code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
_lowercase : Optional[Any] =logging.get_logger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Any = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__( self : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
A : str =deprecated_arg[3:]
setattr(self , SCREAMING_SNAKE_CASE__ , not kwargs.pop(SCREAMING_SNAKE_CASE__ ) )
logger.warning(
f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'
f' {positive_arg}={kwargs[positive_arg]}' )
A : Dict =kwargs.pop('torchscript' , self.torchscript )
A : List[str] =kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics )
A : Union[str, Any] =kwargs.pop('fp16_opt_level' , self.fpaa_opt_level )
super().__init__(**SCREAMING_SNAKE_CASE__ )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Trace the models using torchscript"} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Print Xla/PyTorch tpu metrics"} )
lowercase : str = field(
default="O1" , metadata={
"help": (
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html"
)
} , )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple["torch.device", int]:
requires_backends(self , ['torch'] )
logger.info('PyTorch: setting up devices' )
if not self.cuda:
A : List[str] =torch.device('cpu' )
A : Union[str, Any] =0
elif is_torch_tpu_available():
A : Union[str, Any] =xm.xla_device()
A : Union[str, Any] =0
else:
A : List[str] =torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
A : Tuple =torch.cuda.device_count()
return device, n_gpu
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]:
return is_torch_tpu_available() and self.tpu
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int:
requires_backends(self , ['torch'] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> "torch.device":
requires_backends(self , ['torch'] )
return self._setup_devices[0]
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
requires_backends(self , ['torch'] )
return self._setup_devices[1]
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
return self.n_gpu > 0
| 661 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 1 |
def A__ ( lowercase: str, lowercase: str ) -> Optional[int]:
assert x is not None
assert y is not None
A : str =len(lowercase )
A : Dict =len(lowercase )
# declaring the array for storing the dp values
A : List[Any] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1, m + 1 ):
for j in range(1, n + 1 ):
A : Tuple =1 if x[i - 1] == y[j - 1] else 0
A : List[Any] =max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match )
A : Union[str, Any] =''
A , A : List[Any] =m, n
while i > 0 and j > 0:
A : str =1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
A : Optional[Any] =x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
_lowercase : List[Any] ='''AGGTAB'''
_lowercase : Optional[Any] ='''GXTXAYB'''
_lowercase : List[Any] =4
_lowercase : Optional[int] ='''GTAB'''
_lowercase , _lowercase : Optional[Any] =longest_common_subsequence(a, b)
print('''len =''', ln, ''', sub-sequence =''', subseq)
import doctest
doctest.testmod()
| 661 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 1 |
from ...processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = ["image_processor", "feature_extractor"]
lowercase : List[Any] = "TvltImageProcessor"
lowercase : str = "TvltFeatureExtractor"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> List[str]:
super().__init__(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ )
A : int =image_processor
A : Optional[int] =feature_extractor
def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : List[Any]=False , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Any , ) -> int:
if images is None and audio is None:
raise ValueError('You need to specify either an `images` or `audio` input to process.' )
A : Optional[Any] =None
if images is not None:
A : Optional[int] =self.image_processor(SCREAMING_SNAKE_CASE__ , mask_pixel=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if images_mixed is not None:
A : str =self.image_processor(SCREAMING_SNAKE_CASE__ , is_mixed=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if audio is not None:
A : Optional[Any] =self.feature_extractor(
SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , mask_audio=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str ={}
if audio is not None:
output_dict.update(SCREAMING_SNAKE_CASE__ )
if images is not None:
output_dict.update(SCREAMING_SNAKE_CASE__ )
if images_mixed_dict is not None:
output_dict.update(SCREAMING_SNAKE_CASE__ )
return output_dict
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
A : Union[str, Any] =self.image_processor.model_input_names
A : List[Any] =self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 661 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
from __future__ import annotations
_lowercase : int =tuple[int, int, int]
_lowercase : Any =tuple[str, str, str]
# used alphabet --------------------------
# from string.ascii_uppercase
_lowercase : List[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
# -------------------------- default selection --------------------------
# rotors --------------------------
_lowercase : Dict ='''EGZWVONAHDCLFQMSIPJBYUKXTR'''
_lowercase : Tuple ='''FOBHMDKEXQNRAULPGSJVTYICZW'''
_lowercase : int ='''ZJXESIUQLHAVRMDOYGTNFWPBKC'''
# reflector --------------------------
_lowercase : int ={
'''A''': '''N''',
'''N''': '''A''',
'''B''': '''O''',
'''O''': '''B''',
'''C''': '''P''',
'''P''': '''C''',
'''D''': '''Q''',
'''Q''': '''D''',
'''E''': '''R''',
'''R''': '''E''',
'''F''': '''S''',
'''S''': '''F''',
'''G''': '''T''',
'''T''': '''G''',
'''H''': '''U''',
'''U''': '''H''',
'''I''': '''V''',
'''V''': '''I''',
'''J''': '''W''',
'''W''': '''J''',
'''K''': '''X''',
'''X''': '''K''',
'''L''': '''Y''',
'''Y''': '''L''',
'''M''': '''Z''',
'''Z''': '''M''',
}
# -------------------------- extra rotors --------------------------
_lowercase : List[str] ='''RMDJXFUWGISLHVTCQNKYPBEZOA'''
_lowercase : Union[str, Any] ='''SGLCPQWZHKXAREONTFBVIYJUDM'''
_lowercase : Dict ='''HVSICLTYKQUBXDWAJZOMFGPREN'''
_lowercase : str ='''RZWQHFMVDBKICJLNTUXAGYPSOE'''
_lowercase : List[str] ='''LFKIJODBEGAMQPXVUHYSTCZRWN'''
_lowercase : int ='''KOAEGVDHXPQZMLFTYWJNBRCIUS'''
def A__ ( lowercase: RotorPositionT, lowercase: RotorSelectionT, lowercase: str ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]:
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(lowercase ) )) < 3:
A : Any =F'Please use 3 unique rotors (not {unique_rotsel})'
raise Exception(lowercase )
# Checks if rotor positions are valid
A , A , A : Optional[int] =rotpos
if not 0 < rotorposa <= len(lowercase ):
A : Union[str, Any] =F'First rotor position is not within range of 1..26 ({rotorposa}'
raise ValueError(lowercase )
if not 0 < rotorposa <= len(lowercase ):
A : Optional[int] =F'Second rotor position is not within range of 1..26 ({rotorposa})'
raise ValueError(lowercase )
if not 0 < rotorposa <= len(lowercase ):
A : Dict =F'Third rotor position is not within range of 1..26 ({rotorposa})'
raise ValueError(lowercase )
# Validates string and returns dict
A : Any =_plugboard(lowercase )
return rotpos, rotsel, pbdict
def A__ ( lowercase: str ) -> dict[str, str]:
# tests the input string if it
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(lowercase, lowercase ):
A : List[str] =F'Plugboard setting isn\'t type string ({type(lowercase )})'
raise TypeError(lowercase )
elif len(lowercase ) % 2 != 0:
A : List[Any] =F'Odd number of symbols ({len(lowercase )})'
raise Exception(lowercase )
elif pbstring == "":
return {}
pbstring.replace(' ', '' )
# Checks if all characters are unique
A : Dict =set()
for i in pbstring:
if i not in abc:
A : Union[str, Any] =F'\'{i}\' not in list of symbols'
raise Exception(lowercase )
elif i in tmppbl:
A : Dict =F'Duplicate symbol ({i})'
raise Exception(lowercase )
else:
tmppbl.add(lowercase )
del tmppbl
# Created the dictionary
A : Dict ={}
for j in range(0, len(lowercase ) - 1, 2 ):
A : str =pbstring[j + 1]
A : Union[str, Any] =pbstring[j]
return pb
def A__ ( lowercase: str, lowercase: RotorPositionT, lowercase: RotorSelectionT = (rotora, rotora, rotora), lowercase: str = "", ) -> str:
A : Optional[Any] =text.upper()
A , A , A : Union[str, Any] =_validator(
lowercase, lowercase, plugb.upper() )
A , A , A : Any =rotor_position
A , A , A : Dict =rotor_selection
rotorposa -= 1
rotorposa -= 1
rotorposa -= 1
A : Union[str, Any] =[]
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
# 1st plugboard --------------------------
if symbol in plugboard:
A : List[Any] =plugboard[symbol]
# rotor ra --------------------------
A : Optional[Any] =abc.index(lowercase ) + rotorposa
A : List[str] =rotora[index % len(lowercase )]
# rotor rb --------------------------
A : Tuple =abc.index(lowercase ) + rotorposa
A : Tuple =rotora[index % len(lowercase )]
# rotor rc --------------------------
A : Optional[Any] =abc.index(lowercase ) + rotorposa
A : Union[str, Any] =rotora[index % len(lowercase )]
# reflector --------------------------
# this is the reason you don't need another machine to decipher
A : int =reflector[symbol]
# 2nd rotors
A : Optional[int] =abc[rotora.index(lowercase ) - rotorposa]
A : Optional[Any] =abc[rotora.index(lowercase ) - rotorposa]
A : Union[str, Any] =abc[rotora.index(lowercase ) - rotorposa]
# 2nd plugboard
if symbol in plugboard:
A : Union[str, Any] =plugboard[symbol]
# moves/resets rotor positions
rotorposa += 1
if rotorposa >= len(lowercase ):
A : Optional[Any] =0
rotorposa += 1
if rotorposa >= len(lowercase ):
A : Union[str, Any] =0
rotorposa += 1
if rotorposa >= len(lowercase ):
A : Any =0
# else:
# pass
# Error could be also raised
# raise ValueError(
# 'Invalid symbol('+repr(symbol)+')')
result.append(lowercase )
return "".join(lowercase )
if __name__ == "__main__":
_lowercase : List[str] ='''This is my Python script that emulates the Enigma machine from WWII.'''
_lowercase : Optional[int] =(1, 1, 1)
_lowercase : Optional[int] ='''pictures'''
_lowercase : int =(rotora, rotora, rotora)
_lowercase : Any =enigma(message, rotor_pos, rotor_sel, pb)
print('''Encrypted message:''', en)
print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
| 661 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 1 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase , lowerCAmelCase_ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]:
A : List[str] =load_tool('text-classification' )
self.tool.setup()
A : Tuple =load_tool('text-classification' , remote=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Optional[int] =self.tool('That\'s quite cool' , ['positive', 'negative'] )
self.assertEqual(SCREAMING_SNAKE_CASE__ , 'positive' )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[Any]:
A : Optional[int] =self.remote_tool('That\'s quite cool' , ['positive', 'negative'] )
self.assertEqual(SCREAMING_SNAKE_CASE__ , 'positive' )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Any =self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] )
self.assertEqual(SCREAMING_SNAKE_CASE__ , 'positive' )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Optional[int] =self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] )
self.assertEqual(SCREAMING_SNAKE_CASE__ , 'positive' )
| 661 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 1 |
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : "DiagonalGaussianDistribution"
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : str = True
@register_to_config
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE__ : Tuple[int] = (64,) , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "silu" , SCREAMING_SNAKE_CASE__ : int = 4 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : int = 32 , SCREAMING_SNAKE_CASE__ : float = 0.1_8_2_1_5 , ) -> Optional[Any]:
super().__init__()
# pass init params to Encoder
A : Any =Encoder(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , down_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , double_z=SCREAMING_SNAKE_CASE__ , )
# pass init params to Decoder
A : Any =Decoder(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , up_block_types=SCREAMING_SNAKE_CASE__ , block_out_channels=SCREAMING_SNAKE_CASE__ , layers_per_block=SCREAMING_SNAKE_CASE__ , norm_num_groups=SCREAMING_SNAKE_CASE__ , act_fn=SCREAMING_SNAKE_CASE__ , )
A : Union[str, Any] =nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
A : Tuple =nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 )
A : List[str] =False
A : Optional[Any] =False
# only relevant if vae tiling is enabled
A : Optional[int] =self.config.sample_size
A : int =(
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
A : Tuple =int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
A : Dict =0.2_5
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> Any:
if isinstance(SCREAMING_SNAKE_CASE__ , (Encoder, Decoder) ):
A : Dict =value
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : bool = True ) -> Any:
A : Optional[Any] =use_tiling
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
self.enable_tiling(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
A : Optional[Any] =True
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]:
A : List[Any] =False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict[str, AttentionProcessor]:
A : Optional[Any] ={}
def fn_recursive_add_processors(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : torch.nn.Module , SCREAMING_SNAKE_CASE__ : Dict[str, AttentionProcessor] ):
if hasattr(SCREAMING_SNAKE_CASE__ , 'set_processor' ):
A : Any =module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f'{name}.{sub_name}' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return processors
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> List[Any]:
A : Optional[Any] =len(self.attn_processors.keys() )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) != count:
raise ValueError(
f'A dict of processors was passed, but the number of processors {len(SCREAMING_SNAKE_CASE__ )} does not match the'
f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' )
def fn_recursive_attn_processor(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : torch.nn.Module , SCREAMING_SNAKE_CASE__ : List[str] ):
if hasattr(SCREAMING_SNAKE_CASE__ , 'set_processor' ):
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
module.set_processor(SCREAMING_SNAKE_CASE__ )
else:
module.set_processor(processor.pop(f'{name}.processor' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f'{name}.{sub_name}' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for name, module in self.named_children():
fn_recursive_attn_processor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> AutoencoderKLOutput:
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )
if self.use_slicing and x.shape[0] > 1:
A : Union[str, Any] =[self.encoder(SCREAMING_SNAKE_CASE__ ) for x_slice in x.split(1 )]
A : Dict =torch.cat(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =self.encoder(SCREAMING_SNAKE_CASE__ )
A : Tuple =self.quant_conv(SCREAMING_SNAKE_CASE__ )
A : List[Any] =DiagonalGaussianDistribution(SCREAMING_SNAKE_CASE__ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =self.post_quant_conv(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.decoder(SCREAMING_SNAKE_CASE__ )
if not return_dict:
return (dec,)
return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ )
@apply_forward_hook
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_slicing and z.shape[0] > 1:
A : Tuple =[self._decode(SCREAMING_SNAKE_CASE__ ).sample for z_slice in z.split(1 )]
A : Dict =torch.cat(SCREAMING_SNAKE_CASE__ )
else:
A : List[str] =self._decode(SCREAMING_SNAKE_CASE__ ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]:
A : str =min(a.shape[2] , b.shape[2] , SCREAMING_SNAKE_CASE__ )
for y in range(SCREAMING_SNAKE_CASE__ ):
A : str =a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
A : List[Any] =min(a.shape[3] , b.shape[3] , SCREAMING_SNAKE_CASE__ )
for x in range(SCREAMING_SNAKE_CASE__ ):
A : Optional[Any] =a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> AutoencoderKLOutput:
A : int =int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
A : Optional[Any] =int(self.tile_latent_min_size * self.tile_overlap_factor )
A : Dict =self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
A : Dict =[]
for i in range(0 , x.shape[2] , SCREAMING_SNAKE_CASE__ ):
A : Any =[]
for j in range(0 , x.shape[3] , SCREAMING_SNAKE_CASE__ ):
A : str =x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
A : Any =self.encoder(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.quant_conv(SCREAMING_SNAKE_CASE__ )
row.append(SCREAMING_SNAKE_CASE__ )
rows.append(SCREAMING_SNAKE_CASE__ )
A : int =[]
for i, row in enumerate(SCREAMING_SNAKE_CASE__ ):
A : Optional[Any] =[]
for j, tile in enumerate(SCREAMING_SNAKE_CASE__ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
A : List[str] =self.blend_v(rows[i - 1][j] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if j > 0:
A : Any =self.blend_h(row[j - 1] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(SCREAMING_SNAKE_CASE__ , dim=3 ) )
A : List[str] =torch.cat(SCREAMING_SNAKE_CASE__ , dim=2 )
A : int =DiagonalGaussianDistribution(SCREAMING_SNAKE_CASE__ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
A : List[str] =int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
A : str =int(self.tile_sample_min_size * self.tile_overlap_factor )
A : Tuple =self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
A : Optional[int] =[]
for i in range(0 , z.shape[2] , SCREAMING_SNAKE_CASE__ ):
A : Any =[]
for j in range(0 , z.shape[3] , SCREAMING_SNAKE_CASE__ ):
A : Any =z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
A : Dict =self.post_quant_conv(SCREAMING_SNAKE_CASE__ )
A : str =self.decoder(SCREAMING_SNAKE_CASE__ )
row.append(SCREAMING_SNAKE_CASE__ )
rows.append(SCREAMING_SNAKE_CASE__ )
A : List[Any] =[]
for i, row in enumerate(SCREAMING_SNAKE_CASE__ ):
A : Optional[Any] =[]
for j, tile in enumerate(SCREAMING_SNAKE_CASE__ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
A : Optional[int] =self.blend_v(rows[i - 1][j] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if j > 0:
A : Optional[Any] =self.blend_h(row[j - 1] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(SCREAMING_SNAKE_CASE__ , dim=3 ) )
A : Optional[Any] =torch.cat(SCREAMING_SNAKE_CASE__ , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]:
A : List[Any] =sample
A : str =self.encode(SCREAMING_SNAKE_CASE__ ).latent_dist
if sample_posterior:
A : Tuple =posterior.sample(generator=SCREAMING_SNAKE_CASE__ )
else:
A : Tuple =posterior.mode()
A : str =self.decode(SCREAMING_SNAKE_CASE__ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=SCREAMING_SNAKE_CASE__ )
| 661 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 1 |
import baseaa
def A__ ( lowercase: str ) -> bytes:
return baseaa.baaencode(string.encode('utf-8' ) )
def A__ ( lowercase: bytes ) -> str:
return baseaa.baadecode(lowercase ).decode('utf-8' )
if __name__ == "__main__":
_lowercase : Tuple ='''Hello World!'''
_lowercase : Dict =baseaa_encode(test)
print(encoded)
_lowercase : int =baseaa_decode(encoded)
print(decoded)
| 661 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 1 |
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
_lowercase : str =argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--original_config_file''',
type=str,
required=True,
help='''The YAML config file corresponding to the original architecture.''',
)
parser.add_argument(
'''--num_in_channels''',
default=None,
type=int,
help='''The number of input channels. If `None` number of input channels will be automatically inferred.''',
)
parser.add_argument(
'''--image_size''',
default=5_1_2,
type=int,
help=(
'''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'''
''' Base. Use 768 for Stable Diffusion v2.'''
),
)
parser.add_argument(
'''--extract_ema''',
action='''store_true''',
help=(
'''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'''
''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'''
''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'''
),
)
parser.add_argument(
'''--upcast_attention''',
action='''store_true''',
help=(
'''Whether the attention computation should always be upcasted. This is necessary when running stable'''
''' diffusion 2.1.'''
),
)
parser.add_argument(
'''--from_safetensors''',
action='''store_true''',
help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''',
)
parser.add_argument(
'''--to_safetensors''',
action='''store_true''',
help='''Whether to store pipeline in safetensors format or not.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''')
def A__ ( lowercase: Union[str, Any] ) -> Any:
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F'could not parse string as bool {string}' )
parser.add_argument(
'''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool
)
parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int)
_lowercase : List[str] =parser.parse_args()
_lowercase : Optional[int] =download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 661 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Any ={
'''configuration_mobilebert''': [
'''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileBertConfig''',
'''MobileBertOnnxConfig''',
],
'''tokenization_mobilebert''': ['''MobileBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any =['''MobileBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] =[
'''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileBertForMaskedLM''',
'''MobileBertForMultipleChoice''',
'''MobileBertForNextSentencePrediction''',
'''MobileBertForPreTraining''',
'''MobileBertForQuestionAnswering''',
'''MobileBertForSequenceClassification''',
'''MobileBertForTokenClassification''',
'''MobileBertLayer''',
'''MobileBertModel''',
'''MobileBertPreTrainedModel''',
'''load_tf_weights_in_mobilebert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] =[
'''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileBertForMaskedLM''',
'''TFMobileBertForMultipleChoice''',
'''TFMobileBertForNextSentencePrediction''',
'''TFMobileBertForPreTraining''',
'''TFMobileBertForQuestionAnswering''',
'''TFMobileBertForSequenceClassification''',
'''TFMobileBertForTokenClassification''',
'''TFMobileBertMainLayer''',
'''TFMobileBertModel''',
'''TFMobileBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilebert import (
MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileBertConfig,
MobileBertOnnxConfig,
)
from .tokenization_mobilebert import MobileBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mobilebert_fast import MobileBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertLayer,
MobileBertModel,
MobileBertPreTrainedModel,
load_tf_weights_in_mobilebert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilebert import (
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertMainLayer,
TFMobileBertModel,
TFMobileBertPreTrainedModel,
)
else:
import sys
_lowercase : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 661 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 1 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def A__ ( ) -> tuple[list[int], int]:
A : Optional[int] =[randint(-1_000, 1_000 ) for i in range(10 )]
A : List[Any] =randint(-5_000, 5_000 )
return (arr, r)
_lowercase : int =make_dataset()
def A__ ( lowercase: list[int], lowercase: int ) -> tuple[int, ...]:
for triplet in permutations(lowercase, 3 ):
if sum(lowercase ) == target:
return tuple(sorted(lowercase ) )
return (0, 0, 0)
def A__ ( lowercase: list[int], lowercase: int ) -> tuple[int, int, int]:
arr.sort()
A : Optional[int] =len(lowercase )
for i in range(n - 1 ):
A , A : Union[str, Any] =i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def A__ ( ) -> tuple[float, float]:
A : Optional[Any] ='\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n'
A : Tuple ='\ntriplet_sum1(*dataset)\n'
A : Optional[int] ='\ntriplet_sum2(*dataset)\n'
A : Dict =repeat(setup=lowercase, stmt=lowercase, repeat=5, number=10_000 )
A : Optional[int] =repeat(setup=lowercase, stmt=lowercase, repeat=5, number=10_000 )
return (min(lowercase ), min(lowercase ))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : List[Any] =solution_times()
print(f'''The time for naive implementation is {times[0]}.''')
print(f'''The time for optimized implementation is {times[1]}.''')
