch}:', lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f: json.dump(lowercase, lowercase ) def A__ ( ) -> Optional[int]: A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, ) parser.add_argument( '--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', ) parser.add_argument( '--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', ) parser.add_argument( '--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', ) parser.add_argument( '--num_epochs', type=lowercase, default=2, help='Number of train epochs.', ) A : str =parser.parse_args() A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
661
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _lowercase : Dict =logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> None: warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
661
def A__ ( lowercase: int ) -> int: if not isinstance(lowercase, lowercase ) or number < 0: raise ValueError('Input must be a non-negative integer' ) A : Any =0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
661
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : List[str] =logging.get_logger(__name__) _lowercase : int ={ '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : str = "mvp" lowercase : Optional[Any] = ["past_key_values"] lowercase : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple=5_02_67 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=10_24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : Tuple=40_96 , SCREAMING_SNAKE_CASE__ : List[Any]=16 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : int=40_96 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.0_2 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=1 , SCREAMING_SNAKE_CASE__ : Dict=0 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=1_00 , SCREAMING_SNAKE_CASE__ : Any=8_00 , **SCREAMING_SNAKE_CASE__ : Any , ) -> Optional[Any]: A : Tuple =vocab_size A : Dict =max_position_embeddings A : Union[str, Any] =d_model A : str =encoder_ffn_dim A : Any =encoder_layers A : str =encoder_attention_heads A : Tuple =decoder_ffn_dim A : List[Any] =decoder_layers A : Tuple =decoder_attention_heads A : str =dropout A : Union[str, Any] =attention_dropout A : Tuple =activation_dropout A : Tuple =activation_function A : Optional[int] =init_std A : str =encoder_layerdrop A : int =decoder_layerdrop A : Optional[Any] =classifier_dropout A : Dict =use_cache A : Tuple =encoder_layers A : List[str] =scale_embedding # scale factor will be sqrt(d_model) if True A : Dict =use_prompt A : List[Any] =prompt_length A : str =prompt_mid_dim super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , forced_eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , SCREAMING_SNAKE_CASE__ ): A : int =self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
661
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]: from .. import __version__ A : Optional[Any] =take_from A : Union[str, Any] =() if not isinstance(args[0], lowercase ): A : List[str] =(args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) A : Tuple =None if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase ),) A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(lowercase, lowercase ): values += (getattr(lowercase, lowercase ),) A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: A : List[Any] =warning + ' ' if standard_warn else '' warnings.warn(warning + message, lowercase, stacklevel=lowercase ) if isinstance(lowercase, lowercase ) and len(lowercase ) > 0: A : Any =inspect.getouterframes(inspect.currentframe() )[1] A : int =call_frame.filename A : int =call_frame.lineno A : Optional[int] =call_frame.function A , A : int =next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(lowercase ) == 0: return elif len(lowercase ) == 1: return values[0] return values
661
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( lowercase: Any, lowercase: Dict, lowercase: List[Any], lowercase: List[Any] ) -> Optional[int]: # Initialise PyTorch model A : Optional[int] =BigBirdConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: A : List[str] =BigBirdForQuestionAnswering(lowercase ) else: A : List[Any] =BigBirdForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowercase, lowercase, is_trivia_qa=lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase ) if __name__ == "__main__": _lowercase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) _lowercase : Optional[int] =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
661
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A__ ( lowercase: int, lowercase: str ) -> Dict: assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str: A : Any =tmp_path / 'cache' A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read() _check_json_dataset(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ], ) def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple: A : Tuple =tmp_path / 'cache' A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : Optional[Any] =features.copy() if features else default_expected_features A : Union[str, Any] =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() _check_json_dataset(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ], ) def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]: A : int =tmp_path / 'cache' A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} A : int =features.copy() if features else default_expected_features A : str =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} A : Dict =features.copy() A : List[str] =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : int =tmp_path / 'cache' A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read() assert isinstance(lowercase, lowercase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]: A : Optional[int] =tmp_path / 'cache' A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read() _check_json_dataset(lowercase, lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]: if issubclass(lowercase, lowercase ): A : int =jsonl_path elif issubclass(lowercase, lowercase ): A : Any =[jsonl_path] A : Optional[Any] =tmp_path / 'cache' A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read() _check_json_dataset(lowercase, lowercase ) def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple: assert isinstance(lowercase, lowercase ) for split in splits: A : List[str] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str: A : List[str] =tmp_path / 'cache' A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read() _check_json_datasetdict(lowercase, lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ], ) def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple: A : Any =tmp_path / 'cache' A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : str =features.copy() if features else default_expected_features A : Dict =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read() _check_json_datasetdict(lowercase, lowercase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple: if split: A : Optional[int] ={split: jsonl_path} else: A : Dict ='train' A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path} A : Tuple =tmp_path / 'cache' A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read() _check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A__ ( lowercase: List[Any] ) -> Tuple: return json.load(lowercase ) def A__ ( lowercase: List[Any] ) -> Tuple: return [json.loads(lowercase ) for line in buffer] class SCREAMING_SNAKE_CASE_ : '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) A : int =load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write() buffer.seek(0 ) A : Any =load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) A : int =load_json_function(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write() buffer.seek(0 ) A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE__ ) == 10 def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}' A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' ) JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: A : str =f.read() with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f: A : List[str] =f.read() assert exported_content == original_content
661
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _lowercase : List[str] =logging.get_logger(__name__) def A__ ( lowercase: nn.ModuleList, lowercase: nn.ModuleList, lowercase: List[int] ) -> None: A : Dict =nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowercase ) == len(lowercase ), F'{len(lowercase )} != {len(lowercase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) _lowercase : Union[str, Any] ={ # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _lowercase : Optional[int] ={ # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def A__ ( lowercase: Any, lowercase: Union[str, Any] ) -> int: try: A : Any =LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(lowercase ) ) def A__ ( lowercase: Optional[int], lowercase: str ) -> List[int]: if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(lowercase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def A__ ( lowercase: Union[str, PreTrainedModel], lowercase: Union[str, Path] = "student", lowercase: Union[int, None] = None, lowercase: Union[int, None] = None, lowercase: Optional[Any]=False, lowercase: Optional[Any]=None, lowercase: List[str]=None, **lowercase: List[str], ) -> Tuple[PreTrainedModel, List[int], List[int]]: A : Optional[int] ='encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(lowercase, lowercase ): AutoTokenizer.from_pretrained(lowercase ).save_pretrained(lowercase ) # purely for convenience A : int =AutoModelForSeqaSeqLM.from_pretrained(lowercase ).eval() else: assert isinstance(lowercase, lowercase ), F'teacher must be a model or string got type {type(lowercase )}' A : Any =teacher.config.to_diff_dict() try: A , A : Optional[int] =teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: A : Union[str, Any] =teacher_e if d is None: A : Any =teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config, 'num_encoder_layers' ): A , A : str =teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: A , A : Optional[Any] =teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: A : Optional[int] =teacher_e if d is None: A : List[Any] =teacher_d if hasattr(teacher.config, 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowercase ) # Copy weights A : int =teacher.config_class(**lowercase ) A : List[str] =AutoModelForSeqaSeqLM.from_config(lowercase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. A : Optional[int] =student.load_state_dict(teacher.state_dict(), strict=lowercase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save A , A : str =list(range(lowercase ) ), list(range(lowercase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(lowercase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: A : List[int] =pick_layers_to_copy(lowercase, lowercase ) if d_layers_to_copy is None: A : List[int] =pick_layers_to_copy(lowercase, lowercase ) try: if hasattr( lowercase, 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers, student.prophetnet.encoder.layers, lowercase ) copy_layers(teacher.prophetnet.decoder.layers, student.prophetnet.decoder.layers, lowercase ) else: copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, lowercase ) copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, lowercase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block, student.encoder.block, lowercase ) copy_layers(teacher.decoder.block, student.decoder.block, lowercase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) A : Tuple ={ 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(lowercase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
661