| 661 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 1 |
_lowercase : str =9.8_0_6_6_5
def A__ ( lowercase: float, lowercase: float, lowercase: float = g ) -> float:
if fluid_density <= 0:
raise ValueError('Impossible fluid density' )
if volume < 0:
raise ValueError('Impossible Object volume' )
if gravity <= 0:
raise ValueError('Impossible Gravity' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 661 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsé.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 1 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_lowercase : Dict =logging.get_logger(__name__)
def A__ ( lowercase: str ) -> Tuple:
A : List[str] =SwinConfig.from_pretrained(
'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] )
A : List[str] =MaskFormerConfig(backbone_config=lowercase )
A : Tuple ='huggingface/label-files'
if "ade20k-full" in model_name:
# this should be ok
A : Tuple =847
A : int ='maskformer-ade20k-full-id2label.json'
elif "ade" in model_name:
# this should be ok
A : str =150
A : Tuple ='ade20k-id2label.json'
elif "coco-stuff" in model_name:
# this should be ok
A : Union[str, Any] =171
A : Dict ='maskformer-coco-stuff-id2label.json'
elif "coco" in model_name:
# TODO
A : int =133
A : int ='coco-panoptic-id2label.json'
elif "cityscapes" in model_name:
# this should be ok
A : List[Any] =19
A : Tuple ='cityscapes-id2label.json'
elif "vistas" in model_name:
# this should be ok
A : str =65
A : Union[str, Any] ='mapillary-vistas-id2label.json'
A : Union[str, Any] =json.load(open(hf_hub_download(lowercase, lowercase, repo_type='dataset' ), 'r' ) )
A : Dict ={int(lowercase ): v for k, v in idalabel.items()}
return config
def A__ ( lowercase: Any ) -> Tuple:
A : Union[str, Any] =[]
# stem
# fmt: off
rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') )
rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') )
if i < 3:
rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') )
rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') )
rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') )
rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') )
rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') )
# FPN
rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') )
rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') )
for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ):
rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') )
rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') )
rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') )
rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') )
rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') )
rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') )
rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') )
rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') )
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') )
# cross-attention out projection
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') )
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') )
# MLP 1
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') )
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') )
# MLP 2
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') )
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') )
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') )
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') )
# layernorm 3 (final layernorm)
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') )
rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') )
rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') )
# heads on top
rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') )
rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') )
rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') )
rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') )
for i in range(3 ):
rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') )
rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') )
# fmt: on
return rename_keys
def A__ ( lowercase: Dict, lowercase: Dict, lowercase: Optional[int] ) -> Optional[Any]:
A : str =dct.pop(lowercase )
A : List[Any] =val
def A__ ( lowercase: int, lowercase: Dict ) -> str:
A : Dict =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
A : Tuple =num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
A : Optional[Any] =state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' )
A : str =state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A : Tuple =in_proj_weight[:dim, :]
A : Any =in_proj_bias[: dim]
A : Optional[Any] =in_proj_weight[
dim : dim * 2, :
]
A : Optional[int] =in_proj_bias[
dim : dim * 2
]
A : int =in_proj_weight[
-dim :, :
]
A : List[Any] =in_proj_bias[-dim :]
# fmt: on
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> Dict:
# fmt: off
A : Any =config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
A : Any =state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' )
A : int =state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
A : Optional[Any] =in_proj_weight[: hidden_size, :]
A : Union[str, Any] =in_proj_bias[:config.hidden_size]
A : Optional[Any] =in_proj_weight[hidden_size : hidden_size * 2, :]
A : List[Any] =in_proj_bias[hidden_size : hidden_size * 2]
A : List[str] =in_proj_weight[-hidden_size :, :]
A : int =in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
A : Union[str, Any] =state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' )
A : List[Any] =state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
A : Optional[int] =in_proj_weight[: hidden_size, :]
A : Any =in_proj_bias[:config.hidden_size]
A : Dict =in_proj_weight[hidden_size : hidden_size * 2, :]
A : int =in_proj_bias[hidden_size : hidden_size * 2]
A : Any =in_proj_weight[-hidden_size :, :]
A : Dict =in_proj_bias[-hidden_size :]
# fmt: on
def A__ ( ) -> torch.Tensor:
A : Tuple ='http://images.cocodataset.org/val2017/000000039769.jpg'
A : Union[str, Any] =Image.open(requests.get(lowercase, stream=lowercase ).raw )
return im
@torch.no_grad()
def A__ ( lowercase: str, lowercase: str, lowercase: str, lowercase: bool = False ) -> Dict:
A : Union[str, Any] =get_maskformer_config(lowercase )
# load original state_dict
with open(lowercase, 'rb' ) as f:
A : Optional[Any] =pickle.load(lowercase )
A : Optional[int] =data['model']
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
A : List[str] =create_rename_keys(lowercase )
for src, dest in rename_keys:
rename_key(lowercase, lowercase, lowercase )
read_in_swin_q_k_v(lowercase, config.backbone_config )
read_in_decoder_q_k_v(lowercase, lowercase )
# update to torch tensors
for key, value in state_dict.items():
A : Dict =torch.from_numpy(lowercase )
# load 🤗 model
A : int =MaskFormerForInstanceSegmentation(lowercase )
model.eval()
for name, param in model.named_parameters():
print(lowercase, param.shape )
A , A : List[Any] =model.load_state_dict(lowercase, strict=lowercase )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(lowercase ) == 0, F'Unexpected keys: {unexpected_keys}'
# verify results
A : Dict =prepare_img()
if "vistas" in model_name:
A : Optional[int] =65
elif "cityscapes" in model_name:
A : int =65_535
else:
A : Optional[int] =255
A : List[str] =True if 'ade' in model_name else False
A : Optional[int] =MaskFormerImageProcessor(ignore_index=lowercase, reduce_labels=lowercase )
A : Tuple =image_processor(lowercase, return_tensors='pt' )
A : Optional[Any] =model(**lowercase )
print('Logits:', outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
A : Optional[Any] =torch.tensor(
[[3.63_53, -4.47_70, -2.60_65], [0.50_81, -4.23_94, -3.53_43], [2.19_09, -5.03_53, -1.93_23]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowercase, atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F'Saving model and image processor to {pytorch_dump_folder_path}' )
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
image_processor.save_pretrained(lowercase )
if push_to_hub:
print('Pushing model and image processor to the hub...' )
model.push_to_hub(F'nielsr/{model_name}' )
image_processor.push_to_hub(F'nielsr/{model_name}' )
if __name__ == "__main__":
_lowercase : Optional[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''maskformer-swin-tiny-ade''',
type=str,
help=('''Name of the MaskFormer model you\'d like to convert''',),
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl''',
type=str,
help='''Path to the original state dict (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_lowercase : int =parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 661 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 1 |
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
_lowercase : Tuple =2_9_9_7_9_2_4_5_8
# Symbols
_lowercase , _lowercase , _lowercase , _lowercase : Any =symbols('''ct x y z''')
def A__ ( lowercase: float ) -> float:
if velocity > c:
raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError('Speed must be greater than or equal to 1!' )
return velocity / c
def A__ ( lowercase: float ) -> float:
return 1 / sqrt(1 - beta(lowercase ) ** 2 )
def A__ ( lowercase: float ) -> np.ndarray:
return np.array(
[
[gamma(lowercase ), -gamma(lowercase ) * beta(lowercase ), 0, 0],
[-gamma(lowercase ) * beta(lowercase ), gamma(lowercase ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def A__ ( lowercase: float, lowercase: np.ndarray | None = None ) -> np.ndarray:
# Ensure event is not empty
if event is None:
A : List[str] =np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(lowercase ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
_lowercase : Dict =transform(2_9_9_7_9_2_4_5)
print('''Example of four vector: ''')
print(f'''ct\' = {four_vector[0]}''')
print(f'''x\' = {four_vector[1]}''')
print(f'''y\' = {four_vector[2]}''')
print(f'''z\' = {four_vector[3]}''')
# Substitute symbols with numerical values
_lowercase : Dict ={ct: c, x: 1, y: 1, z: 1}
_lowercase : Dict =[four_vector[i].subs(sub_dict) for i in range(4)]
print(f'''\n{numerical_vector}''')
| 661 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def A__ ( lowercase: Optional[Any], lowercase: List[Any]=False ) -> Dict:
A : Optional[Any] =OmegaConf.load(lowercase )
if display:
print(yaml.dump(OmegaConf.to_container(lowercase ) ) )
return config
def A__ ( lowercase: Union[str, Any], lowercase: str=None, lowercase: List[Any]=None ) -> List[Any]:
if conf_path is None:
A : List[str] ='./model_checkpoints/vqgan_only.yaml'
A : Any =load_config(lowercase, display=lowercase )
A : Tuple =VQModel(**config.model.params )
if ckpt_path is None:
A : Union[str, Any] ='./model_checkpoints/vqgan_only.pt'
A : Optional[int] =torch.load(lowercase, map_location=lowercase )
if ".ckpt" in ckpt_path:
A : Optional[int] =sd['state_dict']
model.load_state_dict(lowercase, strict=lowercase )
model.to(lowercase )
del sd
return model
def A__ ( lowercase: int, lowercase: Tuple ) -> List[str]:
A , A , A : List[str] =model.encode(lowercase )
print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' )
A : Dict =model.decode(lowercase )
return xrec
def A__ ( lowercase: Optional[int], lowercase: int=False ) -> Dict:
A , A : Any =string.rsplit('.', 1 )
if reload:
A : int =importlib.import_module(lowercase )
importlib.reload(lowercase )
return getattr(importlib.import_module(lowercase, package=lowercase ), cls )
def A__ ( lowercase: List[Any] ) -> int:
if "target" not in config:
raise KeyError('Expected key `target` to instantiate.' )
return get_obj_from_str(config['target'] )(**config.get('params', {} ) )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Union[str, Any]=True, lowercase: Any=True ) -> List[str]:
A : Dict =instantiate_from_config(lowercase )
if sd is not None:
model.load_state_dict(lowercase )
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def A__ ( lowercase: Optional[Any], lowercase: Tuple, lowercase: Union[str, Any], lowercase: int ) -> List[str]:
# load the specified checkpoint
if ckpt:
A : str =torch.load(lowercase, map_location='cpu' )
A : str =pl_sd['global_step']
print(F'loaded model from global step {global_step}.' )
else:
A : Dict ={'state_dict': None}
A : Any =None
A : Optional[Any] =load_model_from_config(config.model, pl_sd['state_dict'], gpu=lowercase, eval_mode=lowercase )['model']
return model, global_step
| 661 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowercase : Union[str, Any] =logging.get_logger(__name__)
_lowercase : Optional[int] ={
'''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = "deformable_detr"
lowercase : Optional[int] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : int=3_00 , SCREAMING_SNAKE_CASE__ : int=10_24 , SCREAMING_SNAKE_CASE__ : List[str]=6 , SCREAMING_SNAKE_CASE__ : Tuple=10_24 , SCREAMING_SNAKE_CASE__ : Any=8 , SCREAMING_SNAKE_CASE__ : Any=6 , SCREAMING_SNAKE_CASE__ : int=10_24 , SCREAMING_SNAKE_CASE__ : List[Any]=8 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict="relu" , SCREAMING_SNAKE_CASE__ : Any=2_56 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Tuple=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Optional[int]="sine" , SCREAMING_SNAKE_CASE__ : Tuple="resnet50" , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : int=3_00 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : List[Any]=5 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.2_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> Optional[Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
A : Optional[int] =CONFIG_MAPPING['resnet'](out_features=['stage4'] )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : int =backbone_config.get('model_type' )
A : Optional[Any] =CONFIG_MAPPING[backbone_model_type]
A : Dict =config_class.from_dict(SCREAMING_SNAKE_CASE__ )
A : str =use_timm_backbone
A : Union[str, Any] =backbone_config
A : Dict =num_channels
A : Dict =num_queries
A : List[Any] =max_position_embeddings
A : Optional[int] =d_model
A : Optional[Any] =encoder_ffn_dim
A : Tuple =encoder_layers
A : Union[str, Any] =encoder_attention_heads
A : Optional[int] =decoder_ffn_dim
A : Union[str, Any] =decoder_layers
A : Tuple =decoder_attention_heads
A : Optional[Any] =dropout
A : Dict =attention_dropout
A : Dict =activation_dropout
A : Any =activation_function
A : str =init_std
A : Any =init_xavier_std
A : Optional[Any] =encoder_layerdrop
A : Union[str, Any] =auxiliary_loss
A : List[str] =position_embedding_type
A : List[str] =backbone
A : int =use_pretrained_backbone
A : int =dilation
# deformable attributes
A : List[Any] =num_feature_levels
A : Optional[Any] =encoder_n_points
A : List[str] =decoder_n_points
A : Optional[Any] =two_stage
A : List[str] =two_stage_num_proposals
A : Optional[int] =with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('If two_stage is True, with_box_refine must be True.' )
# Hungarian matcher
A : Optional[Any] =class_cost
A : Tuple =bbox_cost
A : Optional[Any] =giou_cost
# Loss coefficients
A : Union[str, Any] =mask_loss_coefficient
A : Dict =dice_loss_coefficient
A : List[str] =bbox_loss_coefficient
A : Optional[int] =giou_loss_coefficient
A : Any =eos_coefficient
A : Any =focal_alpha
A : Tuple =disable_custom_kernels
super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int:
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int:
return self.d_model
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
A : List[Any] =copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
A : str =self.backbone_config.to_dict()
A : Dict =self.__class__.model_type
return output
| 661 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 1 |
from sklearn.metrics import fa_score
import datasets
_lowercase : int ='''
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
'''
_lowercase : List[str] ='''
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.
- \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{\'f1\': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results[\'f1\'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results[\'f1\'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")
>>> print(round(results[\'f1\'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{\'f1\': array([0.8, 0. , 0. ])}
'''
_lowercase : str ='''
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('int32' ) ),
'references': datasets.Sequence(datasets.Value('int32' ) ),
}
if self.config_name == 'multilabel'
else {
'predictions': datasets.Value('int32' ),
'references': datasets.Value('int32' ),
} ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : Dict="binary" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> Optional[Any]:
A : int =fa_score(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , pos_label=SCREAMING_SNAKE_CASE__ , average=SCREAMING_SNAKE_CASE__ , sample_weight=SCREAMING_SNAKE_CASE__ )
return {"f1": float(SCREAMING_SNAKE_CASE__ ) if score.size == 1 else score}
| 661 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 1 |
import argparse
import fairseq
import torch
from torch import nn
from transformers import (
MBartaaTokenizer,
MBartConfig,
MBartForCausalLM,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
_lowercase : Union[str, Any] =logging.get_logger(__name__)
_lowercase : Tuple ={
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
_lowercase : List[str] =[
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: List[Any], lowercase: Union[str, Any], lowercase: Optional[int] ) -> str:
for attribute in key.split('.' ):
A : List[Any] =getattr(lowercase, lowercase )
if weight_type is not None:
A : Optional[int] =getattr(lowercase, lowercase ).shape
else:
A : List[Any] =hf_pointer.shape
assert hf_shape == value.shape, (
F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
F' {value.shape} for {full_name}'
)
if weight_type == "weight":
A : List[str] =value
elif weight_type == "weight_g":
A : Optional[Any] =value
elif weight_type == "weight_v":
A : List[str] =value
elif weight_type == "bias":
A : List[str] =value
else:
A : str =value
logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def A__ ( lowercase: int, lowercase: List[str] ) -> Dict:
A : str =[]
A : List[Any] =fairseq_model.state_dict()
A : Optional[int] =hf_model.feature_extractor
A : Optional[int] =hf_model.adapter
for name, value in fairseq_dict.items():
A : str =False
if "conv_layers" in name:
load_conv_layer(
lowercase, lowercase, lowercase, lowercase, hf_model.config.feat_extract_norm == 'group', )
A : List[str] =True
elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ):
load_adapter(lowercase, lowercase, lowercase, lowercase )
A : List[str] =True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
A : str =True
if "*" in mapped_key:
A : int =name.split(lowercase )[0].split('.' )[-2]
A : List[str] =mapped_key.replace('*', lowercase )
if "weight_g" in name:
A : List[Any] ='weight_g'
elif "weight_v" in name:
A : Optional[int] ='weight_v'
elif "bias" in name:
A : List[str] ='bias'
elif "weight" in name:
A : Any ='weight'
else:
A : Optional[int] =None
set_recursively(lowercase, lowercase, lowercase, lowercase, lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(F'Unused weights: {unused_weights}' )
def A__ ( lowercase: List[str], lowercase: List[str], lowercase: Tuple, lowercase: Any, lowercase: Dict ) -> List[Any]:
A : str =full_name.split('conv_layers.' )[-1]
A : List[Any] =name.split('.' )
A : Optional[Any] =int(items[0] )
A : int =int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'
)
A : Optional[int] =value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'
)
A : Union[str, Any] =value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'
" found."
)
A : Any =value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'{full_name} has size {value.shape}, but'
F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'
)
A : Any =value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase )
def A__ ( lowercase: Tuple, lowercase: int, lowercase: List[str], lowercase: Optional[Any] ) -> str:
A : Union[str, Any] =full_name.split('adaptor.' )[-1]
A : Tuple =name.split('.' )
if items[1].isdigit():
A : Any =int(items[1] )
else:
A : List[str] =None
if "adaptor" not in full_name:
if "proj_ln" in full_name:
# has to be layer norm
if "bias" in name:
assert (
value.shape == adapter.proj_layer_norm.bias.data.shape
), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.'
A : Optional[int] =value
logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' )
if "weight" in name:
assert (
value.shape == adapter.proj_layer_norm.weight.data.shape
), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.'
A : Optional[Any] =value
else:
# has to be projection layer
if "bias" in name:
assert (
value.shape == adapter.proj.bias.data.shape
), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.'
A : int =value
logger.info(F'Adapter proj layer bias was initialized from {full_name}.' )
if "weight" in name:
assert (
value.shape == adapter.proj.weight.data.shape
), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.'
A : Optional[int] =value
logger.info(F'Adapter proj layer weight was initialized from {full_name}.' )
elif isinstance(lowercase, lowercase ):
if "bias" in name:
assert (
value.shape == adapter.layers[layer_id].conv.bias.data.shape
), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.'
A : List[str] =value
logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' )
elif "weight" in name:
assert (
value.shape == adapter.layers[layer_id].conv.weight.data.shape
), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.'