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : Optional[int] = DDIMPipeline lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowercase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: torch.manual_seed(0 ) A : str =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) A : Optional[int] =DDIMScheduler() A : Optional[Any] ={'unet': unet, 'scheduler': scheduler} return components def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) A : Optional[int] ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: A : Union[str, Any] ='cpu' A : Tuple =self.get_dummy_components() A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images A : Optional[Any] =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A : Optional[Any] =np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) A : str =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Any ='google/ddpm-cifar10-32' A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =DDIMScheduler() A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) ddim.to(SCREAMING_SNAKE_CASE__ ) ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Dict =torch.manual_seed(0 ) A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images A : str =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: A : Optional[int] ='google/ddpm-ema-bedroom-256' A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ) A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) ddpm.to(SCREAMING_SNAKE_CASE__ ) ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) A : Any =torch.manual_seed(0 ) A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images A : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
661
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowercase : List[Any] = IFImgaImgSuperResolutionPipeline lowercase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"} ) lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Optional[Any]: if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): A : Optional[int] =torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: A : int =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) A : Tuple =floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) A : Tuple =floats_tensor((1, 3, 16, 16) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) A : int ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]: self._test_save_load_local() def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
661
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]: A : Dict =tempfile.mkdtemp() A : int =SamImageProcessor() A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]: A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple: A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: A : Optional[Any] =self.get_image_processor() A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Dict =self.prepare_image_inputs() A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any: A : str =self.get_image_processor() A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : str =[torch.ones((1, 3, 5, 5) )] A : Optional[Any] =[[17_64, 26_46]] A : List[Any] =[[6_83, 10_24]] A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A : str =[np.ones((1, 3, 5, 5) )] A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =[[1, 0], [0, 1]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : str ) -> str: A : Tuple =tempfile.mkdtemp() A : Union[str, Any] =SamImageProcessor() A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple: A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: A : Any =self.get_image_processor() A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : int =self.prepare_image_inputs() A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' ) A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: A : int =self.get_image_processor() A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =[tf.ones((1, 3, 5, 5) )] A : Tuple =[[17_64, 26_46]] A : Union[str, Any] =[[6_83, 10_24]] A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : List[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np A : Any =[np.ones((1, 3, 5, 5) )] A : Optional[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) A : Any =[[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A : List[str] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: A : Optional[int] =tempfile.mkdtemp() A : Union[str, Any] =SamImageProcessor() A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: A : Optional[Any] =self.get_image_processor() A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )] A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )] A : int =[[17_64, 26_46]] A : int =[[6_83, 10_24]] A : Dict =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' ) A : Optional[Any] =processor.post_process_masks( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: A : Union[str, Any] =self.get_image_processor() A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ ) A : int =self.prepare_image_inputs() A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy() A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
661
1
import functools from typing import Any def A__ ( lowercase: str, lowercase: list[str] ) -> bool: # Validation if not isinstance(lowercase, lowercase ) or len(lowercase ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(lowercase, lowercase ) or not all( isinstance(lowercase, lowercase ) and len(lowercase ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie A : dict[str, Any] ={} A : Dict ='WORD_KEEPER' for word in words: A : List[str] =trie for c in word: if c not in trie_node: A : Optional[int] ={} A : Optional[int] =trie_node[c] A : List[str] =True A : Optional[Any] =len(lowercase ) # Dynamic programming method @functools.cache def is_breakable(lowercase: int ) -> bool: if index == len_string: return True A : int =trie for i in range(lowercase, lowercase ): A : int =trie_node.get(string[i], lowercase ) if trie_node is None: return False if trie_node.get(lowercase, lowercase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
661
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def A__ ( lowercase: Optional[int] ) -> Optional[int]: A : str =test_results.split(' ' ) A : List[str] =0 A : Tuple =0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(lowercase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A__ ( lowercase: List[Any] ) -> str: A : Union[str, Any] ={} A : Optional[Any] =None A : Union[str, Any] =False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]', lowercase ): A : List[Any] =True A : Any =line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): A : Dict =line A : List[str] =False return failures class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: A : Tuple =title A : Dict =doc_test_results['time_spent'].split(',' )[0] A : Union[str, Any] =doc_test_results['success'] A : Any =doc_test_results['failures'] A : Optional[Any] =self.n_success + self.n_failures # Failures and success of the modeling tests A : Union[str, Any] =doc_test_results @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str: A : Any =[self._time_spent] A : List[str] =0 for time in time_spent: A : List[Any] =time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(SCREAMING_SNAKE_CASE__ ) == 1: A : List[str] =[0, 0, time_parts[0]] A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s' @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: return { "type": "section", "text": { "type": "plain_text", "text": ( f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' f' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: A : Tuple =40 A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} A : Any ='' for category, failures in category_failures.items(): if len(SCREAMING_SNAKE_CASE__ ) == 0: continue if report != "": report += "\n\n" report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(SCREAMING_SNAKE_CASE__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'The following examples had failures:\n\n\n{report}\n', }, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str: A : Optional[int] =[self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(SCREAMING_SNAKE_CASE__ ) @staticmethod def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: A : Tuple =[ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]: print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.' A : Dict =client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: A : List[str] ='' for key, value in failures.items(): A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value failures_text += f'*{key}*\n_{value}_\n\n' A : Union[str, Any] =job_name A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: A : int ={ 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) A : Union[str, Any] =self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): A : Any =f'*Num failures* :{len(job_result["failed"] )} \n' A : List[Any] =job_result['failures'] A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def A__ ( ) -> Union[str, Any]: A : Any =os.environ['GITHUB_RUN_ID'] A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' A : Union[str, Any] =requests.get(lowercase ).json() A : List[Any] ={} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) A : List[str] =math.ceil((result['total_count'] - 100) / 100 ) for i in range(lowercase ): A : List[str] =requests.get(url + F'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.', lowercase ) return {} def A__ ( lowercase: str ) -> Optional[Any]: A : Any ={} if os.path.exists(lowercase ): A : List[Any] =os.listdir(lowercase ) for file in files: try: with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f: A : Optional[int] =f.read() except UnicodeDecodeError as e: raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e return _artifact def A__ ( ) -> int: class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: A : Dict =name A : Dict =[] def __str__( self : Optional[Any] ) -> List[str]: return self.name def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: self.paths.append({'name': self.name, 'path': path} ) A : Dict[str, Artifact] ={} A : str =filter(os.path.isdir, os.listdir() ) for directory in directories: A : Tuple =directory if artifact_name not in _available_artifacts: A : int =Artifact(lowercase ) _available_artifacts[artifact_name].add_path(lowercase ) return _available_artifacts if __name__ == "__main__": _lowercase : Optional[int] =get_job_links() _lowercase : str =retrieve_available_artifacts() _lowercase : List[Any] =collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _lowercase : Optional[Any] ={ v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _lowercase : List[Any] =github_actions_job_links.get('''run_doctests''') _lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _lowercase : Dict =retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats''']) _lowercase : Any =failed _lowercase : Union[str, Any] =success _lowercase : str =time_spent[1:-1] + ''', ''' _lowercase : Any =extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _lowercase : Tuple =line.replace('''FAILED ''', '''''') _lowercase : int =line.split()[0].replace('''\n''', '''''') if "::" in line: _lowercase , _lowercase : str =line.split('''::''') else: _lowercase , _lowercase : Union[str, Any] =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _lowercase : Any =docs[file_regex] doc_test_results[category]["failed"].append(test) _lowercase : Any =all_failures[test] if test in all_failures else '''N/A''' _lowercase : Tuple =failure break _lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
661
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : str ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowercase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
_lowercase : Dict ='''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
661
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowercase : Any ='''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' _lowercase : Any ='''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' _lowercase : int =''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> Any: A : Any =len(references[0] ) if any(len(SCREAMING_SNAKE_CASE__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) A : Union[str, Any] =[[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE__ )] A : List[Any] =TER( normalized=SCREAMING_SNAKE_CASE__ , no_punct=SCREAMING_SNAKE_CASE__ , asian_support=SCREAMING_SNAKE_CASE__ , case_sensitive=SCREAMING_SNAKE_CASE__ , ) A : str =sb_ter.corpus_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