A : Optional[int] =value
logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' )
else:
unused_weights.append(lowercase )
def A__ ( lowercase: Optional[Any] ) -> Optional[Any]:
A , A : str =emb.weight.shape
A : List[Any] =nn.Linear(lowercase, lowercase, bias=lowercase )
A : int =emb.weight.data
return lin_layer
@torch.no_grad()
def A__ ( lowercase: Any, lowercase: str, lowercase: List[str], lowercase: int, lowercase: Optional[Any], lowercase: List[Any], lowercase: Optional[int], lowercase: int, lowercase: str, lowercase: List[Any], lowercase: str, ) -> Optional[int]:
A : Optional[int] =WavaVecaConfig.from_pretrained(
lowercase, add_adapter=lowercase, adapter_stride=lowercase, adapter_kernel_size=lowercase, use_auth_token=lowercase, output_hidden_size=lowercase, )
A : int =MBartConfig.from_pretrained(lowercase )
# load model
A , A , A : List[Any] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={
'config_yaml': config_yaml_path,
'data': '/'.join(dict_path.split('/' )[:-1] ),
'w2v_path': checkpoint_path,
'load_pretrained_decoder_from': None,
}, )
A : Union[str, Any] =model[0].eval()
# load feature extractor
A : Tuple =WavaVecaFeatureExtractor.from_pretrained(lowercase, use_auth_token=lowercase )
# set weights for wav2vec2 encoder
A : str =WavaVecaModel(lowercase )
recursively_load_weights_wavaveca(model.encoder, lowercase )
# load decoder weights
A : List[str] =MBartForCausalLM(lowercase )
A , A : Optional[Any] =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=lowercase )
logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' )
logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' )
A : Optional[Any] =SpeechEncoderDecoderModel(encoder=lowercase, decoder=lowercase )
A : Any =False
A : Optional[int] =MBartaaTokenizer(lowercase )
tokenizer.save_pretrained(lowercase )
A : int =hf_wavavec.config.to_dict()
A : Dict =tokenizer.pad_token_id
A : str =tokenizer.bos_token_id
A : Tuple =tokenizer.eos_token_id
A : Tuple ='mbart50'
A : Any ='wav2vec2'
A : Tuple =tokenizer.eos_token_id
A : List[Any] =250_004
A : Optional[int] =tokenizer.eos_token_id
A : Any =SpeechEncoderDecoderConfig.from_dict(lowercase )
hf_wavavec.save_pretrained(lowercase )
feature_extractor.save_pretrained(lowercase )
if __name__ == "__main__":
_lowercase : int =argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''')
parser.add_argument(
'''--encoder_config_path''',
default='''facebook/wav2vec2-xls-r-1b''',
type=str,
help='''Path to hf encoder wav2vec2 checkpoint config''',
)
parser.add_argument(
'''--decoder_config_path''',
default='''facebook/mbart-large-50-one-to-many-mmt''',
type=str,
help='''Path to hf decoder checkpoint config''',
)
parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''')
parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''')
parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''')
parser.add_argument('''--encoder_output_dim''', default=1_0_2_4, type=int, help='''encoder output dim''')
parser.add_argument('''--start_token_id''', default=2_5_0_0_0_4, type=int, help='''`decoder_start_token_id` of model config''')
_lowercase : List[str] =parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
args.config_yaml_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
add_adapter=args.add_adapter,
adapter_kernel_size=args.adapter_kernel_size,
adapter_stride=args.adapter_stride,
decoder_start_token_id=args.start_token_id,
encoder_output_dim=args.encoder_output_dim,
)
| 661 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 1 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_lowercase : List[Any] =logging.get_logger(__name__)
_lowercase : Dict =OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
_lowercase : int =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def A__ ( lowercase: str ) -> Union[str, Any]:
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
A : Optional[Any] =model_type_to_module_name(lowercase )
A : Union[str, Any] =importlib.import_module(F'.{module_name}', 'transformers.models' )
try:
return getattr(lowercase, lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(lowercase, '__name__', lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
A : Optional[Any] =importlib.import_module('transformers' )
if hasattr(lowercase, lowercase ):
return getattr(lowercase, lowercase )
return None
def A__ ( lowercase: Union[str, os.PathLike], lowercase: Optional[Union[str, os.PathLike]] = None, lowercase: bool = False, lowercase: bool = False, lowercase: Optional[Dict[str, str]] = None, lowercase: Optional[Union[bool, str]] = None, lowercase: Optional[str] = None, lowercase: bool = False, **lowercase: Union[str, Any], ) -> Dict:
A : Dict =get_file_from_repo(
lowercase, lowercase, cache_dir=lowercase, force_download=lowercase, resume_download=lowercase, proxies=lowercase, use_auth_token=lowercase, revision=lowercase, local_files_only=lowercase, )
if resolved_config_file is None:
logger.info(
'Could not locate the feature extractor configuration file, will try to use the model config instead.' )
return {}
with open(lowercase, encoding='utf-8' ) as reader:
return json.load(lowercase )
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str ) -> Any:
raise EnvironmentError(
'AutoFeatureExtractor is designed to be instantiated '
'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =kwargs.pop('config' , SCREAMING_SNAKE_CASE__ )
A : List[str] =kwargs.pop('trust_remote_code' , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =True
A , A : Union[str, Any] =FeatureExtractionMixin.get_feature_extractor_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =config_dict.get('feature_extractor_type' , SCREAMING_SNAKE_CASE__ )
A : Dict =None
if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ):
A : Union[str, Any] =config_dict['auto_map']['AutoFeatureExtractor']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Any =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
# It could be in `config.feature_extractor_type``
A : Union[str, Any] =getattr(SCREAMING_SNAKE_CASE__ , 'feature_extractor_type' , SCREAMING_SNAKE_CASE__ )
if hasattr(SCREAMING_SNAKE_CASE__ , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map:
A : Union[str, Any] =config.auto_map['AutoFeatureExtractor']
if feature_extractor_class is not None:
A : Tuple =feature_extractor_class_from_name(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =feature_extractor_auto_map is not None
A : str =feature_extractor_class is not None or type(SCREAMING_SNAKE_CASE__ ) in FEATURE_EXTRACTOR_MAPPING
A : List[Any] =resolve_trust_remote_code(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if has_remote_code and trust_remote_code:
A : Any =get_class_from_dynamic_module(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Any =kwargs.pop('code_revision' , SCREAMING_SNAKE_CASE__ )
if os.path.isdir(SCREAMING_SNAKE_CASE__ ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(SCREAMING_SNAKE_CASE__ ) in FEATURE_EXTRACTOR_MAPPING:
A : Dict =FEATURE_EXTRACTOR_MAPPING[type(SCREAMING_SNAKE_CASE__ )]
return feature_extractor_class.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
raise ValueError(
f'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '
f'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '
f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
FEATURE_EXTRACTOR_MAPPING.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
| 661 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsé.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
_lowercase : List[Any] ={
'''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''',
'''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''',
'''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''',
'''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''',
'''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''',
'''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''',
'''mask_downscaling.0''': '''mask_embed.conv1''',
'''mask_downscaling.1''': '''mask_embed.layer_norm1''',
'''mask_downscaling.3''': '''mask_embed.conv2''',
'''mask_downscaling.4''': '''mask_embed.layer_norm2''',
'''mask_downscaling.6''': '''mask_embed.conv3''',
'''point_embeddings''': '''point_embed''',
'''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''',
'''image_encoder''': '''vision_encoder''',
'''neck.0''': '''neck.conv1''',
'''neck.1''': '''neck.layer_norm1''',
'''neck.2''': '''neck.conv2''',
'''neck.3''': '''neck.layer_norm2''',
'''patch_embed.proj''': '''patch_embed.projection''',
'''.norm''': '''.layer_norm''',
'''blocks''': '''layers''',
}
def A__ ( lowercase: List[Any] ) -> Dict:
A : int ={}
state_dict.pop('pixel_mean', lowercase )
state_dict.pop('pixel_std', lowercase )
A : Any =r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
A : Dict =key.replace(lowercase, lowercase )
if re.match(lowercase, lowercase ):
A : str =int(re.match(lowercase, lowercase ).group(2 ) )
if layer_nb == 0:
A : Dict =key.replace('layers.0', 'proj_in' )
elif layer_nb == 1:
A : List[str] =key.replace('layers.1', 'layers.0' )
elif layer_nb == 2:
A : Optional[Any] =key.replace('layers.2', 'proj_out' )
A : Tuple =value
A : Dict =model_state_dict[
'prompt_encoder.shared_embedding.positional_embedding'
]
return model_state_dict
def A__ ( lowercase: Optional[Any], lowercase: List[str], lowercase: Any, lowercase: Tuple="ybelkada/segment-anything" ) -> Union[str, Any]:
A : Optional[int] =hf_hub_download(lowercase, F'checkpoints/{model_name}.pth' )
if "sam_vit_b" in model_name:
A : Dict =SamConfig()
elif "sam_vit_l" in model_name:
A : Optional[Any] =SamVisionConfig(
hidden_size=1_024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], )
A : Any =SamConfig(
vision_config=lowercase, )
elif "sam_vit_h" in model_name:
A : Tuple =SamVisionConfig(
hidden_size=1_280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], )
A : Any =SamConfig(
vision_config=lowercase, )
A : int =torch.load(lowercase, map_location='cpu' )
A : List[Any] =replace_keys(lowercase )
A : int =SamImageProcessor()
A : Optional[Any] =SamProcessor(image_processor=lowercase )
A : Optional[int] =SamModel(lowercase )
hf_model.load_state_dict(lowercase )
A : Tuple =hf_model.to('cuda' )
A : Tuple ='https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'
A : List[Any] =Image.open(requests.get(lowercase, stream=lowercase ).raw ).convert('RGB' )
A : List[Any] =[[[400, 650]]]
A : List[str] =[[1]]
A : int =processor(images=np.array(lowercase ), return_tensors='pt' ).to('cuda' )
with torch.no_grad():
A : Optional[Any] =hf_model(**lowercase )
A : List[Any] =output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.5_79_89_02_51_15_96_68
A : Any =processor(
images=np.array(lowercase ), input_points=lowercase, input_labels=lowercase, return_tensors='pt' ).to('cuda' )
with torch.no_grad():
A : List[str] =hf_model(**lowercase )
A : Tuple =output.iou_scores.squeeze()
assert scores[-1].item() == 0.97_12_60_30_92_19_36_04
A : List[Any] =((75, 275, 1_725, 850),)
A : Union[str, Any] =processor(images=np.array(lowercase ), input_boxes=lowercase, return_tensors='pt' ).to('cuda' )
with torch.no_grad():
A : List[Any] =hf_model(**lowercase )
A : List[str] =output.iou_scores.squeeze()
assert scores[-1].item() == 0.86_86_01_56_05_92_65_14
# Test with 2 points and 1 image.
A : Optional[int] =[[[400, 650], [800, 650]]]
A : Tuple =[[1, 1]]
A : str =processor(
images=np.array(lowercase ), input_points=lowercase, input_labels=lowercase, return_tensors='pt' ).to('cuda' )
with torch.no_grad():
A : Optional[Any] =hf_model(**lowercase )
A : List[str] =output.iou_scores.squeeze()
assert scores[-1].item() == 0.99_36_04_77_92_43_46_92
if __name__ == "__main__":
_lowercase : str =argparse.ArgumentParser()
_lowercase : Tuple =['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195''']
parser.add_argument(
'''--model_name''',
default='''sam_vit_h_4b8939''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
parser.add_argument(
'''--model_hub_id''',
default='''ybelkada/segment-anything''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
_lowercase : List[Any] =parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 661 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 1 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 1 |
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from fastapi import Body, FastAPI, HTTPException
from fastapi.routing import APIRoute
from pydantic import BaseModel
from starlette.responses import JSONResponse
from uvicorn import run
_lowercase : Optional[Any] =True
except (ImportError, AttributeError):
_lowercase : Optional[int] =object
def A__ ( *lowercase: Optional[int], **lowercase: Any ) -> int:
pass
_lowercase : List[Any] =False
_lowercase : str =logging.get_logger('''transformers-cli/serving''')
def A__ ( lowercase: Namespace ) -> Dict:
A : str =pipeline(
task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, )
return ServeCommand(lowercase, args.host, args.port, args.workers )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : dict
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[str]
lowercase : Optional[List[int]]
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : str
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Any
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> List[Any]:
A : Optional[Any] =parser.add_parser(
'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' )
serve_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , choices=get_supported_tasks() , help='The task to run the pipeline on' , )
serve_parser.add_argument('--host' , type=SCREAMING_SNAKE_CASE__ , default='localhost' , help='Interface the server will listen on.' )
serve_parser.add_argument('--port' , type=SCREAMING_SNAKE_CASE__ , default=88_88 , help='Port the serving will listen to.' )
serve_parser.add_argument('--workers' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of http workers' )
serve_parser.add_argument('--model' , type=SCREAMING_SNAKE_CASE__ , help='Model\'s name or path to stored model.' )
serve_parser.add_argument('--config' , type=SCREAMING_SNAKE_CASE__ , help='Model\'s config name or path to stored model.' )
serve_parser.add_argument('--tokenizer' , type=SCREAMING_SNAKE_CASE__ , help='Tokenizer name to use.' )
serve_parser.add_argument(
'--device' , type=SCREAMING_SNAKE_CASE__ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , )
serve_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Pipeline , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
A : str =pipeline
A : List[Any] =host
A : List[str] =port
A : str =workers
if not _serve_dependencies_installed:
raise RuntimeError(
'Using serve command requires FastAPI and uvicorn. '
'Please install transformers with [serving]: pip install "transformers[serving]".'
'Or install FastAPI and uvicorn separately.' )
else:
logger.info(f'Serving model over {host}:{port}' )
A : List[str] =FastAPI(
routes=[
APIRoute(
'/' , self.model_info , response_model=SCREAMING_SNAKE_CASE__ , response_class=SCREAMING_SNAKE_CASE__ , methods=['GET'] , ),
APIRoute(
'/tokenize' , self.tokenize , response_model=SCREAMING_SNAKE_CASE__ , response_class=SCREAMING_SNAKE_CASE__ , methods=['POST'] , ),
APIRoute(
'/detokenize' , self.detokenize , response_model=SCREAMING_SNAKE_CASE__ , response_class=SCREAMING_SNAKE_CASE__ , methods=['POST'] , ),
APIRoute(
'/forward' , self.forward , response_model=SCREAMING_SNAKE_CASE__ , response_class=SCREAMING_SNAKE_CASE__ , methods=['POST'] , ),
] , timeout=6_00 , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str:
run(self._app , host=self.host , port=self.port , workers=self.workers )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]:
return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ : bool = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) ) -> int:
try:
A : str =self._pipeline.tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
if return_ids:
A : Optional[int] =self._pipeline.tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
return ServeTokenizeResult(tokens=SCREAMING_SNAKE_CASE__ , tokens_ids=SCREAMING_SNAKE_CASE__ )
else:
return ServeTokenizeResult(tokens=SCREAMING_SNAKE_CASE__ )
except Exception as e:
raise HTTPException(status_code=5_00 , detail={'model': '', 'error': str(SCREAMING_SNAKE_CASE__ )} )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ : bool = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ : bool = Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) , ) -> str:
try:
A : List[Any] =self._pipeline.tokenizer.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return ServeDeTokenizeResult(model='' , text=SCREAMING_SNAKE_CASE__ )
except Exception as e:
raise HTTPException(status_code=5_00 , detail={'model': '', 'error': str(SCREAMING_SNAKE_CASE__ )} )
async def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any]=Body(SCREAMING_SNAKE_CASE__ , embed=SCREAMING_SNAKE_CASE__ ) ) -> List[str]:
# Check we don't have empty string
if len(SCREAMING_SNAKE_CASE__ ) == 0:
return ServeForwardResult(output=[] , attention=[] )
try:
# Forward through the model
A : Any =self._pipeline(SCREAMING_SNAKE_CASE__ )
return ServeForwardResult(output=SCREAMING_SNAKE_CASE__ )
except Exception as e:
raise HTTPException(5_00 , {'error': str(SCREAMING_SNAKE_CASE__ )} )
| 661 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 1 |
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=13 , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : Tuple=64 , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : Any=64 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : int=16 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Any:
A : Tuple =parent
A : int =batch_size
A : Any =seq_length
A : Union[str, Any] =is_training
A : List[str] =use_input_mask
A : List[Any] =use_token_type_ids
A : Any =use_labels
A : Tuple =vocab_size
A : List[Any] =hidden_size
A : List[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : List[str] =intermediate_size
A : Optional[int] =hidden_act
A : List[Any] =hidden_dropout_prob
A : Optional[int] =attention_probs_dropout_prob
A : Any =max_position_embeddings
A : str =type_vocab_size
A : Tuple =type_sequence_label_size
A : Dict =initializer_range
A : List[str] =num_labels
A : Tuple =num_choices
A : Dict =scope
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]:
return MPNetConfig.from_pretrained('microsoft/mpnet-base' )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]:
A : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Tuple =None
if self.use_input_mask:
A : List[Any] =random_attention_mask([self.batch_size, self.seq_length] )
A : str =None
A : Optional[int] =None
A : Optional[int] =None
if self.use_labels:
A : Any =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : Dict =ids_tensor([self.batch_size] , self.num_choices )
A : Tuple =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int:
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str:
A : Any =MPNetModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : int =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[int] =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
A : Optional[Any] =MPNetForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : List[str] =model(
SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict:
A : Optional[Any] =self.num_labels
A : Optional[int] =MPNetForSequenceClassification(SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]:
A : Optional[int] =self.num_choices
A : Dict =MPNetForMultipleChoice(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : int =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : Dict =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A : int =model(
SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Optional[int] =self.num_labels
A : Optional[Any] =MPNetForTokenClassification(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : Union[str, Any] =model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : List[str] =self.prepare_config_and_inputs()
((A) , (A) , (A) , (A) , (A) , (A)) : str =config_and_inputs
A : int ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : int = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
lowercase : Any = (
{
"feature-extraction": MPNetModel,
"fill-mask": MPNetForMaskedLM,
"question-answering": MPNetForQuestionAnswering,
"text-classification": MPNetForSequenceClassification,
"token-classification": MPNetForTokenClassification,
"zero-shot": MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : Dict = False
lowercase : List[str] = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> str:
A : Dict =MPNetModelTester(self )
A : Union[str, Any] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
A : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
A : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]:
A : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int:
A : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*SCREAMING_SNAKE_CASE__ )
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
A : List[Any] =MPNetModel.from_pretrained('microsoft/mpnet-base' )
A : Optional[int] =torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
A : List[Any] =model(SCREAMING_SNAKE_CASE__ )[0]
A : str =torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =torch.tensor(
[[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
| 661 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 1 |
def A__ ( lowercase: list, lowercase: list ) -> float:
_validate_point(lowercase )
_validate_point(lowercase )
if len(lowercase ) != len(lowercase ):
raise ValueError('Both points must be in the same n-dimensional space' )
return float(sum(abs(a - b ) for a, b in zip(lowercase, lowercase ) ) )
def A__ ( lowercase: list[float] ) -> None:
if point:
if isinstance(lowercase, lowercase ):
for item in point:
if not isinstance(lowercase, (int, float) ):
A : str =(
'Expected a list of numbers as input, found '
F'{type(lowercase ).__name__}'
)
raise TypeError(lowercase )
else:
A : Tuple =F'Expected a list of numbers as input, found {type(lowercase ).__name__}'
raise TypeError(lowercase )
else:
raise ValueError('Missing an input' )
def A__ ( lowercase: list, lowercase: list ) -> float:
_validate_point(lowercase )
_validate_point(lowercase )
if len(lowercase ) != len(lowercase ):
raise ValueError('Both points must be in the same n-dimensional space' )
return float(sum(abs(x - y ) for x, y in zip(lowercase, lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
'''simple docstring'''
lowercase : int
lowercase : int
lowercase : float = 0.0
lowercase : int = 1
lowercase : int = 1
lowercase : bool = True
lowercase : bool = False
lowercase : bool = False
lowercase : bool = False
lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
A : Tuple =[]
A : Union[str, Any] =[]
for i in range(self.num_layers ):
A : Union[str, Any] =self.in_channels if i == 0 else self.out_channels
A : int =FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =resnets
A : Any =attentions
if self.add_downsample:
A : int =FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple=True ) -> int:
A : List[Any] =()
for resnet, attn in zip(self.resnets , self.attentions ):
A : Dict =resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
A : Any =attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
if self.add_downsample:
A : Any =self.downsamplers_a(SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
return hidden_states, output_states
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
'''simple docstring'''
lowercase : int
lowercase : int
lowercase : float = 0.0
lowercase : int = 1
lowercase : bool = True
lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =[]
for i in range(self.num_layers ):
A : Dict =self.in_channels if i == 0 else self.out_channels
A : Tuple =FlaxResnetBlockaD(
in_channels=SCREAMING_SNAKE_CASE__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
A : Dict =resnets
if self.add_downsample:
A : Optional[Any] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=True ) -> str:
A : int =()
for resnet in self.resnets:
A : List[str] =resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
if self.add_downsample:
A : Dict =self.downsamplers_a(SCREAMING_SNAKE_CASE__ )
output_states += (hidden_states,)
return hidden_states, output_states
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
'''simple docstring'''
lowercase : int
lowercase : int
lowercase : int
lowercase : float = 0.0
lowercase : int = 1
lowercase : int = 1
lowercase : bool = True
lowercase : bool = False
lowercase : bool = False
lowercase : bool = False
lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
A : Union[str, Any] =[]
A : List[str] =[]
for i in range(self.num_layers ):
A : Any =self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : List[Any] =self.prev_output_channel if i == 0 else self.out_channels
A : List[str] =FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
A : Any =FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
A : Tuple =resnets
A : Union[str, Any] =attentions
if self.add_upsample:
A : List[str] =FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str=True ) -> Union[str, Any]:
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
A : Dict =res_hidden_states_tuple[-1]
A : Dict =res_hidden_states_tuple[:-1]
A : Any =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Optional[Any] =resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
if self.add_upsample:
A : Optional[int] =self.upsamplers_a(SCREAMING_SNAKE_CASE__ )
return hidden_states
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
'''simple docstring'''
lowercase : int
lowercase : int
lowercase : int
lowercase : float = 0.0
lowercase : int = 1
lowercase : bool = True
lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : int =[]
for i in range(self.num_layers ):
A : List[str] =self.in_channels if (i == self.num_layers - 1) else self.out_channels
A : int =self.prev_output_channel if i == 0 else self.out_channels
A : Optional[Any] =FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =resnets
if self.add_upsample:
A : Any =FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=True ) -> List[Any]:
for resnet in self.resnets:
# pop res hidden states
A : Union[str, Any] =res_hidden_states_tuple[-1]
A : Union[str, Any] =res_hidden_states_tuple[:-1]
A : List[str] =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
A : Tuple =resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
if self.add_upsample:
A : Union[str, Any] =self.upsamplers_a(SCREAMING_SNAKE_CASE__ )
return hidden_states
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
'''simple docstring'''
lowercase : int
lowercase : float = 0.0
lowercase : int = 1
lowercase : int = 1
lowercase : bool = False
lowercase : bool = False
lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
# there is always at least one resnet
A : Optional[int] =[
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
A : Optional[Any] =[]
for _ in range(self.num_layers ):
A : int =FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(SCREAMING_SNAKE_CASE__ )
A : int =FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(SCREAMING_SNAKE_CASE__ )
A : Tuple =resnets
A : Optional[int] =attentions
def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ) -> Optional[int]:
A : Optional[Any] =self.resnets[0](SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
A : Union[str, Any] =attn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
A : Any =resnet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=SCREAMING_SNAKE_CASE__ )
return hidden_states
| 661 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = ["image_processor", "tokenizer"]
lowercase : Optional[Any] = "BlipImageProcessor"
lowercase : int = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
A : Optional[Any] =False
super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Tuple =self.image_processor
def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : ImageInput = None , SCREAMING_SNAKE_CASE__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE__ : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError('You have to specify either images or text.' )
# Get only text
if images is None:
A : Optional[int] =self.tokenizer
A : Union[str, Any] =self.tokenizer(
text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_length=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
return text_encoding
# add pixel_values
A : int =self.image_processor(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ )
if text is not None:
A : Union[str, Any] =self.tokenizer(
text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_length=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
else:
A : str =None
if text_encoding is not None:
encoding_image_processor.update(SCREAMING_SNAKE_CASE__ )
return encoding_image_processor
def SCREAMING_SNAKE_CASE_ ( self : int , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
A : Dict =self.tokenizer.model_input_names
A : Optional[int] =self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 661 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 1 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
_lowercase : Tuple ={'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
lowercase : Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
lowercase : List[str] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
lowercase : Optional[Any] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> int:
A : Any =ZeroShotClassificationPipeline(
model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , candidate_labels=['polics', 'health'] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]:
A : str =classifier('Who are you voting for in 2020?' , candidate_labels='politics' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , {'sequence': ANY(SCREAMING_SNAKE_CASE__ ), 'labels': [ANY(SCREAMING_SNAKE_CASE__ )], 'scores': [ANY(SCREAMING_SNAKE_CASE__ )]} )
# No kwarg
A : List[Any] =classifier('Who are you voting for in 2020?' , ['politics'] )
self.assertEqual(SCREAMING_SNAKE_CASE__ , {'sequence': ANY(SCREAMING_SNAKE_CASE__ ), 'labels': [ANY(SCREAMING_SNAKE_CASE__ )], 'scores': [ANY(SCREAMING_SNAKE_CASE__ )]} )
A : Optional[int] =classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] )
self.assertEqual(SCREAMING_SNAKE_CASE__ , {'sequence': ANY(SCREAMING_SNAKE_CASE__ ), 'labels': [ANY(SCREAMING_SNAKE_CASE__ )], 'scores': [ANY(SCREAMING_SNAKE_CASE__ )]} )
A : Optional[int] =classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , {'sequence': ANY(SCREAMING_SNAKE_CASE__ ), 'labels': [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )], 'scores': [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
A : Dict =classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , {'sequence': ANY(SCREAMING_SNAKE_CASE__ ), 'labels': [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )], 'scores': [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 )
A : int =classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' )
self.assertEqual(SCREAMING_SNAKE_CASE__ , {'sequence': ANY(SCREAMING_SNAKE_CASE__ ), 'labels': [ANY(SCREAMING_SNAKE_CASE__ )], 'scores': [ANY(SCREAMING_SNAKE_CASE__ )]} )
# https://github.com/huggingface/transformers/issues/13846
A : List[str] =classifier(['I am happy'] , ['positive', 'negative'] )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
{'sequence': ANY(SCREAMING_SNAKE_CASE__ ), 'labels': [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )], 'scores': [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )]}
for i in range(1 )
] , )
A : Optional[int] =classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
{'sequence': ANY(SCREAMING_SNAKE_CASE__ ), 'labels': [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )], 'scores': [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )]}
for i in range(2 )
] , )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
classifier('' , candidate_labels='politics' )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
classifier(SCREAMING_SNAKE_CASE__ , candidate_labels='politics' )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
classifier('Who are you voting for in 2020?' , candidate_labels='' )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
classifier('Who are you voting for in 2020?' , candidate_labels=SCREAMING_SNAKE_CASE__ )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , )
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
classifier(
'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=SCREAMING_SNAKE_CASE__ , )
self.run_entailment_id(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Pipeline ) -> Dict:
A : Any =zero_shot_classifier.model.config
A : Any =config.labelaid
A : Optional[int] =zero_shot_classifier.entailment_id
A : List[str] ={'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
A : Optional[int] ={'entailment': 0, 'neutral': 1, 'contradiction': 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
A : Tuple ={'ENTAIL': 0, 'NON-ENTAIL': 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
A : List[str] ={'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
A : Dict =original_labelaid
self.assertEqual(SCREAMING_SNAKE_CASE__ , zero_shot_classifier.entailment_id )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
A : Tuple =pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'Who are you voting for in 2020?' * 1_00 , candidate_labels=['politics', 'public health', 'science'] )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]:
A : List[str] =pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , )
A : str =zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]:
A : List[Any] =pipeline(
'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , )
A : Tuple =zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['science', 'public health', 'politics'],
'scores': [0.3_3_3, 0.3_3_3, 0.3_3_3],
} , )
@slow
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
A : Union[str, Any] =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' )
A : Union[str, Any] =zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
A : List[Any] =zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=SCREAMING_SNAKE_CASE__ , )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
@slow
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
A : Tuple =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' )
A : Optional[int] =zero_shot_classifier(
'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , {
'sequence': 'Who are you voting for in 2020?',
'labels': ['politics', 'public health', 'science'],
'scores': [0.9_7_6, 0.0_1_5, 0.0_0_9],
} , )
A : List[Any] =zero_shot_classifier(
'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'
' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'
' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'
' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'
' machine translation tasks show these models to be superior in quality while being more parallelizable'
' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'
' English-to-German translation task, improving over the existing best results, including ensembles by'
' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'
' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'
' fraction of the training costs of the best models from the literature. We show that the Transformer'
' generalizes well to other tasks by applying it successfully to English constituency parsing both with'
' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=SCREAMING_SNAKE_CASE__ , )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , {
'sequence': (
'The dominant sequence transduction models are based on complex recurrent or convolutional neural'
' networks in an encoder-decoder configuration. The best performing models also connect the'
' encoder and decoder through an attention mechanism. We propose a new simple network'
' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'
' and convolutions entirely. Experiments on two machine translation tasks show these models to be'
' superior in quality while being more parallelizable and requiring significantly less time to'
' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'
' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'
' English-to-French translation task, our model establishes a new single-model state-of-the-art'
' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'
' costs of the best models from the literature. We show that the Transformer generalizes well to'
' other tasks by applying it successfully to English constituency parsing both with large and'
' limited training data.'
),
'labels': ['translation', 'machine learning', 'vision', 'statistics'],
'scores': [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8],
} , )
| 661 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 1 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
_lowercase : int =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None:
warnings.warn(
'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use VideoMAEImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , )
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
| 661 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 1 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Tuple ) -> str:
pass
@is_pipeline_test
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
lowercase : str = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict:
A : int =pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' )
A : List[Any] =[
{
'image': Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ),
'question': 'How many cats are there?',
},
{
'image': './tests/fixtures/tests_samples/COCO/000000039769.png',
'question': 'How many cats are there?',
},
]
return vqa_pipeline, examples
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
A : Any =vqa_pipeline(SCREAMING_SNAKE_CASE__ , top_k=1 )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [
[{'score': ANY(SCREAMING_SNAKE_CASE__ ), 'answer': ANY(SCREAMING_SNAKE_CASE__ )}],
[{'score': ANY(SCREAMING_SNAKE_CASE__ ), 'answer': ANY(SCREAMING_SNAKE_CASE__ )}],
] , )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]:
A : Any =pipeline('visual-question-answering' , model='hf-internal-testing/tiny-vilt-random-vqa' )
A : str ='./tests/fixtures/tests_samples/COCO/000000039769.png'
A : Dict ='How many cats are there?'
A : Optional[Any] =vqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question='How many cats are there?' , top_k=2 )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [{'score': ANY(SCREAMING_SNAKE_CASE__ ), 'answer': ANY(SCREAMING_SNAKE_CASE__ )}, {'score': ANY(SCREAMING_SNAKE_CASE__ ), 'answer': ANY(SCREAMING_SNAKE_CASE__ )}] )
A : List[Any] =vqa_pipeline({'image': image, 'question': question} , top_k=2 )
self.assertEqual(
SCREAMING_SNAKE_CASE__ , [{'score': ANY(SCREAMING_SNAKE_CASE__ ), 'answer': ANY(SCREAMING_SNAKE_CASE__ )}, {'score': ANY(SCREAMING_SNAKE_CASE__ ), 'answer': ANY(SCREAMING_SNAKE_CASE__ )}] )
@slow
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Union[str, Any] =pipeline('visual-question-answering' , model='dandelin/vilt-b32-finetuned-vqa' )
A : int ='./tests/fixtures/tests_samples/COCO/000000039769.png'
A : int ='How many cats are there?'
A : List[Any] =vqa_pipeline(image=SCREAMING_SNAKE_CASE__ , question=SCREAMING_SNAKE_CASE__ , top_k=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}] )
A : Optional[int] =vqa_pipeline({'image': image, 'question': question} , top_k=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}] )
A : str =vqa_pipeline(
[{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ , decimals=4 ) , [[{'score': 0.8_7_9_9, 'answer': '2'}, {'score': 0.2_9_6, 'answer': '1'}]] * 2 , )
@require_tf
@unittest.skip('Visual question answering not implemented in TF' )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]:
pass
| 661 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 1 |
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
_lowercase : Tuple =logging.get_logger(__name__)
def A__ ( lowercase: str, lowercase: str, lowercase: Any ) -> Any:
return [
int(1_000 * (box[0] / width) ),
int(1_000 * (box[1] / height) ),
int(1_000 * (box[2] / width) ),
int(1_000 * (box[3] / height) ),
]
def A__ ( lowercase: np.ndarray, lowercase: Optional[str], lowercase: Optional[str] = None ) -> Tuple:
A : Union[str, Any] =tesseract_config if tesseract_config is not None else ''
# apply OCR
A : List[Any] =to_pil_image(lowercase )
A , A : Optional[Any] =pil_image.size
A : List[Any] =pytesseract.image_to_data(lowercase, lang=lowercase, output_type='dict', config=lowercase )
A , A , A , A , A : List[Any] =data['text'], data['left'], data['top'], data['width'], data['height']
# filter empty words and corresponding coordinates
A : List[Any] =[idx for idx, word in enumerate(lowercase ) if not word.strip()]
A : Dict =[word for idx, word in enumerate(lowercase ) if idx not in irrelevant_indices]
A : Tuple =[coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices]
A : Optional[int] =[coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices]
A : List[str] =[coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices]
A : Tuple =[coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
A : Dict =[]
for x, y, w, h in zip(lowercase, lowercase, lowercase, lowercase ):
A : Any =[x, y, x + w, y + h]
actual_boxes.append(lowercase )
# finally, normalize the bounding boxes
A : Dict =[]
for box in actual_boxes:
normalized_boxes.append(normalize_box(lowercase, lowercase, lowercase ) )
assert len(lowercase ) == len(lowercase ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[str] = ["pixel_values"]
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "" , **SCREAMING_SNAKE_CASE__ : int , ) -> None:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =size if size is not None else {'height': 2_24, 'width': 2_24}
A : Optional[int] =get_size_dict(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =do_resize
A : Union[str, Any] =size
A : Any =resample
A : Optional[int] =apply_ocr
A : int =ocr_lang
A : List[Any] =tesseract_config
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : str , ) -> np.ndarray:
A : Dict =get_size_dict(SCREAMING_SNAKE_CASE__ )
if "height" not in size or "width" not in size:
raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
A : Union[str, Any] =(size['height'], size['width'])
return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> PIL.Image.Image:
A : str =do_resize if do_resize is not None else self.do_resize
A : Optional[int] =size if size is not None else self.size
A : Dict =get_size_dict(SCREAMING_SNAKE_CASE__ )
A : Any =resample if resample is not None else self.resample
A : int =apply_ocr if apply_ocr is not None else self.apply_ocr
A : int =ocr_lang if ocr_lang is not None else self.ocr_lang
A : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config
A : Optional[Any] =make_list_of_images(SCREAMING_SNAKE_CASE__ )
if not valid_images(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
# All transformations expect numpy arrays.
A : Union[str, Any] =[to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images]
if apply_ocr:
requires_backends(self , 'pytesseract' )
A : Dict =[]
A : Any =[]
for image in images:
A , A : Dict =apply_tesseract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
words_batch.append(SCREAMING_SNAKE_CASE__ )
boxes_batch.append(SCREAMING_SNAKE_CASE__ )
if do_resize:
A : List[Any] =[self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
A : Tuple =[flip_channel_order(SCREAMING_SNAKE_CASE__ ) for image in images]
A : List[str] =[to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images]
A : Optional[int] =BatchFeature(data={'pixel_values': images} , tensor_type=SCREAMING_SNAKE_CASE__ )
if apply_ocr:
A : Dict =words_batch
A : List[str] =boxes_batch
return data
| 661 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 1 |
def A__ ( lowercase: Optional[Any] ) -> Dict:
A : Tuple =[0] * len(lowercase )
A : Optional[int] =[]
A : int =[]
A : Tuple =0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(lowercase ) ):
if indegree[i] == 0:
queue.append(lowercase )
while queue:
A : Optional[Any] =queue.pop(0 )
cnt += 1
topo.append(lowercase )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(lowercase )
if cnt != len(lowercase ):
print('Cycle exists' )
else:
print(lowercase )
# Adjacency List of Graph
_lowercase : List[Any] ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 661 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : List[Any] =logging.get_logger(__name__)
_lowercase : Optional[Any] ={
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : str = "dpr"
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=3_05_22 , SCREAMING_SNAKE_CASE__ : Tuple=7_68 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : Any=30_72 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : str=0.0_2 , SCREAMING_SNAKE_CASE__ : Dict=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : List[Any]="absolute" , SCREAMING_SNAKE_CASE__ : int = 0 , **SCREAMING_SNAKE_CASE__ : int , ) -> Optional[Any]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Tuple =vocab_size
A : Tuple =hidden_size
A : str =num_hidden_layers
A : Any =num_attention_heads
A : Optional[int] =hidden_act
A : str =intermediate_size
A : List[str] =hidden_dropout_prob
A : List[Any] =attention_probs_dropout_prob
A : Optional[int] =max_position_embeddings
A : Tuple =type_vocab_size
A : int =initializer_range
A : Dict =layer_norm_eps
A : Any =projection_dim
A : Optional[Any] =position_embedding_type
| 661 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 1 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
_lowercase : int =getLogger(__name__)
_lowercase : Dict ='''cuda''' if torch.cuda.is_available() else '''cpu'''
def A__ ( lowercase: List[str], lowercase: str, lowercase: str, lowercase: int = 8, lowercase: str = DEFAULT_DEVICE, lowercase: Optional[Any]=False, lowercase: Union[str, Any]="summarization", lowercase: Any=None, **lowercase: str, ) -> Dict:
A : List[Any] =Path(lowercase ).open('w', encoding='utf-8' )
A : int =str(lowercase )
A : Optional[Any] =AutoModelForSeqaSeqLM.from_pretrained(lowercase ).to(lowercase )
if fpaa:
A : List[str] =model.half()
A : Dict =AutoTokenizer.from_pretrained(lowercase )
logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type.
A : Any =time.time()
# update config with task specific params
use_task_specific_params(lowercase, lowercase )
if prefix is None:
A : int =prefix or getattr(model.config, 'prefix', '' ) or ''
for examples_chunk in tqdm(list(chunks(lowercase, lowercase ) ) ):
A : Dict =[prefix + text for text in examples_chunk]
A : List[str] =tokenizer(lowercase, return_tensors='pt', truncation=lowercase, padding='longest' ).to(lowercase )
A : List[Any] =model.generate(
input_ids=batch.input_ids, attention_mask=batch.attention_mask, **lowercase, )
A : Optional[int] =tokenizer.batch_decode(lowercase, skip_special_tokens=lowercase, clean_up_tokenization_spaces=lowercase )
for hypothesis in dec:
fout.write(hypothesis + '\n' )
fout.flush()
fout.close()
A : Dict =int(time.time() - start_time ) # seconds
A : List[Any] =len(lowercase )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4 )}
def A__ ( ) -> List[Any]:
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )
def A__ ( lowercase: Union[str, Any]=True ) -> Any:
A : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument('model_name', type=lowercase, help='like facebook/bart-large-cnn,t5-base, etc.' )
parser.add_argument('input_path', type=lowercase, help='like cnn_dm/test.source' )
parser.add_argument('save_path', type=lowercase, help='where to save summaries' )
parser.add_argument('--reference_path', type=lowercase, required=lowercase, help='like cnn_dm/test.target' )
parser.add_argument('--score_path', type=lowercase, required=lowercase, default='metrics.json', help='where to save metrics' )
parser.add_argument('--device', type=lowercase, required=lowercase, default=lowercase, help='cuda, cuda:1, cpu etc.' )
parser.add_argument(
'--prefix', type=lowercase, required=lowercase, default=lowercase, help='will be added to the begininng of src examples' )
parser.add_argument('--task', type=lowercase, default='summarization', help='used for task_specific_params + metrics' )
parser.add_argument('--bs', type=lowercase, default=8, required=lowercase, help='batch size' )
parser.add_argument(
'--n_obs', type=lowercase, default=-1, required=lowercase, help='How many observations. Defaults to all.' )
parser.add_argument('--fp16', action='store_true' )
parser.add_argument('--dump-args', action='store_true', help='print the custom hparams with the results' )
parser.add_argument(
'--info', nargs='?', type=lowercase, const=datetime_now(), help=(
'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.'
' lang=en-ru. If no value is passed, the current datetime string will be used.'
), )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
A , A : str =parser.parse_known_args()
A : Optional[int] =parse_numeric_n_bool_cl_kwargs(lowercase )
if parsed_args and verbose:
print(F'parsed the following generate kwargs: {parsed_args}' )
A : Optional[int] =[' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
A : List[str] =examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=lowercase )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(F'score_path {args.score_path} will be overwritten unless you type ctrl-c.' )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError('Can\'t mix --fp16 and --device cpu' )
A : Tuple =generate_summaries_or_translations(
lowercase, args.save_path, args.model_name, batch_size=args.bs, device=args.device, fpaa=args.fpaa, task=args.task, prefix=args.prefix, **lowercase, )
if args.reference_path is None:
return {}
# Compute scores
A : Tuple =calculate_bleu if 'translation' in args.task else calculate_rouge
A : Tuple =[x.rstrip() for x in open(args.save_path ).readlines()]
A : Any =[x.rstrip() for x in open(args.reference_path ).readlines()][: len(lowercase )]
A : dict =score_fn(lowercase, lowercase )
scores.update(lowercase )
if args.dump_args:
scores.update(lowercase )
if args.info:
A : Tuple =args.info
if verbose:
print(lowercase )
if args.score_path is not None:
json.dump(lowercase, open(args.score_path, 'w' ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 661 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsé.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 1 |
from __future__ import annotations
from collections.abc import MutableSequence
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : MutableSequence[float] ) -> None:
if len(SCREAMING_SNAKE_CASE__ ) != degree + 1:
raise ValueError(
'The number of coefficients should be equal to the degree + 1.' )
A : list[float] =list(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =degree
def __add__( self : Dict , SCREAMING_SNAKE_CASE__ : Polynomial ) -> Polynomial:
if self.degree > polynomial_a.degree:
A : Any =self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , SCREAMING_SNAKE_CASE__ )
else:
A : str =polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , SCREAMING_SNAKE_CASE__ )
def __sub__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Polynomial ) -> Polynomial:
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self : Optional[int] ) -> Polynomial:
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Polynomial ) -> Polynomial:
A : list[float] =[0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : int | float ) -> int | float:
A : int | float =0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self : Tuple ) -> str:
A : Tuple =''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(SCREAMING_SNAKE_CASE__ )
return polynomial
def __repr__( self : Union[str, Any] ) -> str:
return self.__str__()
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Polynomial:
A : list[float] =[0] * self.degree
for i in range(self.degree ):
A : List[Any] =self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : int | float = 0 ) -> Polynomial:
A : list[float] =[0] * (self.degree + 2)
A : List[Any] =constant
for i in range(self.degree + 1 ):
A : Dict =self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , SCREAMING_SNAKE_CASE__ )
def __eq__( self : int , SCREAMING_SNAKE_CASE__ : object ) -> bool:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self : str , SCREAMING_SNAKE_CASE__ : object ) -> bool:
return not self.__eq__(SCREAMING_SNAKE_CASE__ )
| 661 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : List[Any] =logging.get_logger(__name__)
_lowercase : Optional[Any] ={
'''google/vivit-b-16x2-kinetics400''': (
'''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'''
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[str] = "vivit"
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_24 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : str=[2, 16, 16] , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : int=30_72 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu_fast" , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Dict=1e-06 , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> str:
A : str =hidden_size
A : str =num_hidden_layers
A : int =num_attention_heads
A : List[str] =intermediate_size
A : int =hidden_act
A : Tuple =hidden_dropout_prob
A : Optional[int] =attention_probs_dropout_prob
A : Any =initializer_range
A : Any =layer_norm_eps
A : str =image_size
A : Tuple =num_frames
A : List[str] =tubelet_size
A : Any =num_channels
A : Optional[Any] =qkv_bias
super().__init__(**SCREAMING_SNAKE_CASE__ )
| 661 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : Any=7 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : List[str]=None , ) -> List[Any]:
A : List[str] =parent
A : Optional[Any] =13
A : List[str] =7
A : Optional[int] =True
A : Union[str, Any] =True
A : Optional[int] =True
A : Tuple =True
A : List[str] =99
A : Optional[int] =32
A : Any =2
A : str =4
A : List[Any] =37
A : Union[str, Any] ='gelu'
A : Tuple =0.1
A : Optional[Any] =0.1
A : Any =5_12
A : Tuple =16
A : Any =2
A : List[Any] =0.0_2
A : str =3
A : Optional[int] =4
A : Dict =None
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]:
A : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Optional[int] =None
if self.use_input_mask:
A : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] )
A : Optional[int] =None
if self.use_token_type_ids:
A : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A : str =None
A : Any =None
A : List[Any] =None
if self.use_labels:
A : int =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : Optional[int] =ids_tensor([self.batch_size] , self.num_choices )
A : Optional[int] =RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE__ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : str =TFRoFormerModel(config=SCREAMING_SNAKE_CASE__ )
A : List[Any] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
A : int =[input_ids, input_mask]
A : Tuple =model(SCREAMING_SNAKE_CASE__ )
A : Dict =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
A : int =True
A : int =TFRoFormerForCausalLM(config=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] ={
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
A : str =model(SCREAMING_SNAKE_CASE__ )['logits']
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]:
A : Any =TFRoFormerForMaskedLM(config=SCREAMING_SNAKE_CASE__ )
A : int ={
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
A : Optional[Any] =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]:
A : str =self.num_labels
A : str =TFRoFormerForSequenceClassification(config=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] ={
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
A : Any =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
A : str =self.num_choices
A : Dict =TFRoFormerForMultipleChoice(config=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) )
A : List[str] =tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) )
A : Optional[int] =tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) , (1, self.num_choices, 1) )
A : Optional[int] ={
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
A : int =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple:
A : List[Any] =self.num_labels
A : Optional[int] =TFRoFormerForTokenClassification(config=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] ={
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
A : Optional[int] =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]:
A : Tuple =TFRoFormerForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ )
A : Dict ={
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
A : Any =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]:
A : List[str] =self.prepare_config_and_inputs()
(
(
A
) , (
A
) , (
A
) , (
A
) , (
A
) , (
A
) , (
A
) ,
) : List[str] =config_and_inputs
A : Union[str, Any] ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : str = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase : List[Any] = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase : List[Any] = False
lowercase : Optional[int] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Any =TFRoFormerModelTester(self )
A : int =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int:
A : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
A : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple:
A : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
A : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]:
A : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Any:
A : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
A : Optional[Any] =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
A : Dict =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
A : Any =tf.constant([[0, 1, 2, 3, 4, 5]] )
A : str =model(SCREAMING_SNAKE_CASE__ )[0]
# TODO Replace vocab size
A : List[str] =5_00_00
A : Dict =[1, 6, vocab_size]
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
A : Optional[int] =tf.constant(
[
[
[-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6],
[-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7],
[-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 )
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[Any] = 1e-4
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
A : Dict =tf.constant([[4, 10]] )
A : str =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
A : Dict =emba(input_ids.shape )
A : Optional[Any] =tf.constant(
[[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] )
tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=self.tolerance )
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[Any]:
A : Tuple =tf.constant(
[
[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0],
[0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7],
[0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0],
] )
A : List[str] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 )
emba([2, 16, 5_12] )
A : str =emba.weight[:3, :5]
tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=self.tolerance )
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = 1e-4
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# 2,12,16,64
A : List[Any] =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
A : Dict =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
A : List[str] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
A : Any =embed_positions([2, 16, 7_68] )[None, None, :, :]
A , A : Dict =TFRoFormerSelfAttention.apply_rotary_position_embeddings(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tf.constant(
[
[0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0],
[-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3],
[-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5],
[-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1],
[0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0],
[3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3],
] )
A : Union[str, Any] =tf.constant(
[
[0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0],
[0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3],
[1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5],
[2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1],
[-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0],
[-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , SCREAMING_SNAKE_CASE__ , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , SCREAMING_SNAKE_CASE__ , atol=self.tolerance )
| 661 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 1 |
_lowercase : List[str] ={str(digit): digit**5 for digit in range(1_0)}
def A__ ( lowercase: int ) -> int:
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowercase ) )
def A__ ( ) -> int:
return sum(
number
for number in range(1_000, 1_000_000 )
if number == digits_fifth_powers_sum(lowercase ) )
if __name__ == "__main__":
print(solution())
| 661 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 1 |
from __future__ import annotations
_lowercase : Tuple =[]
def A__ ( lowercase: list[list[int]], lowercase: int, lowercase: int ) -> bool:
for i in range(len(lowercase ) ):
if board[row][i] == 1:
return False
for i in range(len(lowercase ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(lowercase, -1, -1 ), range(lowercase, -1, -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(lowercase, -1, -1 ), range(lowercase, len(lowercase ) ) ):
if board[i][j] == 1:
return False
return True
def A__ ( lowercase: list[list[int]], lowercase: int ) -> bool:
if row >= len(lowercase ):
solution.append(lowercase )
printboard(lowercase )
print()
return True
for i in range(len(lowercase ) ):
if is_safe(lowercase, lowercase, lowercase ):
A : int =1
solve(lowercase, row + 1 )
A : List[Any] =0
return False
def A__ ( lowercase: list[list[int]] ) -> None:
for i in range(len(lowercase ) ):
for j in range(len(lowercase ) ):
if board[i][j] == 1:
print('Q', end=' ' )
else:
print('.', end=' ' )
print()
# n=int(input("The no. of queens"))
_lowercase : Dict =8
_lowercase : Optional[Any] =[[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('''The total no. of solutions are :''', len(solution))
| 661 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 1 |
def A__ ( lowercase: int, lowercase: int ) -> int:
A : Any =1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
A : List[Any] =n - k
# Calculate C(n,k)
for i in range(lowercase ):
result *= n - i
result //= i + 1
return result
def A__ ( lowercase: int ) -> int:
return binomial_coefficient(2 * node_count, lowercase ) // (node_count + 1)
def A__ ( lowercase: int ) -> int:
if n < 0:
raise ValueError('factorial() not defined for negative values' )
A : Union[str, Any] =1
for i in range(1, n + 1 ):
result *= i
return result
def A__ ( lowercase: int ) -> int:
return catalan_number(lowercase ) * factorial(lowercase )
if __name__ == "__main__":
_lowercase : List[Any] =int(input('''Enter the number of nodes: ''').strip() or 0)
if node_count <= 0:
raise ValueError('''We need some nodes to work with.''')
print(
f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} '''
f'''binary trees and {catalan_number(node_count)} binary search trees.'''