661
from typing import List from .keymap import KEYMAP, get_character def A__ ( lowercase: str ) -> List[str]: def decorator(lowercase: int ): A : Tuple =getattr(lowercase, 'handle_key', [] ) handle += [key] setattr(lowercase, 'handle_key', lowercase ) return func return decorator def A__ ( *lowercase: List[str] ) -> Dict: def decorator(lowercase: Union[str, Any] ): A : Optional[int] =getattr(lowercase, 'handle_key', [] ) handle += keys setattr(lowercase, 'handle_key', lowercase ) return func return decorator class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ): setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} ) setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] ) for key in handled_keys: A : str =value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any: A : str =get_character() if char != KEYMAP["undefined"]: A : List[str] =ord(SCREAMING_SNAKE_CASE__ ) A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ ) if handler: A : List[str] =char return handler(cls ) else: return None def A__ ( cls: Optional[int] ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
661
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE_ : '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : int ) -> int: pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): '''simple docstring''' lowercase : Any = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: A : str =pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A : Tuple =[ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] return object_detector, examples def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: A : Any =object_detector(examples[0] , threshold=0.0 ) A : Dict =len(SCREAMING_SNAKE_CASE__ ) self.assertGreater(SCREAMING_SNAKE_CASE__ , 0 ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ { 'score': ANY(SCREAMING_SNAKE_CASE__ ), 'label': ANY(SCREAMING_SNAKE_CASE__ ), 'box': {'xmin': ANY(SCREAMING_SNAKE_CASE__ ), 'ymin': ANY(SCREAMING_SNAKE_CASE__ ), 'xmax': ANY(SCREAMING_SNAKE_CASE__ ), 'ymax': ANY(SCREAMING_SNAKE_CASE__ )}, } for i in range(SCREAMING_SNAKE_CASE__ ) ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: pass @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: A : Any =pipeline( 'zero-shot-object-detection' , model='hf-internal-testing/tiny-random-owlvit-object-detection' ) A : List[str] =object_detector( './tests/fixtures/tests_samples/COCO/000000039769.png' , candidate_labels=['cat', 'remote', 'couch'] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] , ) A : int =object_detector( [ { 'image': './tests/fixtures/tests_samples/COCO/000000039769.png', 'candidate_labels': ['cat', 'remote', 'couch'], } ] , threshold=0.6_4 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ [ {'score': 0.7_2_3_5, 'label': 'cat', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_2_1_8, 'label': 'remote', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.7_1_8_4, 'label': 'couch', 'box': {'xmin': 2_04, 'ymin': 1_67, 'xmax': 2_32, 'ymax': 1_90}}, {'score': 0.6_7_4_8, 'label': 'remote', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_5_6, 'label': 'cat', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_6_1_4, 'label': 'couch', 'box': {'xmin': 5_71, 'ymin': 83, 'xmax': 5_98, 'ymax': 1_03}}, {'score': 0.6_4_5_6, 'label': 'remote', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, {'score': 0.6_4_2, 'label': 'remote', 'box': {'xmin': 67, 'ymin': 2_74, 'xmax': 93, 'ymax': 2_97}}, {'score': 0.6_4_1_9, 'label': 'cat', 'box': {'xmin': 4_94, 'ymin': 1_05, 'xmax': 5_21, 'ymax': 1_27}}, ] ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: A : str =pipeline('zero-shot-object-detection' ) A : int =object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ] , ) A : Optional[Any] =object_detector( [ { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, { 'image': 'http://images.cocodataset.org/val2017/000000039769.jpg', 'candidate_labels': ['cat', 'remote', 'couch'], }, ] , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, {'score': 0.1_4_7_4, 'label': 'remote', 'box': {'xmin': 3_35, 'ymin': 74, 'xmax': 3_71, 'ymax': 1_87}}, {'score': 0.1_2_0_8, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 6_42, 'ymax': 4_76}}, ], ] , ) @require_tf @unittest.skip('Zero Shot Object Detection not implemented in TF' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int: pass @require_torch @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: A : Dict =0.2 A : int =pipeline('zero-shot-object-detection' ) A : str =object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , threshold=SCREAMING_SNAKE_CASE__ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, {'score': 0.2_5_3_7, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 3_15, 'ymax': 4_72}}, ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE_ ( self : int ) -> str: A : Any =2 A : str =pipeline('zero-shot-object-detection' ) A : Dict =object_detector( 'http://images.cocodataset.org/val2017/000000039769.jpg' , candidate_labels=['cat', 'remote', 'couch'] , top_k=SCREAMING_SNAKE_CASE__ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [ {'score': 0.2_8_6_8, 'label': 'cat', 'box': {'xmin': 3_24, 'ymin': 20, 'xmax': 6_40, 'ymax': 3_73}}, {'score': 0.2_7_7, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 72, 'xmax': 1_77, 'ymax': 1_15}}, ] , )
661
import math def A__ ( lowercase: int ) -> list: A : Optional[Any] =[True] * n A : Tuple =False A : List[Any] =False A : Dict =True for i in range(3, int(n**0.5 + 1 ), 2 ): A : Dict =i * 2 while index < n: A : Dict =False A : Dict =index + i A : Tuple =[2] for i in range(3, lowercase, 2 ): if is_prime[i]: primes.append(lowercase ) return primes def A__ ( lowercase: int = 999_966_663_333 ) -> int: A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100 A : Optional[int] =prime_sieve(lowercase ) A : Optional[Any] =0 A : List[Any] =0 A : Union[str, Any] =primes[prime_index] while (last_prime**2) <= limit: A : Tuple =primes[prime_index + 1] A : Optional[int] =last_prime**2 A : Tuple =next_prime**2 # Get numbers divisible by lps(current) A : int =lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A : List[Any] =upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A : Any =0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A : List[str] =next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