)
| 661 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : Tuple =logging.get_logger(__name__)
_lowercase : Any ={
'''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''',
'''Salesforce/blip-vqa-capfit-large''': (
'''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json'''
),
'''Salesforce/blip-image-captioning-base''': (
'''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json'''
),
'''Salesforce/blip-image-captioning-large''': (
'''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json'''
),
'''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''',
'''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''',
'''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''',
'''Salesforce/blip-itm-large-flikr''': (
'''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "blip_text_model"
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple=3_05_24 , SCREAMING_SNAKE_CASE__ : List[Any]=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : Any=30_72 , SCREAMING_SNAKE_CASE__ : int=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=1e-12 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : str=0.0_2 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_05_22 , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_02 , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Any=True , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Union[str, Any]:
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , sep_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
A : Dict =vocab_size
A : List[str] =hidden_size
A : str =encoder_hidden_size
A : int =intermediate_size
A : Optional[int] =projection_dim
A : Optional[int] =hidden_dropout_prob
A : Union[str, Any] =num_hidden_layers
A : int =num_attention_heads
A : Union[str, Any] =max_position_embeddings
A : Any =layer_norm_eps
A : List[Any] =hidden_act
A : List[Any] =initializer_range
A : List[Any] =attention_probs_dropout_prob
A : str =is_decoder
A : str =use_cache
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Any , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> "PretrainedConfig":
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ )
A , A : List[Any] =cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
# get the text config dict if we are loading from BlipConfig
if config_dict.get('model_type' ) == "blip":
A : List[str] =config_dict['text_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Union[str, Any] = "blip_vision_model"
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : Optional[Any]=30_72 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : Dict=3_84 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Dict=1e-5 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE__ : Any=1e-10 , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =intermediate_size
A : Union[str, Any] =projection_dim
A : List[Any] =num_hidden_layers
A : List[Any] =num_attention_heads
A : Tuple =patch_size
A : List[Any] =image_size
A : Optional[Any] =initializer_range
A : Optional[Any] =attention_dropout
A : List[Any] =layer_norm_eps
A : int =hidden_act
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : str ) -> "PretrainedConfig":
cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE__ )
A , A : List[Any] =cls.get_config_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
# get the vision config dict if we are loading from BlipConfig
if config_dict.get('model_type' ) == "blip":
A : Optional[Any] =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = "blip"
lowercase : List[Any] = True
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Tuple=5_12 , SCREAMING_SNAKE_CASE__ : Optional[int]=2.6_5_9_2 , SCREAMING_SNAKE_CASE__ : Tuple=2_56 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Tuple:
super().__init__(**SCREAMING_SNAKE_CASE__ )
if text_config is None:
A : Union[str, Any] ={}
logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' )
if vision_config is None:
A : Any ={}
logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' )
A : List[Any] =BlipTextConfig(**SCREAMING_SNAKE_CASE__ )
A : Dict =BlipVisionConfig(**SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =self.vision_config.hidden_size
A : Dict =projection_dim
A : List[str] =logit_scale_init_value
A : int =1.0
A : List[Any] =0.0_2
A : List[str] =image_text_hidden_size
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , SCREAMING_SNAKE_CASE__ : BlipTextConfig , SCREAMING_SNAKE_CASE__ : BlipVisionConfig , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
A : List[Any] =copy.deepcopy(self.__dict__ )
A : Any =self.text_config.to_dict()
A : int =self.vision_config.to_dict()
A : str =self.__class__.model_type
return output
| 661 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
pass
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> None:
A : Any =data
A : Node | None =None
def __iter__( self : Dict ) -> Tuple:
A : Optional[Any] =self
A : str =[]
while node:
if node in visited:
raise ContainsLoopError
visited.append(SCREAMING_SNAKE_CASE__ )
yield node.data
A : Optional[int] =node.next_node
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> bool:
try:
list(self )
return False
except ContainsLoopError:
return True
if __name__ == "__main__":
_lowercase : List[str] =Node(1)
_lowercase : Any =Node(2)
_lowercase : List[Any] =Node(3)
_lowercase : List[Any] =Node(4)
print(root_node.has_loop) # False
_lowercase : str =root_node.next_node
print(root_node.has_loop) # True
_lowercase : Optional[Any] =Node(5)
_lowercase : Dict =Node(6)
_lowercase : List[str] =Node(5)
_lowercase : List[Any] =Node(6)
print(root_node.has_loop) # False
_lowercase : Tuple =Node(1)
print(root_node.has_loop) # False
| 661 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 1 |
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch('socket.socket' )
@patch('builtins.open' )
def A__ ( lowercase: List[Any], lowercase: str ) -> Dict:
# ===== initialization =====
A : Optional[Any] =Mock()
A : List[str] =conn, Mock()
A : Any =iter([1, None] )
A : Dict =lambda lowercase : next(lowercase )
# ===== invoke =====
send_file(filename='mytext.txt', testing=lowercase )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 661 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 1 |
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_lowercase : Any ='''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
_lowercase : List[Any] ='''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
_lowercase : str ='''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A__ ( lowercase: Dict ) -> List[str]:
def remove_articles(lowercase: Optional[int] ):
A : List[Any] =re.compile(r'\b(a|an|the)\b', re.UNICODE )
return re.sub(lowercase, ' ', lowercase )
def white_space_fix(lowercase: Optional[Any] ):
return " ".join(text.split() )
def remove_punc(lowercase: Dict ):
A : Optional[Any] =set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(lowercase: Union[str, Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(lowercase ) ) ) )
def A__ ( lowercase: Union[str, Any], lowercase: List[Any] ) -> int:
return int(normalize_answer(lowercase ) == normalize_answer(lowercase ) )
def A__ ( lowercase: int, lowercase: List[Any] ) -> Any:
A : str =[any(compute_exact(lowercase, lowercase ) for ref in refs ) for pred, refs in zip(lowercase, lowercase )]
return (sum(lowercase ) / len(lowercase )) * 100
def A__ ( lowercase: Tuple, lowercase: str, lowercase: Union[str, Any], lowercase: List[Any] ) -> List[str]:
A : List[Any] =[rgram for rgrams in rgramslist for rgram in rgrams]
A : Optional[Any] =Counter(lowercase )
A : Any =Counter(lowercase )
A : int =Counter()
for sgram, scount in sgramcounter.items():
A : str =scount * numref
A : List[Any] =Counter(lowercase )
A : Optional[int] =Counter()
for cgram, ccount in cgramcounter.items():
A : Dict =ccount * numref
# KEEP
A : int =sgramcounter_rep & cgramcounter_rep
A : str =keepgramcounter_rep & rgramcounter
A : Union[str, Any] =sgramcounter_rep & rgramcounter
A : str =0
A : Optional[int] =0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
A : Union[str, Any] =1
A : List[Any] =1
if len(lowercase ) > 0:
A : Optional[Any] =keeptmpscorea / len(lowercase )
if len(lowercase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
A : Dict =keeptmpscorea / sum(keepgramcounterall_rep.values() )
A : Dict =0
if keepscore_precision > 0 or keepscore_recall > 0:
A : Union[str, Any] =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
A : Optional[int] =sgramcounter_rep - cgramcounter_rep
A : Union[str, Any] =delgramcounter_rep - rgramcounter
A : Tuple =sgramcounter_rep - rgramcounter
A : int =0
A : Optional[Any] =0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
A : List[str] =1
if len(lowercase ) > 0:
A : List[Any] =deltmpscorea / len(lowercase )
# ADDITION
A : List[Any] =set(lowercase ) - set(lowercase )
A : Optional[Any] =set(lowercase ) & set(lowercase )
A : int =set(lowercase ) - set(lowercase )
A : int =0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
A : List[Any] =1
A : int =1
if len(lowercase ) > 0:
A : Optional[Any] =addtmpscore / len(lowercase )
if len(lowercase ) > 0:
A : List[Any] =addtmpscore / len(lowercase )
A : int =0
if addscore_precision > 0 or addscore_recall > 0:
A : Dict =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A__ ( lowercase: Optional[Any], lowercase: str, lowercase: Optional[Any] ) -> Any:
A : int =len(lowercase )
A : Dict =ssent.split(' ' )
A : str =csent.split(' ' )
A : int =[]
A : Any =[]
A : List[Any] =[]
A : Any =[]
A : List[Any] =[]
A : Optional[int] =[]
A : Tuple =[]
A : List[str] =[]
A : List[Any] =[]
A : Any =[]
for rsent in rsents:
A : Any =rsent.split(' ' )
A : List[str] =[]
A : Dict =[]
A : Dict =[]
ragramslist.append(lowercase )
for i in range(0, len(lowercase ) - 1 ):
if i < len(lowercase ) - 1:
A : List[Any] =ragrams[i] + ' ' + ragrams[i + 1]
ragrams.append(lowercase )
if i < len(lowercase ) - 2:
A : Dict =ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2]
ragrams.append(lowercase )
if i < len(lowercase ) - 3:
A : Optional[Any] =ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3]
ragrams.append(lowercase )
ragramslist.append(lowercase )
ragramslist.append(lowercase )
ragramslist.append(lowercase )
for i in range(0, len(lowercase ) - 1 ):
if i < len(lowercase ) - 1:
A : Tuple =sagrams[i] + ' ' + sagrams[i + 1]
sagrams.append(lowercase )
if i < len(lowercase ) - 2:
A : Optional[Any] =sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2]
sagrams.append(lowercase )
if i < len(lowercase ) - 3:
A : Optional[int] =sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3]
sagrams.append(lowercase )
for i in range(0, len(lowercase ) - 1 ):
if i < len(lowercase ) - 1:
A : Any =cagrams[i] + ' ' + cagrams[i + 1]
cagrams.append(lowercase )
if i < len(lowercase ) - 2:
A : Tuple =cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2]
cagrams.append(lowercase )
if i < len(lowercase ) - 3:
A : Tuple =cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3]
cagrams.append(lowercase )
((A) , (A) , (A)) : Any =SARIngram(lowercase, lowercase, lowercase, lowercase )
((A) , (A) , (A)) : List[str] =SARIngram(lowercase, lowercase, lowercase, lowercase )
((A) , (A) , (A)) : List[Any] =SARIngram(lowercase, lowercase, lowercase, lowercase )
((A) , (A) , (A)) : List[Any] =SARIngram(lowercase, lowercase, lowercase, lowercase )
A : Any =sum([keepascore, keepascore, keepascore, keepascore] ) / 4
A : Tuple =sum([delascore, delascore, delascore, delascore] ) / 4
A : Union[str, Any] =sum([addascore, addascore, addascore, addascore] ) / 4
A : List[str] =(avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A__ ( lowercase: Any, lowercase: bool = True, lowercase: str = "13a", lowercase: bool = True ) -> str:
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
A : Union[str, Any] =sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
A : Union[str, Any] =sacrebleu.metrics.bleu._get_tokenizer(lowercase )()(lowercase )
else:
A : Optional[int] =sacrebleu.TOKENIZERS[tokenizer]()(lowercase )
elif tokenizer == "moses":
A : Union[str, Any] =sacremoses.MosesTokenizer().tokenize(lowercase, return_str=lowercase, escape=lowercase )
elif tokenizer == "penn":
A : Optional[Any] =sacremoses.MosesTokenizer().penn_tokenize(lowercase, return_str=lowercase )
else:
A : Dict =sentence
if not return_str:
A : List[Any] =normalized_sent.split()
return normalized_sent
def A__ ( lowercase: Union[str, Any], lowercase: int, lowercase: List[str] ) -> int:
if not (len(lowercase ) == len(lowercase ) == len(lowercase )):
raise ValueError('Sources length must match predictions and references lengths.' )
A : int =0
for src, pred, refs in zip(lowercase, lowercase, lowercase ):
sari_score += SARIsent(normalize(lowercase ), normalize(lowercase ), [normalize(lowercase ) for sent in refs] )
A : int =sari_score / len(lowercase )
return 100 * sari_score
def A__ ( lowercase: Tuple, lowercase: Any, lowercase: List[Any]="exp", lowercase: Tuple=None, lowercase: Any=False, lowercase: Tuple=False, lowercase: List[str]=False, ) -> str:
A : str =len(references[0] )
if any(len(lowercase ) != references_per_prediction for refs in references ):
raise ValueError('Sacrebleu requires the same number of references for each prediction' )
A : Tuple =[[refs[i] for refs in references] for i in range(lowercase )]
A : Tuple =sacrebleu.corpus_bleu(
lowercase, lowercase, smooth_method=lowercase, smooth_value=lowercase, force=lowercase, lowercase=lowercase, use_effective_order=lowercase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ),
} ) , codebase_urls=[
'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py',
'https://github.com/cocoxu/simplification/blob/master/SARI.py',
'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py',
'https://github.com/mjpost/sacreBLEU',
] , reference_urls=[
'https://www.aclweb.org/anthology/Q16-1029.pdf',
'https://github.com/mjpost/sacreBLEU',
'https://en.wikipedia.org/wiki/BLEU',
'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> Any:
A : int ={}
result.update({'sari': compute_sari(sources=SCREAMING_SNAKE_CASE__ , predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ )} )
result.update({'sacrebleu': compute_sacrebleu(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ )} )
result.update({'exact': compute_em(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ )} )
return result
| 661 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 1 |
_lowercase : List[Any] ='''
# Installazione di Transformers
! pip install transformers datasets
# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e
# rimuovi la modalità commento al comando seguente.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_lowercase : Tuple =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_lowercase : List[Any] ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 661 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 1 |
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
_lowercase : List[str] =False
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : str =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
A : Optional[int] =torch.manual_seed(0 )
A : Optional[int] =pipe(
image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
A : List[Any] =image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
A : int =np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowercase : Optional[int] ={'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple =['''ViTFeatureExtractor''']
_lowercase : List[str] =['''ViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] =[
'''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ViTForImageClassification''',
'''ViTForMaskedImageModeling''',
'''ViTModel''',
'''ViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple =[
'''TFViTForImageClassification''',
'''TFViTModel''',
'''TFViTPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] =[
'''FlaxViTForImageClassification''',
'''FlaxViTModel''',
'''FlaxViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
_lowercase : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 661 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 1 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=_lowerCamelCase )
class SCREAMING_SNAKE_CASE_ ( _lowerCamelCase ):
'''simple docstring'''
lowercase : str = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowercase : str = Features({"audio": Audio()} )
lowercase : List[str] = Features({"labels": ClassLabel} )
lowercase : List[str] = "audio"
lowercase : int = "labels"
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> int:
if self.label_column not in features:
raise ValueError(f'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , A__ ):
raise ValueError(f'Column {self.label_column} is not a ClassLabel.' )
A : Union[str, Any] =copy.deepcopy(self )
A : int =self.label_schema.copy()
A : Optional[Any] =features[self.label_column]
A : Optional[int] =label_schema
return task_template
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict[str, str]:
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 700 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 0 |
def A__ ( lowercase: List[str], lowercase: int, lowercase: Optional[int] ) -> Optional[Any]:
if n == 0:
return 1
elif n % 2 == 1:
return (binary_exponentiation(__A, n - 1, __A ) * a) % mod
else:
A : Optional[int] =binary_exponentiation(__A, n / 2, __A )
return (b * b) % mod
# a prime number
_lowercase : Dict =7_0_1
_lowercase : Optional[Any] =1_0_0_0_0_0_0_0_0_0
_lowercase : List[Any] =1_0
# using binary exponentiation function, O(log(p)):
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
print((a / b) % p == (a * b ** (p - 2)) % p)
| 701 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 0 |
import itertools
import math
def A__ ( lowercase: Tuple ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def A__ ( ) -> List[Any]:
A : Optional[int] =2
while True:
if is_prime(_SCREAMING_SNAKE_CASE ):
yield num
num += 1
def A__ ( lowercase: int = 10_001 ) -> int:
return next(itertools.islice(prime_generator(), nth - 1, _SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 702 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 0 |
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def A__ ( lowercase: str, lowercase: Dict, lowercase: Optional[int] ) -> int:
A : Optional[Any] =BertConfig.from_json_file(lowercase )
print(F'Building PyTorch model from configuration: {config}' )
A : str =BertForPreTraining(lowercase )
# Load weights from tf checkpoint
load_tf_weights_in_bert(lowercase, lowercase, lowercase )
# Save pytorch-model
print(F'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), lowercase )
if __name__ == "__main__":
_lowercase : Optional[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--bert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained BERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : Union[str, Any] =parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 703 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 0 |
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
_lowercase : Tuple =datasets.logging.get_logger(__name__)
_lowercase : Optional[Any] ='''\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
'''
_lowercase : Dict ='''\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project\'s README at https://github.com/google-research/bleurt#readme for more information.
'''
_lowercase : Union[str, Any] ='''
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
\'scores\': List of scores.