661
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Dict ={ '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any =[ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _lowercase : Optional[Any] =['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _lowercase : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
import heapq def A__ ( lowercase: dict ) -> set[int]: A : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] ) # chosen_vertices = set of chosen vertices A : Dict =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A : List[str] =heapq.heappop(lowercase )[1][0] chosen_vertices.add(lowercase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A : str =elem[1][1].index(lowercase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
661
1
def A__ ( ) -> list[list[int]]: return [list(range(1_000 - i, -1_000 - i, -1 ) ) for i in range(1_000 )] _lowercase : str =generate_large_matrix() _lowercase : Optional[int] =( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A__ ( lowercase: list[list[int]] ) -> None: assert all(row == sorted(lowercase, reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase, reverse=lowercase ) for col in zip(*lowercase ) ) def A__ ( lowercase: list[int] ) -> int: A : Optional[Any] =0 A : List[Any] =len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: A : List[Any] =(left + right) // 2 A : Optional[int] =array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: A : List[str] =mid + 1 else: A : int =mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def A__ ( lowercase: list[list[int]] ) -> int: A : Optional[int] =0 A : Dict =len(grid[0] ) for i in range(len(lowercase ) ): A : str =find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def A__ ( lowercase: list[list[int]] ) -> int: return len([number for row in grid for number in row if number < 0] ) def A__ ( lowercase: list[list[int]] ) -> int: A : str =0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def A__ ( ) -> None: from timeit import timeit print('Running benchmarks' ) A : Any =( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): A : Optional[int] =timeit(F'{func}(grid=grid)', setup=lowercase, number=500 ) print(F'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
661
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowercase : List[Any] =logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: A : Tuple =feature_size A : int =sampling_rate A : List[str] =padding_value A : Tuple =kwargs.pop('padding_side' , 'right' ) A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ ) super().__init__(**SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): A : Tuple ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' f' to this method that includes {self.model_input_names[0]}, but you provided' f' {list(processed_features.keys() )}' ) A : Dict =processed_features[self.model_input_names[0]] A : int =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(SCREAMING_SNAKE_CASE__ ) == 0: if return_attention_mask: A : List[Any] =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch A : List[str] =required_input[0] if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. A : Any =0 while len(required_input[index] ) == 0: index += 1 if index < len(SCREAMING_SNAKE_CASE__ ): A : Dict =required_input[index][0] if return_tensors is None: if is_tf_tensor(SCREAMING_SNAKE_CASE__ ): A : List[Any] ='tf' elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ): A : Optional[int] ='pt' elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ): A : Union[str, Any] ='np' else: raise ValueError( f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. ' 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): A : int =to_numpy(SCREAMING_SNAKE_CASE__ ) else: A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value] # Convert padding_strategy in PaddingStrategy A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) A : Optional[int] =processed_features[self.model_input_names[0]] A : List[str] =len(SCREAMING_SNAKE_CASE__ ) if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) A : Tuple =[] for i in range(SCREAMING_SNAKE_CASE__ ): A : int ={k: v[i] for k, v in processed_features.items()} # truncation A : List[Any] =self._truncate( SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , ) truncated_inputs.append(SCREAMING_SNAKE_CASE__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) A : Optional[Any] =PaddingStrategy.MAX_LENGTH A : List[Any] ={} for i in range(SCREAMING_SNAKE_CASE__ ): # padding A : Optional[Any] =self._pad( truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) for key, value in outputs.items(): if key not in batch_outputs: A : Dict =[] if value.dtype is np.dtype(np.floataa ): A : Tuple =value.astype(np.floataa ) batch_outputs[key].append(SCREAMING_SNAKE_CASE__ ) return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict: A : Optional[int] =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: A : List[str] =len(SCREAMING_SNAKE_CASE__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa ) if needs_to_be_padded: A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ ) if self.padding_side == "right": if return_attention_mask: A : Dict =np.pad( processed_features['attention_mask'] , (0, difference) ) A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) A : Tuple =np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: A : List[Any] =np.pad( processed_features['attention_mask'] , (difference, 0) ) A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) A : Tuple =np.pad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) A : Tuple =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length if needs_to_be_truncated: A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: A : Dict =processed_features['attention_mask'][:max_length] return processed_features def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A : Optional[int] =padding else: A : List[str] =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
661
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : List[Any] =1_6 _lowercase : Union[str, Any] =3_2 def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]: A : List[Any] =AutoTokenizer.from_pretrained(lowercase ) A : Any =load_dataset('glue', 'mrpc' ) def tokenize_function(lowercase: Any ): # max_length=None => use the model max length (it's actually the default) A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A : Any =datasets.map( lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A : Dict =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowercase: Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' ) return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' ) # Instantiate dataloaders. A : Union[str, Any] =DataLoader( tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) A : str =DataLoader( tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase ) return train_dataloader, eval_dataloader def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple: model.eval() A : Tuple =0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A : Tuple =model(**lowercase ) A : Tuple =outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A , A : Union[str, Any] =accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase ) - 1: A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen] A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase, references=lowercase, ) A : Union[str, Any] =metric.compute() return eval_metric["accuracy"] def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]: # Initialize accelerator A : Optional[int] =Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A : int =config['lr'] A : Optional[Any] =int(config['num_epochs'] ) A : Union[str, Any] =int(config['seed'] ) A : List[str] =int(config['batch_size'] ) A : Optional[Any] =args.model_name_or_path set_seed(lowercase ) A , A : str =get_dataloaders(lowercase, lowercase, lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase ) # Instantiate optimizer A : Any =( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase ) if accelerator.state.deepspeed_plugin is not None: A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: A : Dict =1 A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A : List[Any] =get_linear_schedule_with_warmup( optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, ) else: A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A : Optional[int] =accelerator.prepare( lowercase, lowercase, lowercase, lowercase, lowercase ) # We need to keep track of how many total steps we have iterated over A : Tuple =0 # We also need to keep track of the stating epoch so files are named properly A : List[str] =0 A : Tuple =evaluate.load('glue', 'mrpc' ) A : Optional[int] =num_epochs if args.partial_train_epoch is not None: A : Dict =args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1] A : List[Any] ='' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break A : Union[str, Any] =int(lowercase ) + 1 A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase ) accelerator.print('resumed checkpoint performance:', lowercase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f: A : Union[str, Any] =json.load(lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model A : str ={} for epoch in range(lowercase, lowercase ): model.train() for step, batch in enumerate(lowercase ): A : Tuple =model(**lowercase ) A : List[Any] =outputs.loss A : Any =loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 A : Union[str, Any] =F'epoch_{epoch}' A : Optional[Any] =os.path.join(args.output_dir, lowercase ) accelerator.save_state(lowercase ) A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase ) A : Dict =accuracy A : Optional[Any] =lr_scheduler.get_lr()[0] A : Any =optimizer.param_groups[0]['lr'] A : str =epoch A : Dict =overall_step accelerator.print(F'epoch {epoch}:', lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f: json.dump(lowercase, lowercase ) def A__ ( ) -> Optional[int]: A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, ) parser.add_argument( '--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', ) parser.add_argument( '--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', ) parser.add_argument( '--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', ) parser.add_argument( '--num_epochs', type=lowercase, default=2, help='Number of train epochs.', ) A : str =parser.parse_args() A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowercase, lowercase ) if __name__ == "__main__": main()
661
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : Optional[int] =logging.get_logger(__name__) _lowercase : List[str] ={ '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' lowercase : int = "deberta-v2" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE__ ) A : Dict =hidden_size A : Optional[Any] =num_hidden_layers A : Optional[int] =num_attention_heads A : Optional[int] =intermediate_size A : Any =hidden_act A : Any =hidden_dropout_prob A : Union[str, Any] =attention_probs_dropout_prob A : Optional[Any] =max_position_embeddings A : Tuple =type_vocab_size A : Tuple =initializer_range A : int =relative_attention A : int =max_relative_positions A : Optional[Any] =pad_token_id A : Union[str, Any] =position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE__ ) == str: A : Any =[x.strip() for x in pos_att_type.lower().split('|' )] A : Any =pos_att_type A : Tuple =vocab_size A : Any =layer_norm_eps A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ ) A : str =pooler_dropout A : Any =pooler_hidden_act class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'} else: A : int ={0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> int: return 12 def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]: A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
661
1