Examples:
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> bleurt = datasets.load_metric("bleurt")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results["scores"]])
[1.03, 1.04]
'''
_lowercase : Dict ={
'''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''',
'''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''',
'''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''',
'''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''',
'''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''',
'''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''',
'''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''',
'''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''',
'''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''',
'''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''',
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]:
if self.config_name == "default":
logger.warning(
'Using default BLEURT-Base checkpoint for sequence maximum length 128. '
'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' )
A : Optional[int] ='bleurt-base-128'
if self.config_name.lower() in CHECKPOINT_URLS:
A : int =self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
A : Tuple =self.config_name.upper()
else:
raise KeyError(
f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' )
# download the model checkpoint specified by self.config_name and set up the scorer
A : Optional[Any] =dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
A : str =score.BleurtScorer(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]:
A : List[str] =self.scorer.score(references=UpperCamelCase_ , candidates=UpperCamelCase_ )
return {"scores": scores}
| 704 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 0 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class SCREAMING_SNAKE_CASE_ ( lowercase__ ):
'''simple docstring'''
lowercase : List[Any] = "Speech2TextFeatureExtractor"
lowercase : str = "Speech2TextTokenizer"
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
super().__init__(__lowerCamelCase , __lowerCamelCase )
A : str =self.feature_extractor
A : Optional[int] =False
def __call__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
if self._in_target_context_manager:
return self.current_processor(*__lowerCamelCase , **__lowerCamelCase )
if "raw_speech" in kwargs:
warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' )
A : Tuple =kwargs.pop('raw_speech' )
else:
A : Optional[int] =kwargs.pop('audio' , __lowerCamelCase )
A : Any =kwargs.pop('sampling_rate' , __lowerCamelCase )
A : Optional[int] =kwargs.pop('text' , __lowerCamelCase )
if len(__lowerCamelCase ) > 0:
A : List[str] =args[0]
A : int =args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
A : List[str] =self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase )
if text is not None:
A : str =self.tokenizer(__lowerCamelCase , **__lowerCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
A : List[str] =encodings["input_ids"]
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@contextmanager
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int:
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your audio inputs, or in a separate call.' )
A : int =True
A : Dict =self.tokenizer
yield
A : Tuple =self.feature_extractor
A : Any =False
| 705 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 0 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( lowercase: Tuple ) -> tuple:
return (data["data"], data["target"])
def A__ ( lowercase: Any, lowercase: Optional[Any], lowercase: str ) -> np.ndarray:
A : Optional[Any] =XGBRegressor(verbosity=0, random_state=42 )
xgb.fit(lowerCamelCase_, lowerCamelCase_ )
# Predict target for test data
A : Union[str, Any] =xgb.predict(lowerCamelCase_ )
A : int =predictions.reshape(len(lowerCamelCase_ ), 1 )
return predictions
def A__ ( ) -> None:
A : List[str] =fetch_california_housing()
A : int =data_handling(lowerCamelCase_ )
A : List[str] =train_test_split(
lowerCamelCase_, lowerCamelCase_, test_size=0.25, random_state=1 )
A : Dict =xgboost(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ )
# Error printing
print(F'Mean Absolute Error : {mean_absolute_error(lowerCamelCase_, lowerCamelCase_ )}' )
print(F'Mean Square Error : {mean_squared_error(lowerCamelCase_, lowerCamelCase_ )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 706 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 0 |
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
A : Dict =n
A : Dict =[None] * self.n
A : Tuple =0 # index of the first element
A : List[Any] =0
A : List[Any] =0
def __len__( self : Optional[int] ) -> int:
return self.size
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> bool:
return self.size == 0
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]:
return False if self.is_empty() else self.array[self.front]
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any:
if self.size >= self.n:
raise Exception('QUEUE IS FULL' )
A : Tuple =data
A : List[Any] =(self.rear + 1) % self.n
self.size += 1
return self
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
if self.size == 0:
raise Exception('UNDERFLOW' )
A : Dict =self.array[self.front]
A : Tuple =None
A : int =(self.front + 1) % self.n
self.size -= 1
return temp
| 707 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsé.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 0 |
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[str] ) -> None:
A : dict[str, TrieNode] ={} # Mapping from char to TrieNode
A : Optional[int] =False
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : list[str] ) -> None:
for word in words:
self.insert(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> None:
A : Optional[int] =self
for char in word:
if char not in curr.nodes:
A : Union[str, Any] =TrieNode()
A : List[Any] =curr.nodes[char]
A : Union[str, Any] =True
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> bool:
A : List[Any] =self
for char in word:
if char not in curr.nodes:
return False
A : Tuple =curr.nodes[char]
return curr.is_leaf
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> None:
def _delete(SCREAMING_SNAKE_CASE__ : TrieNode , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> bool:
if index == len(SCREAMING_SNAKE_CASE__ ):
# If word does not exist
if not curr.is_leaf:
return False
A : Union[str, Any] =False
return len(curr.nodes ) == 0
A : Dict =word[index]
A : Dict =curr.nodes.get(SCREAMING_SNAKE_CASE__ )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
A : Optional[int] =_delete(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , SCREAMING_SNAKE_CASE__ , 0 )
def A__ ( lowercase: TrieNode, lowercase: str ) -> None:
if node.is_leaf:
print(__A, end=' ' )
for key, value in node.nodes.items():
print_words(__A, word + key )
def A__ ( ) -> bool:
A : Union[str, Any] ='''banana bananas bandana band apple all beast'''.split()
A : Dict =TrieNode()
root.insert_many(__A )
# print_words(root, "")
assert all(root.find(__A ) for word in words )
assert root.find('banana' )
assert not root.find('bandanas' )
assert not root.find('apps' )
assert root.find('apple' )
assert root.find('all' )
root.delete('all' )
assert not root.find('all' )
root.delete('banana' )
assert not root.find('banana' )
assert root.find('bananas' )
return True
def A__ ( lowercase: str, lowercase: bool ) -> None:
print(str(__A ), 'works!' if passes else 'doesn\'t work :(' )
def A__ ( ) -> None:
assert test_trie()
def A__ ( ) -> None:
print_results('Testing trie functionality', test_trie() )
if __name__ == "__main__":
main()
| 708 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 0 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Optional[int]=99 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : str=5 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Any=37 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : str=5_12 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Dict=0.0_2 , SCREAMING_SNAKE_CASE__ : str=4 , ) -> Union[str, Any]:
A : Union[str, Any] =parent
A : List[str] =batch_size
A : Any =seq_length
A : Optional[Any] =is_training
A : Dict =use_attention_mask
A : str =use_token_type_ids
A : Union[str, Any] =use_labels
A : Optional[int] =vocab_size
A : List[Any] =hidden_size
A : Dict =num_hidden_layers
A : str =num_attention_heads
A : Dict =intermediate_size
A : Dict =hidden_act
A : Optional[int] =hidden_dropout_prob
A : List[Any] =attention_probs_dropout_prob
A : List[Any] =max_position_embeddings
A : Any =type_vocab_size
A : Optional[Any] =type_sequence_label_size
A : Any =initializer_range
A : Tuple =num_choices
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Tuple =None
if self.use_attention_mask:
A : List[str] =random_attention_mask([self.batch_size, self.seq_length] )
A : Tuple =None
if self.use_token_type_ids:
A : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A : Optional[Any] =RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
A : str =self.prepare_config_and_inputs()
A , A , A , A : Union[str, Any] =config_and_inputs
A : int ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Union[str, Any] = True
lowercase : str = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> str:
A : List[str] =FlaxRoFormerModelTester(self )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict:
for model_class_name in self.all_model_classes:
A : str =model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=_lowerCAmelCase )
A : int =model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCAmelCase )
@require_flax
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Any:
A : Tuple =FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
A : List[str] =jnp.array([[0, 1, 2, 3, 4, 5]] )
A : Union[str, Any] =model(_lowerCAmelCase )[0]
A : Tuple =5_00_00
A : Dict =(1, 6, vocab_size)
self.assertEqual(output.shape , _lowerCAmelCase )
A : List[str] =jnp.array(
[[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
| 709 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=13 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=99 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : List[Any]=5 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : List[Any]=37 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=5_12 , SCREAMING_SNAKE_CASE__ : str=16 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : str=0.0_2 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Union[str, Any]:
A : Union[str, Any] =parent
A : Dict =batch_size
A : str =seq_length
A : Union[str, Any] =is_training
A : Tuple =use_token_type_ids
A : Union[str, Any] =use_labels
A : str =vocab_size
A : Optional[Any] =hidden_size
A : Tuple =num_hidden_layers
A : Optional[Any] =num_attention_heads
A : int =intermediate_size
A : Optional[Any] =hidden_act
A : Dict =hidden_dropout_prob
A : List[str] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : str =type_vocab_size
A : List[Any] =type_sequence_label_size
A : Optional[int] =initializer_range
A : int =num_labels
A : Any =num_choices
A : Dict =scope
A : str =self.vocab_size - 1
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]:
A : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : str =None
if self.use_token_type_ids:
A : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A : Dict =None
A : Optional[int] =None
A : str =None
if self.use_labels:
A : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices )
A : List[str] =OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
A : Optional[Any] =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , *SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
A : str =OpenAIGPTModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
A : List[str] =model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ )
A : Any =model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
A : Union[str, Any] =model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Any ) -> str:
A : Any =OpenAIGPTLMHeadModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
A : List[Any] =model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , *SCREAMING_SNAKE_CASE__ : Tuple ) -> int:
A : Any =OpenAIGPTDoubleHeadsModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
A : str =model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
A : Tuple =self.num_labels
A : int =OpenAIGPTForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
A : str =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : Tuple =model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
A : int =self.prepare_config_and_inputs()
(
A
) : Union[str, Any] =config_and_inputs
A : List[str] ={
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Union[str, Any] = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
lowercase : List[str] = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
lowercase : Optional[int] = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]:
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> str:
A : Union[str, Any] =super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
A : List[str] =torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase_ , )
A : str =inputs_dict["labels"]
A : int =inputs_dict["labels"]
A : List[Any] =torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase_ , )
A : Any =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ )
return inputs_dict
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Union[str, Any] =OpenAIGPTModelTester(self )
A : Optional[int] =ConfigTester(self , config_class=UpperCamelCase_ , n_embd=37 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
A : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*UpperCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]:
A : Tuple =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
A : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]:
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : Dict =OpenAIGPTModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Any =OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(UpperCamelCase_ )
A : Any =torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=UpperCamelCase_ ) # the president is
A : List[str] =[
4_81,
47_35,
5_44,
2_46,
9_63,
8_70,
7_62,
2_39,
2_44,
4_04_77,
2_44,
2_49,
7_19,
8_81,
4_87,
5_44,
2_40,
2_44,
6_03,
4_81,
] # the president is a very good man. " \n " i\'m sure he is, " said the
A : Tuple =model.generate(UpperCamelCase_ , do_sample=UpperCamelCase_ )
self.assertListEqual(output_ids[0].tolist() , UpperCamelCase_ )
| 710 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 0 |
from __future__ import annotations
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : List[str] =text, pattern
A : Any =len(__A ), len(__A )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]:
# searches pattern in text and returns index positions
A : List[str] =[]
for i in range(self.textLen - self.patLen + 1 ):
A : int =self.mismatch_in_text(__A )
if mismatch_index == -1:
positions.append(__A )
else:
A : List[str] =self.match_in_pattern(self.text[mismatch_index] )
A : List[str] =(
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
_lowercase : int ='ABAABA'
_lowercase : List[str] ='AB'
_lowercase : Tuple =BoyerMooreSearch(text, pattern)
_lowercase : List[str] =bms.bad_character_heuristic()
if len(positions) == 0:
print('''No match found''')
else:
print('''Pattern found in following positions: ''')
print(positions)
| 711 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 712 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : List[Any] =logging.get_logger(__name__)
_lowercase : List[Any] ={
'''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class SCREAMING_SNAKE_CASE_ ( _snake_case ):
'''simple docstring'''
lowercase : int = 'poolformer'
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : str=16 , SCREAMING_SNAKE_CASE__ : Dict=16 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : List[str]=4.0 , SCREAMING_SNAKE_CASE__ : List[Any]=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[64, 1_28, 3_20, 5_12] , SCREAMING_SNAKE_CASE__ : int=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE__ : List[str]=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE__ : Any=[2, 1, 1, 1] , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Dict=1e-5 , SCREAMING_SNAKE_CASE__ : Dict=0.0_2 , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> str:
A : Union[str, Any] =num_channels
A : Tuple =patch_size
A : List[str] =stride
A : Union[str, Any] =padding
A : Tuple =pool_size
A : Any =hidden_sizes
A : Tuple =mlp_ratio
A : List[Any] =depths
A : Any =patch_sizes
A : Union[str, Any] =strides
A : List[Any] =num_encoder_blocks
A : Union[str, Any] =drop_path_rate
A : Tuple =hidden_act
A : List[Any] =use_layer_scale
A : int =layer_scale_init_value
A : Union[str, Any] =initializer_range
super().__init__(**SCREAMING_SNAKE_CASE__ )
class SCREAMING_SNAKE_CASE_ ( _snake_case ):
'''simple docstring'''
lowercase : List[str] = version.parse("1.11" )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]:
return 2e-3
| 713 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 0 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_lowercase : Dict =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Tuple ) -> None:
warnings.warn(
'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use YolosImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 714 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 0 |
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
_lowercase : Union[str, Any] =logging.get_logger(__name__)
def A__ ( lowercase: List[str], lowercase: int ) -> Optional[int]:
def run_func(lowercase: Optional[int] ):
@wraps(__A )
def run_in_eager_mode(*lowercase: Union[str, Any], **lowercase: Optional[int] ):
return func(*__A, **__A )
@wraps(__A )
@tf.function(experimental_compile=__A )
def run_in_graph_mode(*lowercase: Union[str, Any], **lowercase: List[Any] ):
return func(*__A, **__A )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def A__ ( lowercase: Any, lowercase: Any, lowercase: Any ) -> Optional[Any]:
A : Union[str, Any] =random.Random()
A : Any =[rng.randint(0, vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(__A, shape=(batch_size, sequence_length), dtype=tf.intaa )
class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ):
'''simple docstring'''
lowercase : int = 42
lowercase : int = 42
lowercase : List[str] = "TensorFlow"
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]:
return tf.__version__
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
A : List[str] =self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
A : Optional[Any] =self._prepare_inference_func(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return self._measure_speed(_inference )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
A : List[Any] =self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
A : str =self._prepare_train_func(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return self._measure_speed(_train )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> [Memory, Optional[MemorySummary]]:
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCamelCase )
A : Optional[Any] =self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
A : List[Any] =self._prepare_inference_func(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return self._measure_memory(_inference )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> [Memory, Optional[MemorySummary]]:
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCamelCase )
A : Optional[int] =self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
A : Optional[int] =self._prepare_train_func(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return self._measure_memory(_train )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Callable[[], None]:
A : Tuple =self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('Mixed precision is currently not supported.' )
A : Dict =(
hasattr(_UpperCamelCase , 'architectures' )
and isinstance(config.architectures , _UpperCamelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
A : Dict ="""TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
A : List[Any] =__import__('transformers' , fromlist=[model_class] )
A : int =getattr(_UpperCamelCase , _UpperCamelCase )
A : int =model_cls(_UpperCamelCase )
except ImportError:
raise ImportError(
f'{model_class} does not exist. If you just want to test the pretrained model, you might want to'
' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' )
else:
A : List[Any] =TF_MODEL_MAPPING[config.__class__](_UpperCamelCase )
# encoder-decoder has vocab size saved differently
A : int =config.vocab_size if hasattr(_UpperCamelCase , 'vocab_size' ) else config.encoder.vocab_size
A : List[Any] =random_input_ids(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(_UpperCamelCase , decoder_input_ids=_UpperCamelCase , training=_UpperCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(_UpperCamelCase , training=_UpperCamelCase )
A : Union[str, Any] =encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Callable[[], None]:
A : Any =self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' )
if self.args.fpaa:
raise NotImplementedError('Mixed precision is currently not supported.' )
A : List[str] =(
hasattr(_UpperCamelCase , 'architectures' )
and isinstance(config.architectures , _UpperCamelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
A : Union[str, Any] ="""TF""" + config.architectures[0] # prepend 'TF' for tensorflow model
A : str =__import__('transformers' , fromlist=[model_class] )
A : int =getattr(_UpperCamelCase , _UpperCamelCase )
A : Optional[int] =model_cls(_UpperCamelCase )
except ImportError:
raise ImportError(
f'{model_class} does not exist. If you just want to test the pretrained model, you might want to'
' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' )
else:
A : List[str] =TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCamelCase )
# encoder-decoder has vocab size saved differently
A : int =config.vocab_size if hasattr(_UpperCamelCase , 'vocab_size' ) else config.encoder.vocab_size
A : Union[str, Any] =random_input_ids(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
A : Dict =model(_UpperCamelCase , decoder_input_ids=_UpperCamelCase , labels=_UpperCamelCase , training=_UpperCamelCase )[0]
A : int =tf.gradients(_UpperCamelCase , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
A : Dict =model(_UpperCamelCase , labels=_UpperCamelCase , training=_UpperCamelCase )[0]
A : Any =tf.gradients(_UpperCamelCase , model.trainable_variables )
return gradients
A : List[str] =encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> float:
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' )
timeit.repeat(_UpperCamelCase , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
A : Tuple =timeit.repeat(
_UpperCamelCase , repeat=self.args.repeat , number=10 , )
return min(_UpperCamelCase ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f'Doesn\'t fit on GPU. {e}' )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Callable[[], None] ) -> [Memory, MemorySummary]:
logger.info(
'Note that TensorFlow allocates more memory than '
'it might need to speed up computation. '
'The memory reported here corresponds to the memory '
'reported by `nvidia-smi`, which can vary depending '
'on total available memory on the GPU that is used.' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'
' consumption line by line.' )
A : List[str] =start_memory_tracing('transformers' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'
' with `args.memory=False`' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'py3nvml not installed, we won\'t log GPU memory usage. '
'Install py3nvml (pip install py3nvml) to log information about GPU.' )
A : Optional[Any] ="""N/A"""
else:
logger.info(
'Measuring total GPU usage on GPU device. Make sure to not have additional processes'
' running on the same GPU.' )
# init nvml
nvml.nvmlInit()
func()
A : Optional[int] =nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
A : Optional[Any] =nvml.nvmlDeviceGetMemoryInfo(_UpperCamelCase )
A : int =meminfo.used
A : List[Any] =Memory(_UpperCamelCase )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'When enabling line by line tracing, the max peak memory for CPU is inaccurate in'
' TensorFlow.' )
A : str =None
else:
A : Union[str, Any] =measure_peak_memory_cpu(_UpperCamelCase )
A : List[Any] =Memory(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else memory_bytes
if self.args.trace_memory_line_by_line:
A : Any =stop_memory_tracing(_UpperCamelCase )
if memory is None:
A : Union[str, Any] =summary.total
else:
A : List[str] =None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f'Doesn\'t fit on GPU. {e}' )
return "N/A", None
| 715 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : Optional[int] ={
'''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[int] =[
'''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Swinv2ForImageClassification''',
'''Swinv2ForMaskedImageModeling''',
'''Swinv2Model''',
'''Swinv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
_lowercase : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 716 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 0 |
from manim import *
class SCREAMING_SNAKE_CASE_ ( _A ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]:
A : Dict =Rectangle(height=0.5 , width=0.5 )
A : Any =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 )
A : Tuple =[mem.copy() for i in range(6 )]
A : List[Any] =[mem.copy() for i in range(6 )]
A : Optional[int] =VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
A : Optional[int] =VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
A : int =VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
A : Tuple =Text('CPU' , font_size=24 )
A : Tuple =Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
A : Any =[mem.copy() for i in range(4 )]
A : List[Any] =VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
A : List[str] =Text('GPU' , font_size=24 )
A : List[Any] =Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
A : int =[mem.copy() for i in range(6 )]
A : Optional[Any] =VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
A : Optional[Any] =Text('Model' , font_size=24 )
A : int =Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
A : List[str] =[]
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
A : Optional[Any] =Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
A : Any =[mem.copy() for i in range(6 )]
A : str =VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
A : List[Any] =Text('Loaded Checkpoint' , font_size=24 )
A : List[str] =Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
A : int =Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
A : Union[str, Any] =MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
A : List[Any] =MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
A : Dict =MarkupText(
f'Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
A : int =[]
A : str =[]
for i, rect in enumerate(__lowerCamelCase ):
A : List[Any] =fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
A : Optional[int] =target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait()
| 717 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_lowercase : Any ={
"configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"],
"tokenization_biogpt": ["BioGptTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str =[
"BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BioGptForCausalLM",
"BioGptForTokenClassification",
"BioGptForSequenceClassification",
"BioGptModel",
"BioGptPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
_lowercase : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 718 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 0 |
import baseaa
import io
import json
import os
from copy import deepcopy
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
if isinstance(__UpperCamelCase , __UpperCamelCase ):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
A : List[Any] =deepcopy(__UpperCamelCase )
elif os.path.exists(__UpperCamelCase ):
with io.open(__UpperCamelCase , 'r' , encoding='utf-8' ) as f:
A : str =json.load(__UpperCamelCase )
else:
try:
A : str =baseaa.urlsafe_baadecode(__UpperCamelCase ).decode('utf-8' )
A : Union[str, Any] =json.loads(__UpperCamelCase )
except (UnicodeDecodeError, AttributeError, ValueError):
raise ValueError(
f'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' )
A : Any =config
self.set_stage_and_offload()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_value('zero_optimization.stage' , -1 )
# offload
A : Union[str, Any] =False
if self.is_zeroa() or self.is_zeroa():
A : Optional[int] =set(['cpu', 'nvme'] )
A : Tuple =set(
[
self.get_value('zero_optimization.offload_optimizer.device' ),
self.get_value('zero_optimization.offload_param.device' ),
] )
if len(offload_devices & offload_devices_valid ) > 0:
A : Optional[Any] =True
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
A : Any =self.config
# find the config node of interest if it exists
A : int =ds_key_long.split('.' )
A : Union[str, Any] =nodes.pop()
for node in nodes:
A : Any =config.get(__UpperCamelCase )
if config is None:
return None, ds_key
return config, ds_key
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Optional[Any]:
A , A : List[str] =self.find_config_node(__UpperCamelCase )
if config is None:
return default
return config.get(__UpperCamelCase , __UpperCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]=False ) -> List[Any]:
A : List[str] =self.config
# find the config node of interest if it exists
A : Union[str, Any] =ds_key_long.split('.' )
for node in nodes:
A : Optional[int] =config
A : Tuple =config.get(__UpperCamelCase )
if config is None:
if must_exist:
raise ValueError(f'Can\'t find {ds_key_long} entry in the config: {self.config}' )
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(__UpperCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
A : List[Any] =self.get_value(__UpperCamelCase )
return False if value is None else bool(__UpperCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : str =self.get_value(__UpperCamelCase )
return False if value is None else not bool(__UpperCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]:
return self._stage == 2
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return self._stage == 3
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]:
return self._offload
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]:
A : Dict =engine
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str:
self.engine.backward(__UpperCamelCase , **__UpperCamelCase )
# Deepspeed's `engine.step` performs the following operations:
# - gradient accumulation check
# - gradient clipping
# - optimizer step
# - zero grad
# - checking overflow
# - lr_scheduler step (only if engine.lr_scheduler is not None)
self.engine.step()
# and this plugin overrides the above calls with no-ops when Accelerate runs under
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
# training loop that works transparently under many training regimes.
class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase ):
'''simple docstring'''
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]:
super().__init__(__UpperCamelCase , device_placement=__UpperCamelCase , scaler=__UpperCamelCase )
A : int =hasattr(self.optimizer , 'overflow' )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : str=None ) -> Optional[int]:
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]:
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.__has_overflow__:
return self.optimizer.overflow
return False
class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
super().__init__(__UpperCamelCase , __UpperCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any:
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int=0.0_0_1 , SCREAMING_SNAKE_CASE__ : Dict=0 , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
A : Union[str, Any] =params
A : Dict =lr
A : Any =weight_decay
A : Optional[Any] =kwargs
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=0 , **SCREAMING_SNAKE_CASE__ : List[str] ) -> int:
A : List[str] =optimizer
A : Optional[Any] =total_num_steps
A : Union[str, Any] =warmup_num_steps
A : Union[str, Any] =kwargs
| 719 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 0 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
_lowercase : Optional[Any] =logging.get_logger(__name__)
_lowercase : Dict ={
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
_lowercase : str =[
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def A__ ( lowercase: Any, lowercase: Optional[int], lowercase: Optional[Any], lowercase: str, lowercase: Optional[Any] ) -> Optional[Any]:
for attribute in key.split('.' ):
A : List[str] =getattr(lowercase, lowercase )
if weight_type is not None:
A : Dict =getattr(lowercase, lowercase ).shape
else:
A : Any =hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
F' {value.shape} for {full_name}' )
if weight_type == "weight":
A : int =value
elif weight_type == "weight_g":
A : int =value
elif weight_type == "weight_v":
A : Tuple =value
elif weight_type == "bias":
A : Optional[Any] =value
elif weight_type == "running_mean":
A : Union[str, Any] =value
elif weight_type == "running_var":
A : Optional[Any] =value
elif weight_type == "num_batches_tracked":
A : Optional[Any] =value
elif weight_type == "inv_freq":
A : List[str] =value
else:
A : int =value
logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Union[str, Any] ) -> Union[str, Any]:
A : List[Any] =[]
A : str =fairseq_model.state_dict()
A : Union[str, Any] =hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
A : Optional[int] =False
if "conv_layers" in name:
load_conv_layer(
lowercase, lowercase, lowercase, lowercase, hf_model.config.feat_extract_norm == 'group', )
A : Any =True
else:
for key, mapped_key in MAPPING.items():
A : Optional[Any] ='wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
A : List[str] =True
if "*" in mapped_key:
A : str =name.split(lowercase )[0].split('.' )[-2]
A : List[Any] =mapped_key.replace('*', lowercase )
if "pos_bias_u" in name:
A : Union[str, Any] =None
elif "pos_bias_v" in name:
A : str =None
elif "weight_g" in name:
A : Tuple ='weight_g'
elif "weight_v" in name:
A : Dict ='weight_v'
elif "bias" in name:
A : Optional[Any] ='bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
A : Optional[Any] ='weight'
elif "running_mean" in name:
A : List[Any] ='running_mean'
elif "inv_freq" in name:
A : Optional[Any] ='inv_freq'
elif "running_var" in name:
A : Tuple ='running_var'
elif "num_batches_tracked" in name:
A : str ='num_batches_tracked'
else:
A : Optional[int] =None
set_recursively(lowercase, lowercase, lowercase, lowercase, lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(F'Unused weights: {unused_weights}' )
def A__ ( lowercase: int, lowercase: Dict, lowercase: List[str], lowercase: Union[str, Any], lowercase: str ) -> List[Any]:
A : Optional[Any] =full_name.split('conv_layers.' )[-1]
A : Any =name.split('.' )
A : Optional[Any] =int(items[0] )
A : Tuple =int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
A : Optional[Any] =value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
A : Optional[int] =value
logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
A : List[Any] =value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'{full_name} has size {value.shape}, but'
F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
A : List[Any] =value
logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Dict=None, lowercase: Tuple=None, lowercase: str=True ) -> Any:
if config_path is not None:
A : Optional[int] =WavaVecaConformerConfig.from_pretrained(lowercase, hidden_act='swish' )
else:
A : int =WavaVecaConformerConfig()
if "rope" in checkpoint_path:
A : List[Any] ='rotary'
if is_finetuned:
if dict_path:
A : List[Any] =Dictionary.load(lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
A : Tuple =target_dict.pad_index
A : Any =target_dict.bos_index
A : Dict =target_dict.eos_index
A : List[Any] =len(target_dict.symbols )
A : Union[str, Any] =os.path.join(lowercase, 'vocab.json' )
if not os.path.isdir(lowercase ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) )
return
os.makedirs(lowercase, exist_ok=lowercase )
A : List[Any] =target_dict.indices
# fairseq has the <pad> and <s> switched
A : Union[str, Any] =0
A : Any =1
with open(lowercase, 'w', encoding='utf-8' ) as vocab_handle:
json.dump(lowercase, lowercase )
A : Optional[Any] =WavaVecaCTCTokenizer(
lowercase, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token='|', do_lower_case=lowercase, )
A : Optional[Any] =True if config.feat_extract_norm == 'layer' else False
A : Tuple =WavaVecaFeatureExtractor(
feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=lowercase, return_attention_mask=lowercase, )
A : Tuple =WavaVecaProcessor(feature_extractor=lowercase, tokenizer=lowercase )
processor.save_pretrained(lowercase )
A : Dict =WavaVecaConformerForCTC(lowercase )
else:
A : Optional[int] =WavaVecaConformerForPreTraining(lowercase )
if is_finetuned:
A , A , A : List[str] =fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
A : Tuple =argparse.Namespace(task='audio_pretraining' )
A : Union[str, Any] =fairseq.tasks.setup_task(lowercase )
A , A , A : int =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=lowercase )
A : str =model[0].eval()
recursively_load_weights(lowercase, lowercase, not is_finetuned )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_lowercase : Dict =argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
_lowercase : Any =parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 720 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 0 |
from __future__ import annotations
import math
import random
from typing import Any
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : int ) -> None:
A : list[Any] =[]
A : int =0
A : int =0
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> bool:
return self.head == self.tail
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> None:
self.data.append(_lowercase )
A : Union[str, Any] =self.tail + 1
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =self.data[self.head]
A : Any =self.head + 1
return ret
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int:
return self.tail - self.head
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> None:
print(self.data )
print('**************' )
print(self.data[self.head : self.tail] )
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> None:
A : Optional[int] =data
A : MyNode | None =None
A : MyNode | None =None
A : int =1
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
return self.data
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> MyNode | None:
return self.left
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> MyNode | None:
return self.right
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
return self.height
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> None:
A : List[str] =data
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> None:
A : int =node
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> None:
A : int =node
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> None:
A : Union[str, Any] =height
def A__ ( lowercase: MyNode | None ) -> int:
if node is None:
return 0
return node.get_height()
def A__ ( lowercase: int, lowercase: int ) -> Optional[int]:
if a > b:
return a
return b
def A__ ( lowercase: MyNode ) -> List[Any]:
print('left rotation node:', node.get_data() )
A : List[str] =node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(__UpperCamelCase )
A : List[str] =my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1
node.set_height(__UpperCamelCase )
A : Tuple =my_max(get_height(ret.get_right() ), get_height(ret.get_left() ) ) + 1
ret.set_height(__UpperCamelCase )
return ret
def A__ ( lowercase: MyNode ) -> str:
print('right rotation node:', node.get_data() )
A : Tuple =node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(__UpperCamelCase )
A : List[Any] =my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1
node.set_height(__UpperCamelCase )
A : List[Any] =my_max(get_height(ret.get_right() ), get_height(ret.get_left() ) ) + 1
ret.set_height(__UpperCamelCase )
return ret
def A__ ( lowercase: MyNode ) -> Tuple:
A : List[str] =node.get_left()
assert left_child is not None
node.set_left(left_rotation(__UpperCamelCase ) )
return right_rotation(__UpperCamelCase )
def A__ ( lowercase: MyNode ) -> List[Any]:
A : Optional[int] =node.get_right()
assert right_child is not None
node.set_right(right_rotation(__UpperCamelCase ) )
return left_rotation(__UpperCamelCase )
def A__ ( lowercase: MyNode | None, lowercase: Any ) -> str:
if node is None:
return MyNode(__UpperCamelCase )
if data < node.get_data():
node.set_left(insert_node(node.get_left(), __UpperCamelCase ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
A : int =node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
A : Optional[Any] =right_rotation(__UpperCamelCase )
else:
A : List[str] =lr_rotation(__UpperCamelCase )
else:
node.set_right(insert_node(node.get_right(), __UpperCamelCase ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
A : Optional[Any] =node.get_right()
assert right_child is not None
if data < right_child.get_data():
A : Optional[Any] =rl_rotation(__UpperCamelCase )
else:
A : int =left_rotation(__UpperCamelCase )
A : Optional[Any] =my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1
node.set_height(__UpperCamelCase )
return node
def A__ ( lowercase: MyNode ) -> Any:
while True:
A : Union[str, Any] =root.get_right()
if right_child is None:
break
A : List[Any] =right_child
return root.get_data()
def A__ ( lowercase: MyNode ) -> List[str]:
while True:
A : List[str] =root.get_left()
if left_child is None:
break
A : str =left_child
return root.get_data()
def A__ ( lowercase: MyNode, lowercase: Any ) -> Union[str, Any]:
A : List[str] =root.get_left()
A : List[Any] =root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
A : Tuple =get_left_most(__UpperCamelCase )
root.set_data(__UpperCamelCase )
root.set_right(del_node(__UpperCamelCase, __UpperCamelCase ) )
elif left_child is not None:
A : str =left_child
elif right_child is not None:
A : Optional[Any] =right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print('No such data' )
return root
else:
root.set_left(del_node(__UpperCamelCase, __UpperCamelCase ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(__UpperCamelCase, __UpperCamelCase ) )
if get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
A : List[Any] =left_rotation(__UpperCamelCase )
else:
A : Optional[int] =rl_rotation(__UpperCamelCase )
elif get_height(__UpperCamelCase ) - get_height(__UpperCamelCase ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
A : Union[str, Any] =right_rotation(__UpperCamelCase )
else:
A : Union[str, Any] =lr_rotation(__UpperCamelCase )
A : List[str] =my_max(get_height(root.get_right() ), get_height(root.get_left() ) ) + 1
root.set_height(__UpperCamelCase )
return root
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[str] ) -> None:
A : MyNode | None =None
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int:
return get_height(self.root )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None:
print('insert:' + str(_lowercase ) )
A : List[str] =insert_node(self.root , _lowercase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> None:
print('delete:' + str(_lowercase ) )
if self.root is None:
print('Tree is empty!' )
return
A : str =del_node(self.root , _lowercase )
def __str__( self : List[Any] , ) -> str: # a level traversale, gives a more intuitive look on the tree
A : Dict =""""""
A : List[Any] =MyQueue()
q.push(self.root )
A : Optional[Any] =self.get_height()
if layer == 0:
return output
A : Union[str, Any] =0
while not q.is_empty():
A : str =q.pop()
A : Dict =""" """ * int(math.pow(2 , layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(_lowercase )
q.push(_lowercase )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
A : Tuple =cnt + 1
for i in range(1_00 ):
if cnt == math.pow(2 , _lowercase ) - 1:
A : List[Any] =layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def A__ ( ) -> Optional[Any]:
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
_lowercase : Dict =AVLtree()
_lowercase : List[str] =list(range(1_0))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 721 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 0 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def A__ ( lowercase: dict ) -> int:
return (data["data"], data["target"])
def A__ ( lowercase: np.ndarray, lowercase: np.ndarray, lowercase: np.ndarray ) -> Union[str, Any]:
A : Any =XGBRegressor(verbosity=0, random_state=42 )
xgb.fit(snake_case__, snake_case__ )
# Predict target for test data
A : Optional[Any] =xgb.predict(snake_case__ )
A : Tuple =predictions.reshape(len(snake_case__ ), 1 )
return predictions
def A__ ( ) -> Tuple:
A : Optional[int] =fetch_california_housing()
A , A : Dict =data_handling(snake_case__ )
A , A , A , A : Any =train_test_split(
snake_case__, snake_case__, test_size=0.25, random_state=1 )
A : int =xgboost(snake_case__, snake_case__, snake_case__ )
# Error printing
print(F'Mean Absolute Error : {mean_absolute_error(snake_case__, snake_case__ )}' )
print(F'Mean Square Error : {mean_squared_error(snake_case__, snake_case__ )}' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 700 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
A : Optional[int] =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
A : Dict =AutoTokenizer.from_pretrained('google/mt5-small' )
A : Any =tokenizer('Hello there' , return_tensors='pt' ).input_ids
A : List[str] =tokenizer('Hi I am' , return_tensors='pt' ).input_ids
A : str =model(input_ids.to(SCREAMING_SNAKE_CASE__ ) , labels=labels.to(SCREAMING_SNAKE_CASE__ ) ).loss
A : Optional[int] =-(labels.shape[-1] * loss.item())
A : Union[str, Any] =-8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 701 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 0 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
_lowercase : Any =logging.getLogger()
def A__ ( lowercase: Path, lowercase: list ) -> Union[str, Any]:
A : Optional[Any] ='\n'.join(lowercase )
Path(lowercase ).open('w' ).writelines(lowercase )
_lowercase : int ='''patrickvonplaten/t5-tiny-random'''
_lowercase : List[str] ='''sshleifer/bart-tiny-random'''
_lowercase : List[Any] ='''sshleifer/tiny-mbart'''
_lowercase : str =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
A : Dict =Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source'
A : List[Any] =input_file_name.parent / 'utest_output.txt'
assert not output_file_name.exists()
A : Any =[' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.']
_dump_articles(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Dict =str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' )
A : List[Any] ='translation_en_to_de' if model == T5_TINY else 'summarization'
A : Union[str, Any] =f'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split()
with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ):
run_generate()
assert Path(SCREAMING_SNAKE_CASE__ ).exists()
# os.remove(Path(output_file_name))
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
self.run_eval_tester(SCREAMING_SNAKE_CASE__ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
self.run_eval_tester(SCREAMING_SNAKE_CASE__ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
A : int =Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source'
A : int =input_file_name.parent / 'utest_output.txt'
assert not output_file_name.exists()
A : List[str] ={
'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'],
'de': [
'Maschinelles Lernen ist großartig, oder?',
'Ich esse gerne Bananen',
'Morgen ist wieder ein toller Tag!',
],
}
A : Union[str, Any] =Path(self.get_auto_remove_tmp_dir() )
A : Optional[int] =str(tmp_dir / 'scores.json' )
A : List[Any] =str(tmp_dir / 'val.target' )
_dump_articles(SCREAMING_SNAKE_CASE__ , text['en'] )
_dump_articles(SCREAMING_SNAKE_CASE__ , text['de'] )
A : Tuple ='translation_en_to_de' if model == T5_TINY else 'summarization'
A : Tuple =f'\n run_eval_search.py\n {model}\n {str(SCREAMING_SNAKE_CASE__ )}\n {str(SCREAMING_SNAKE_CASE__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split()
testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] )
with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ):
with CaptureStdout() as cs:
run_search()
A : Union[str, Any] =[' num_beams | length_penalty', model, 'Best score args']
A : List[str] =['Info']
if "translation" in task:
expected_strings.append('bleu' )
else:
expected_strings.extend(SCREAMING_SNAKE_CASE__ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(SCREAMING_SNAKE_CASE__ ).exists()
os.remove(Path(SCREAMING_SNAKE_CASE__ ) )
| 702 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Union[str, Any] =logging.get_logger(__name__)
_lowercase : Dict ={
"""microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""",
"""microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""",
"""microsoft/deberta-v2-xlarge-mnli""": (
"""https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"""
),
"""microsoft/deberta-v2-xxlarge-mnli""": (
"""https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"""
),
}
class SCREAMING_SNAKE_CASE_ ( UpperCamelCase_ ):
'''simple docstring'''
lowercase : Dict = "deberta-v2"
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=12_81_00 , SCREAMING_SNAKE_CASE__ : Any=15_36 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=24 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Any=61_44 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : str=1e-7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : str=-1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Any="gelu" , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Any:
super().__init__(**__A )
A : Optional[int] =hidden_size
A : Union[str, Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Tuple =intermediate_size
A : Union[str, Any] =hidden_act
A : Any =hidden_dropout_prob
A : Tuple =attention_probs_dropout_prob
A : Tuple =max_position_embeddings
A : List[Any] =type_vocab_size
A : int =initializer_range
A : List[Any] =relative_attention
A : Dict =max_relative_positions
A : Any =pad_token_id
A : Any =position_biased_input
# Backwards compatibility
if type(__A ) == str:
A : List[Any] =[x.strip() for x in pos_att_type.lower().split('|' )]
A : List[str] =pos_att_type
A : Tuple =vocab_size
A : List[str] =layer_norm_eps
A : List[str] =kwargs.get('pooler_hidden_size' , __A )
A : Tuple =pooler_dropout
A : str =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( UpperCamelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union[str, Any]:
if self.task == "multiple-choice":
A : int ={0: "batch", 1: "choice", 2: "sequence"}
else:
A : List[Any] ={0: "batch", 1: "sequence"}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> int:
A : int =super().generate_dummy_inputs(preprocessor=__A , framework=__A )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 703 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 0 |
import math
import sys
def A__ ( lowercase: str ) -> Optional[int]:
A : Union[str, Any] =""
try:
with open(_lowerCamelCase, 'rb' ) as binary_file:
A : Tuple =binary_file.read()
for dat in data:
A : List[str] =F'{dat:08b}'
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def A__ ( lowercase: str ) -> Optional[Any]:
A : int ={"0": "0", "1": "1"}
A : Optional[int] ="", ""
A : str =len(_lowerCamelCase )
for i in range(len(_lowerCamelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
A : Union[str, Any] =lexicon[curr_string]
result += last_match_id
A : int =last_match_id + "0"
if math.loga(_lowerCamelCase ).is_integer():
A : Any ={}
for curr_key in list(_lowerCamelCase ):
A : Optional[Any] =lexicon.pop(_lowerCamelCase )
A : Union[str, Any] =new_lex
A : List[str] =last_match_id + "1"
index += 1
A : Optional[Any] =""
return result
def A__ ( lowercase: str, lowercase: str ) -> Union[str, Any]:
A : Any =8
try:
with open(_lowerCamelCase, 'wb' ) as opened_file:
A : str =[
to_write[i : i + byte_length]
for i in range(0, len(_lowerCamelCase ), _lowerCamelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(_lowerCamelCase, 2 ).to_bytes(1, byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def A__ ( lowercase: str ) -> Optional[Any]:
A : str =0
for letter in data_bits:
if letter == "1":
break
counter += 1
A : int =data_bits[counter:]
A : Union[str, Any] =data_bits[counter + 1 :]
return data_bits
def A__ ( lowercase: str, lowercase: str ) -> int:
A : Dict =read_file_binary(_lowerCamelCase )
A : Any =remove_prefix(_lowerCamelCase )
A : List[Any] =decompress_data(_lowerCamelCase )
write_file_binary(_lowerCamelCase, _lowerCamelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 704 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
A : Optional[int] =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_a ).to(_a )
A : int =AutoTokenizer.from_pretrained('google/mt5-small' )
A : int =tokenizer('Hello there' , return_tensors='pt' ).input_ids
A : Union[str, Any] =tokenizer('Hi I am' , return_tensors='pt' ).input_ids
A : Tuple =model(input_ids.to(_a ) , labels=labels.to(_a ) ).loss
A : Optional[int] =-(labels.shape[-1] * loss.item())
A : Optional[int] =-8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 705 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 0 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowercase : Optional[Any] =logging.get_logger(__name__)
_lowercase : Any ={'''vocab_file''': '''spiece.model'''}
_lowercase : List[Any] ={
'''vocab_file''': {
'''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''',
'''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''',
}
}
_lowercase : Any ={
'''AI-Sweden/gpt-sw3-126m''': 2_0_4_8,
'''AI-Sweden/gpt-sw3-350m''': 2_0_4_8,
'''AI-Sweden/gpt-sw3-1.6b''': 2_0_4_8,
'''AI-Sweden/gpt-sw3-6.7b''': 2_0_4_8,
'''AI-Sweden/gpt-sw3-20b''': 2_0_4_8,
}
class SCREAMING_SNAKE_CASE_ ( __a ):
'''simple docstring'''
lowercase : List[str] = VOCAB_FILES_NAMES
lowercase : int = PRETRAINED_VOCAB_FILES_MAP
lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Optional[Any] = ["input_ids", "attention_mask"]
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Tuple:
A : Union[str, Any] ={} if sp_model_kwargs is None else sp_model_kwargs
A : Tuple =kwargs.get('name_or_path' )
if name_or_path is None:
logger.warning(
'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'
' you are testing the model, this can safely be ignored' )
A : str ="""None"""
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
A : Tuple ="""<|endoftext|>""" if eos_token is None else eos_token
A : str ="""<unk>""" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
A : List[Any] =unk_token if pad_token is None else pad_token
A : Union[str, Any] =eos_token if bos_token is None else bos_token
else:
A : str ="""<pad>""" if pad_token is None else pad_token
A : List[str] ="""<s>""" if bos_token is None else bos_token
super().__init__(
do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , )
A : Dict =do_lower_case
A : Any =remove_space
A : Optional[int] =keep_accents
A : Optional[int] =vocab_file
A : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(a_ )
# Used for whitespace normalization in input texts
# fmt : off
A : str ={""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """"""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
A : Union[str, Any] =re.compile(
f'[{"".join(map(a_ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]' )
def __getstate__( self : Any ) -> Any:
A : Tuple =self.__dict__.copy()
A : int =None
return state
def __setstate__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple:
A : Optional[Any] =d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
A : Union[str, Any] ={}
A : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]:
return len(self.sp_model )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
A : Dict =self.non_printing_characters_re.sub('' , a_ )
# Normalize whitespaces
A : Any ="""""".join([char if char not in self.whitespaces else ' ' for char in text] )
# NFC Unicode normalization
A : Optional[Any] =unicodedata.normalize('NFC' , a_ )
return text
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
A : Any =self.preprocess_text(a_ )
return self.sp_model.encode(a_ , out_type=a_ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Dict:
return self.sp_model.PieceToId(a_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Dict:
return self.sp_model.IdToPiece(a_ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return out_string
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : List[str] =[]
A : Optional[Any] =""""""
A : Optional[int] =False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(a_ ) + token
A : int =True
A : int =[]
else:
current_sub_tokens.append(a_ )
A : Union[str, Any] =False
out_string += self.sp_model.decode(a_ )
return out_string
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str:
A : str ={self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Optional[Any]:
if not os.path.isdir(a_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
A : Optional[Any] =os.path.join(
a_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , a_ )
elif not os.path.isfile(self.vocab_file ):
with open(a_ , 'wb' ) as fi:
A : Union[str, Any] =self.sp_model.serialized_model_proto()
fi.write(a_ )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, List[str]] , SCREAMING_SNAKE_CASE__ : Union[str, bool] = False ) -> Tuple:
if isinstance(a_ , a_ ):
A : str =self.preprocess_text(a_ )
A : Optional[Any] =self.sp_model.encode(a_ )
else:
A : int =[self.preprocess_text(a_ ) for t in text]
A : List[Any] =self.sp_model.encode(a_ )
if return_tensors is True or return_tensors == "pt":
A : List[str] =torch.tensor(a_ )
return token_ids
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[int, List[int]] ) -> Dict:
return self.sp_model.decode(a_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : "Conversation" ) -> Union[str, Any]:
A : Union[str, Any] =[f'User: {text}' if is_user else f'Bot: {text}' for is_user, text in conversation.iter_texts()]
A : List[str] =(
f'{self.eos_token}{self.bos_token}' + f'{self.bos_token}'.join(a_ ) + f'{self.bos_token}Bot:'
)
return self.encode(text=a_ )
| 706 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 0 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : str = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : str = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : Dict = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : List[str] = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : str = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : int = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Tuple = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : List[Any] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Dict = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 707 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsé.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowercase : Union[str, Any] =logging.get_logger(__name__)
_lowercase : Union[str, Any] ="▁"
_lowercase : str ={"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
_lowercase : Tuple ={
"vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
},
"monolingual_vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
},
}
_lowercase : Optional[int] ={"vinai/bartpho-syllable": 1_0_2_4}
class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase ):
'''simple docstring'''
lowercase : Optional[Any] = VOCAB_FILES_NAMES
lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP
lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Tuple = ["input_ids", "attention_mask"]
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE__ : int="<unk>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="<mask>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : int , ) -> int:
# Mask token behave like a normal word, i.e. include the space before it
A : int =AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token
A : Any ={} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , )
A : Tuple =vocab_file
A : Any =monolingual_vocab_file
A : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase_ ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
A : Dict ={}
A : Optional[int] =0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(lowercase_ ) not in self.fairseq_tokens_to_ids:
A : List[Any] =cnt
cnt += 1
with open(lowercase_ , 'r' , encoding='utf-8' ) as f:
for line in f.readlines():
A : int =line.strip().split()[0]
A : Dict =len(self.fairseq_tokens_to_ids )
if str(lowercase_ ) not in self.fairseq_tokens_to_ids:
A : Optional[Any] =len(self.fairseq_tokens_to_ids )
A : Tuple ={v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : str ) -> Optional[Any]:
A : List[str] =self.__dict__.copy()
A : Optional[Any] =None
A : str =self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : int =d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
A : int ={}
A : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> Optional[Any]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A : Optional[int] =[self.cls_token_id]
A : str =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> int:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowercase_ )) + [1]
return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1]
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[str]:
A : Any =[self.sep_token_id]
A : Tuple =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
return len(self.fairseq_ids_to_tokens )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]:
A : Dict ={self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return self.sp_model.encode(lowercase_ , out_type=lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> Any:
return self.fairseq_ids_to_tokens[index]
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any:
A : Union[str, Any] ="""""".join(lowercase_ ).replace(lowercase_ , ' ' ).strip()
return out_string
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Optional[int]:
if not os.path.isdir(lowercase_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
A : Optional[int] =os.path.join(
lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
A : str =os.path.join(
lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase_ , 'wb' ) as fi:
A : Optional[Any] =self.sp_model.serialized_model_proto()
fi.write(lowercase_ )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
lowercase_ ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , lowercase_ )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(lowercase_ , 'w' , encoding='utf-8' ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'{str(lowercase_ )} \n' )
return out_vocab_file, out_monolingual_vocab_file
| 708 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 0 |
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : str =get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
_lowercase : List[Any] =5_0_0_0_3
_lowercase : Union[str, Any] =5_0_0_0_2
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( a__ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = PLBartTokenizer
lowercase : List[Any] = None
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =PLBartTokenizer(lowerCAmelCase__ , language_codes='base' , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
A : Optional[int] =PLBartTokenizer(lowerCAmelCase__ , language_codes='base' , keep_accents=lowerCAmelCase__ )
A : Optional[int] =tokenizer.tokenize('This is a test' )
self.assertListEqual(lowerCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : List[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
A : Union[str, Any] =tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A : Tuple =tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
A : Optional[int] =tokenizer.vocab_size
A : Any =[tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) for x in range(end - 4 , lowerCAmelCase__ )]
self.assertListEqual(lowerCAmelCase__ , ['__java__', '__python__', '__en_XX__', '<mask>'] )
A : Any ="java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
A : Optional[int] =tokenizer(lowerCAmelCase__ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) , lowerCAmelCase__ , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : Any =PLBartTokenizer(lowerCAmelCase__ , language_codes='multi' , keep_accents=lowerCAmelCase__ )
A : Dict =tokenizer.tokenize('This is a test' )
self.assertListEqual(lowerCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : int =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
A : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
A : Dict =tokenizer.vocab_size
A : List[Any] =[tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) for x in range(end - 7 , lowerCAmelCase__ )]
self.assertListEqual(
lowerCAmelCase__ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] )
A : List[str] ="java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"
A : int =tokenizer(lowerCAmelCase__ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) , lowerCAmelCase__ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
lowercase : int = """uclanlp/plbart-python-en_XX"""
lowercase : Tuple = [
"""def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""",
"""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""",
]
lowercase : List[Any] = [
"""Returns the maximum value of a b c.""",
"""Sums the values of a b c.""",
]
lowercase : List[Any] = [
134,
5452,
33460,
33441,
33463,
33465,
33463,
33449,
988,
20,
33456,
19,
33456,
771,
39,
4258,
889,
3318,
33441,
33463,
33465,
33463,
33449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ) -> List[Any]:
A : PLBartTokenizer =PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' )
A : Optional[Any] =1
return cls
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_00_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_00_03 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int:
A : List[str] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
A : List[str] =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2]
A : List[Any] =self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
A : Dict =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] =["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20]
self.assertIsInstance(src_text[0] , lowerCAmelCase__ )
A : Optional[Any] =10
A : Tuple =self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_00_04, 5_00_01] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : str =tempfile.mkdtemp()
A : int =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
A : List[str] =PLBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : List[Any] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='pt' )
A : str =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase__ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
A : Optional[int] =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
A : Optional[int] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
A : Union[str, Any] =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Optional[Any] =self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='pt' )
A : List[str] =self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='pt' )
A : List[Any] =targets["input_ids"]
A : Tuple =shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]:
A : List[Any] =self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'input_ids': [[1_50, 2_42, 2, 5_00_03]],
'attention_mask': [[1, 1, 1, 1]],
# java
'forced_bos_token_id': 5_00_01,
} , )
| 709 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def A__ ( lowercase: str ) -> int:
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : Tuple =create_tensor(UpperCAmelCase__ )
A : Optional[int] =gather(UpperCAmelCase__ )
assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1 ) )
def A__ ( lowercase: List[str] ) -> Optional[Any]:
A : Optional[int] =[state.process_index]
A : Union[str, Any] =gather_object(UpperCAmelCase__ )
assert len(UpperCAmelCase__ ) == state.num_processes, F'{gathered_obj}, {len(UpperCAmelCase__ )} != {state.num_processes}'
assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}'
def A__ ( lowercase: str ) -> Union[str, Any]:
A : str =create_tensor(UpperCAmelCase__ )
A : Optional[Any] =broadcast(UpperCAmelCase__ )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1 ) )
def A__ ( lowercase: List[Any] ) -> List[str]:
if state.is_main_process:
A : List[str] =torch.arange(state.num_processes + 1 ).to(state.device )
else:
A : Optional[Any] =torch.arange(state.num_processes ).to(state.device )
A : List[str] =pad_across_processes(UpperCAmelCase__ )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0, state.num_processes ) ) + [0]
def A__ ( lowercase: List[Any] ) -> Optional[int]:
if state.num_processes != 2:
return
A : List[str] =create_tensor(UpperCAmelCase__ )
A : List[Any] =reduce(UpperCAmelCase__, 'sum' )
A : Optional[Any] =torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(UpperCAmelCase__, UpperCAmelCase__ ), F'{reduced_tensor} != {truth_tensor}'
def A__ ( lowercase: Optional[Any] ) -> Dict:
if state.num_processes != 2:
return
A : Optional[Any] =create_tensor(UpperCAmelCase__ )
A : Dict =reduce(UpperCAmelCase__, 'mean' )
A : Tuple =torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(UpperCAmelCase__, UpperCAmelCase__ ), F'{reduced_tensor} != {truth_tensor}'
def A__ ( lowercase: Any ) -> str:
main()
def A__ ( ) -> Dict:
A : Any =PartialState()
state.print(F'State: {state}' )
state.print('testing gather' )
test_gather(UpperCAmelCase__ )
state.print('testing gather_object' )
test_gather_object(UpperCAmelCase__ )
state.print('testing broadcast' )
test_broadcast(UpperCAmelCase__ )
state.print('testing pad_across_processes' )
test_pad_across_processes(UpperCAmelCase__ )
state.print('testing reduce_sum' )
test_reduce_sum(UpperCAmelCase__ )
state.print('testing reduce_mean' )
test_reduce_mean(UpperCAmelCase__ )
if __name__ == "__main__":
main()
| 710 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 0 |
from __future__ import annotations
def A__ ( lowercase: str, lowercase: Dict, lowercase: Optional[Any], ) -> str:
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('You cannot supply more or less than 2 values' )
elif stress < 0:
raise ValueError('Stress cannot be negative' )
elif tangential_force < 0:
raise ValueError('Tangential Force cannot be negative' )
elif area < 0:
raise ValueError('Area cannot be negative' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : str =logging.get_logger(__name__)
_lowercase : int ={
'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json',
'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json',
'junnyu/roformer_chinese_char_small': (
'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'
),
'junnyu/roformer_chinese_char_base': (
'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'
),
'junnyu/roformer_small_discriminator': (
'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'
),
'junnyu/roformer_small_generator': (
'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class SCREAMING_SNAKE_CASE_ ( UpperCamelCase_ ):
'''simple docstring'''
lowercase : Any = "roformer"
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[str]=5_00_00 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : int=7_68 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=30_72 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Dict=15_36 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : List[str]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[Any]:
super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
A : Optional[int] =vocab_size
A : Optional[Any] =hidden_size if embedding_size is None else embedding_size
A : Union[str, Any] =hidden_size
A : Any =num_hidden_layers
A : Tuple =num_attention_heads
A : Tuple =hidden_act
A : Dict =intermediate_size
A : Optional[Any] =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : str =max_position_embeddings
A : Optional[Any] =type_vocab_size
A : Optional[Any] =initializer_range
A : Dict =layer_norm_eps
A : List[Any] =rotary_value
A : List[str] =use_cache
class SCREAMING_SNAKE_CASE_ ( UpperCamelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]:
if self.task == "multiple-choice":
A : str ={0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A : Dict ={0: '''batch''', 1: '''sequence'''}
A : Union[str, Any] ={0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 712 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 0 |
import random
def A__ ( lowercase: List[Any] ) -> bool:
A : Dict =num - 1
A : List[Any] =0
while s % 2 == 0:
A : Dict =s // 2
t += 1
for _ in range(5 ):
A : List[str] =random.randrange(2, num - 1 )
A : List[Any] =pow(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase )
if v != 1:
A : Tuple =0
while v != (num - 1):
if i == t - 1:
return False
else:
A : List[Any] =i + 1
A : Optional[int] =(v**2) % num
return True
def A__ ( lowercase: int ) -> bool:
if num < 2:
return False
A : List[str] =[
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__UpperCamelCase )
def A__ ( lowercase: Any = 1_024 ) -> int:
while True:
A : List[str] =random.randrange(2 ** (keysize - 1), 2 ** (keysize) )
if is_prime_low_num(__UpperCamelCase ):
return num
if __name__ == "__main__":
_lowercase : Optional[Any] =generate_large_prime()
print(('''Prime number:''', num))
print(('''is_prime_low_num:''', is_prime_low_num(num)))
| 713 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 0 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : Union[str, Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Tuple, lowercase: Tuple = 16, lowercase: List[Any] = "bert-base-cased" ) -> Dict:
A : Union[str, Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
A : Tuple =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : List[str] =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: List[str] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Dict =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : Tuple =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: int, lowercase: List[Any], lowercase: Optional[int], lowercase: List[str] ) -> Tuple:
model.eval()
A : str =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : int =model(**lowercase )
A : List[Any] =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A : int =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : Optional[int] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : str =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : str =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Dict, lowercase: Dict ) -> Union[str, Any]:
# Initialize accelerator
A : Union[str, Any] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : Optional[int] =config["""lr"""]
A : Tuple =int(config['num_epochs'] )
A : Any =int(config['seed'] )
A : Tuple =int(config['batch_size'] )
A : int =args.model_name_or_path
set_seed(lowercase )
A : Optional[int] =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[Any] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Dict =(
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : Tuple =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Dict =accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
A : Optional[Any] =1
A : str =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : Any =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : Any =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A : str =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : str =0
# We also need to keep track of the stating epoch so files are named properly
A : int =0
A : int =evaluate.load('glue', 'mrpc' )
A : List[Any] =num_epochs
if args.partial_train_epoch is not None:
A : int =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : int =args.resume_from_checkpoint.split('epoch_' )[1]
A : Optional[int] =""""""
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : int =int(lowercase ) + 1
A : Dict =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : List[Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : Dict ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Union[str, Any] =model(**lowercase )
A : str =outputs.loss
A : List[str] =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : int =F'epoch_{epoch}'
A : Optional[int] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[int] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Optional[Any] =accuracy
A : str =lr_scheduler.get_lr()[0]
A : List[str] =optimizer.param_groups[0]["""lr"""]
A : Union[str, Any] =epoch
A : str =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Tuple:
A : Tuple =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : List[str] =parser.parse_args()
A : List[str] ={"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 714 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 0 |
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
_lowercase : int =argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False)
parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''')
parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''')
_lowercase : Any =parser.parse_args()
_lowercase : str ='''cpu'''
_lowercase : Any ='''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings'''
_lowercase : Dict ='''path-to-your-trained-model'''
_lowercase : List[Any] =StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
_lowercase : Dict =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
_lowercase : List[str] =pipe.to(device)
# to channels last
_lowercase : Union[str, Any] =pipe.unet.to(memory_format=torch.channels_last)
_lowercase : List[Any] =pipe.vae.to(memory_format=torch.channels_last)
_lowercase : str =pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
_lowercase : Optional[Any] =pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
_lowercase : Optional[Any] =torch.randn(2, 4, 6_4, 6_4)
_lowercase : str =torch.rand(1) * 9_9_9
_lowercase : Dict =torch.randn(2, 7_7, 7_6_8)
_lowercase : str =(sample, timestep, encoder_hidden_status)
try:
_lowercase : Dict =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
_lowercase : Optional[int] =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
_lowercase : Tuple =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
_lowercase : Tuple =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
_lowercase : Any =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
_lowercase : Any =6_6_6
_lowercase : Dict =torch.Generator(device).manual_seed(seed)
_lowercase : Optional[int] ={'''generator''': generator}
if args.steps is not None:
_lowercase : List[Any] =args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
_lowercase : List[str] =pipe(prompt, **generate_kwargs).images[0]
# save image
image.save('''generated.png''')
| 715 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 0 |
def A__ ( ) -> Optional[Any]:
'''simple docstring'''
A : List[str] =[]
A : Any =1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
A : Any ="".join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9_999] )
* int(constant[99_999] )
* int(constant[999_999] )
)
if __name__ == "__main__":
print(solution())
| 716 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int=7 , SCREAMING_SNAKE_CASE__ : Any=3 , SCREAMING_SNAKE_CASE__ : Tuple=18 , SCREAMING_SNAKE_CASE__ : str=30 , SCREAMING_SNAKE_CASE__ : str=4_00 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , ) -> List[str]:
A : Union[str, Any] =size if size is not None else {'shortest_edge': 20}
A : Tuple =crop_size if crop_size is not None else {'height': 18, 'width': 18}
A : Optional[Any] =parent
A : str =batch_size
A : Dict =num_channels
A : str =image_size
A : List[Any] =min_resolution
A : List[str] =max_resolution
A : Optional[Any] =do_resize
A : Any =size
A : List[Any] =do_center_crop
A : Dict =crop_size
A : str =do_flip_channel_order
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , unittest.TestCase ):
'''simple docstring'''
lowercase : int = MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int:
A : int =MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]:
A : Dict =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_center_crop' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'center_crop' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_flip_channel_order' ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Dict =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
A : List[str] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[Any]:
# Initialize image_processing
A : int =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
A : str =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> str:
# Initialize image_processing
A : List[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Optional[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
A : List[str] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
# Initialize image_processing
A : Dict =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Any =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
A : Optional[int] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 717 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 0 |
def A__ ( lowercase: str ) -> str:
A : Tuple =[0] * len(__lowerCAmelCase )
A : Dict =[]
A : Optional[Any] =[]
A : Any =0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__lowerCAmelCase ) ):
if indegree[i] == 0:
queue.append(__lowerCAmelCase )
while queue:
A : List[Any] =queue.pop(0 )
cnt += 1
topo.append(__lowerCAmelCase )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(__lowerCAmelCase )
if cnt != len(__lowerCAmelCase ):
print('Cycle exists' )
else:
print(__lowerCAmelCase )
# Adjacency List of Graph
_lowercase : List[str] ={0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 718 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 0 |
from __future__ import annotations
_lowercase : Dict =8.9_8_8E9 # units = N * m^s * C^-2
def A__ ( lowercase: Tuple, lowercase: Tuple, lowercase: Dict, lowercase: List[str] ) -> Optional[Any]:
A : Optional[Any] =abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if distance < 0:
raise ValueError('Distance cannot be negative' )
if force == 0:
A : Optional[int] =COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
A : str =abs(lowercase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
A : Tuple =abs(lowercase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
A : List[str] =(COULOMBS_CONSTANT * charge_product / abs(lowercase__ )) ** 0.5
return {"distance": distance}
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
_lowercase : Any =None
_lowercase : List[Any] =logging.get_logger(__name__)
_lowercase : int ={'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
_lowercase : int ={
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
_lowercase : Optional[Any] ={
'google/rembert': 2_5_6,
}
_lowercase : Tuple ='▁'
class SCREAMING_SNAKE_CASE_ ( __lowercase ):
'''simple docstring'''
lowercase : Optional[Any] = VOCAB_FILES_NAMES
lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Optional[int] = RemBertTokenizer
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="[SEP]" , SCREAMING_SNAKE_CASE__ : str="<pad>" , SCREAMING_SNAKE_CASE__ : str="[CLS]" , SCREAMING_SNAKE_CASE__ : List[str]="[MASK]" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Optional[int]:
# Mask token behave like a normal word, i.e. include the space before it
A : Dict =AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token
super().__init__(
__a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , )
A : Optional[Any] =do_lower_case
A : str =remove_space
A : Any =keep_accents
A : Optional[Any] =vocab_file
A : Optional[int] =False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
A : Optional[Any] =[self.sep_token_id]
A : Dict =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1]
return [1] + ([0] * len(__a )) + [1]
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
A : Union[str, Any] =[self.sep_token_id]
A : List[str] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__a ):
logger.error('Vocabulary path ({}) should be a directory'.format(__a ) )
return
A : Optional[Any] =os.path.join(
__a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ):
copyfile(self.vocab_file , __a )
return (out_vocab_file,)
| 720 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 0 |
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=13 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : str=99 , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : int=5 , SCREAMING_SNAKE_CASE__ : Dict=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=37 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=16 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , SCREAMING_SNAKE_CASE__ : Tuple=None , ) -> int:
A : Tuple =parent
A : str =batch_size
A : Any =seq_length
A : List[str] =is_training
A : List[str] =use_input_mask
A : Union[str, Any] =use_token_type_ids
A : List[Any] =use_labels
A : Optional[Any] =vocab_size
A : List[str] =hidden_size
A : List[Any] =num_hidden_layers
A : List[Any] =num_attention_heads
A : List[Any] =intermediate_size
A : Tuple =hidden_act
A : Tuple =hidden_dropout_prob
A : int =attention_probs_dropout_prob
A : Optional[int] =max_position_embeddings
A : int =type_vocab_size
A : Tuple =type_sequence_label_size
A : Optional[int] =initializer_range
A : List[str] =num_labels
A : Optional[int] =num_choices
A : Optional[int] =scope
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int:
A : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Dict =None
if self.use_input_mask:
A : str =random_attention_mask([self.batch_size, self.seq_length] )
A : List[Any] =None
if self.use_token_type_ids:
A : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A : List[str] =None
A : List[str] =None
A : int =None
if self.use_labels:
A : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices )
A : str =self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Union[str, Any]:
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
A : int =LlamaModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
A : int =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )
A : Optional[int] =model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , ) -> List[Any]:
A : Dict =True
A : Dict =LlamaModel(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
A : List[Any] =model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , )
A : Any =model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , )
A : Any =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , ) -> Optional[int]:
A : List[str] =LlamaForCausalLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
A : Tuple =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , ) -> Tuple:
A : Any =True
A : str =True
A : str =LlamaForCausalLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
# first forward pass
A : Union[str, Any] =model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , )
A : int =outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A : Optional[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size )
A : List[Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A : Dict =torch.cat([input_ids, next_tokens] , dim=-1 )
A : Any =torch.cat([input_mask, next_mask] , dim=-1 )
A : List[Any] =model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0]
A : Union[str, Any] =model(
UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0]
# select random slice
A : List[str] =ids_tensor((1,) , output_from_past.shape[-1] ).item()
A : Optional[Any] =output_from_no_past[:, -3:, random_slice_idx].detach()
A : Dict =output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3 ) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int:
A : Optional[Any] =self.prepare_config_and_inputs()
(
(
A
) , (
A
) , (
A
) , (
A
) , (
A
) , (
A
) , (
A
) ,
) : List[str] =config_and_inputs
A : Optional[int] ={'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Dict = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
lowercase : str = (LlamaForCausalLM,) if is_torch_available() else ()
lowercase : Optional[Any] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase : str = False
lowercase : str = False
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[int]:
A : Any =LlamaModelTester(self )
A : Tuple =ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
A : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str:
A : List[Any] =self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A : int =type
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
A , A : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
A : List[Any] =3
A : Tuple =input_dict['input_ids']
A : Any =input_ids.ne(1 ).to(UpperCAmelCase__ )
A : List[Any] =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A : Optional[int] =LlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
A : List[str] =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]:
A , A : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
A : Union[str, Any] =3
A : Optional[Any] ='single_label_classification'
A : Optional[Any] =input_dict['input_ids']
A : Optional[int] =input_ids.ne(1 ).to(UpperCAmelCase__ )
A : Any =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A : str =LlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
A : List[Any] =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict:
A , A : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
A : Union[str, Any] =3
A : Union[str, Any] ='multi_label_classification'
A : List[Any] =input_dict['input_ids']
A : Optional[Any] =input_ids.ne(1 ).to(UpperCAmelCase__ )
A : Optional[Any] =ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
A : str =LlamaForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
A : int =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('LLaMA buffers include complex numbers, which breaks this test' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]:
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
A , A : Any =self.model_tester.prepare_config_and_inputs_for_common()
A : List[Any] =ids_tensor([1, 10] , config.vocab_size )
A : Optional[int] =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A : Dict =LlamaModel(UpperCAmelCase__ )
original_model.to(UpperCAmelCase__ )
original_model.eval()
A : List[str] =original_model(UpperCAmelCase__ ).last_hidden_state
A : Optional[Any] =original_model(UpperCAmelCase__ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A : Optional[int] ={'type': scaling_type, 'factor': 1_0.0}
A : int =LlamaModel(UpperCAmelCase__ )
scaled_model.to(UpperCAmelCase__ )
scaled_model.eval()
A : str =scaled_model(UpperCAmelCase__ ).last_hidden_state
A : List[Any] =scaled_model(UpperCAmelCase__ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-5 ) )
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
A : Optional[int] =[1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38]
A : List[Any] =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' )
A : Any =model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
A : Tuple =torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] )
torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
A : Optional[Any] =torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 )
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
A : Any =[1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38]
A : List[Any] =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' )
A : List[str] =model(torch.tensor(UpperCAmelCase__ ) )
# Expected mean on dim = -1
A : Union[str, Any] =torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] )
torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
A : Dict =torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 )
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
A : Optional[Any] =[1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38]
A : Dict =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' )
A : str =model(torch.tensor(UpperCAmelCase__ ) )
# Expected mean on dim = -1
A : Union[str, Any] =torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] )
torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
A : Tuple =torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 )
@unittest.skip(
'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
A : str =[1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38]
A : Tuple =LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' )
A : List[Any] =model(torch.tensor(UpperCAmelCase__ ) )
A : Dict =torch.tensor(
[[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase__ , atol=1e-2 , rtol=1e-2 )
# fmt: off
A : Tuple =torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , UpperCAmelCase__ , atol=1e-5 , rtol=1e-5 )
@unittest.skip('Model is curently gated' )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Dict ='Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi'
A : Any ='Simply put, the theory of relativity states that '
A : Dict =LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' )
A : Dict =tokenizer.encode(UpperCAmelCase__ , return_tensors='pt' )
A : Dict =LlamaForCausalLM.from_pretrained(
'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCAmelCase__ )
# greedy generation outputs
A : List[Any] =model.generate(UpperCAmelCase__ , max_new_tokens=64 , top_p=UpperCAmelCase__ , temperature=1 , do_sample=UpperCAmelCase__ )
A : Union[str, Any] =tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase__ )
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
| 721 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ):
'''simple docstring'''
lowercase : int = StableDiffusionPanoramaPipeline
lowercase : Tuple = TEXT_TO_IMAGE_PARAMS
lowercase : str = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
lowercase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
torch.manual_seed(0 )
A : int =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
A : List[Any] =DDIMScheduler()
torch.manual_seed(0 )
A : Tuple =AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
A : int =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
A : Tuple =CLIPTextModel(A__ )
A : Optional[Any] =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
A : Tuple ={
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str=0 ) -> Optional[Any]:
A : List[Any] =torch.manual_seed(A__ )
A : int ={
'prompt': 'a photo of the dolomites',
'generator': generator,
# Setting height and width to None to prevent OOMs on CPU.
'height': None,
'width': None,
'num_inference_steps': 1,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]:
A : List[str] ='cpu' # ensure determinism for the device-dependent torch.Generator
A : List[str] =self.get_dummy_components()
A : str =StableDiffusionPanoramaPipeline(**A__ )
A : int =sd_pipe.to(A__ )
sd_pipe.set_progress_bar_config(disable=A__ )
A : List[str] =self.get_dummy_inputs(A__ )
A : str =sd_pipe(**A__ ).images
A : int =image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A : Union[str, Any] =np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]:
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Union[str, Any]:
A : int ='cpu' # ensure determinism for the device-dependent torch.Generator
A : Optional[Any] =self.get_dummy_components()
A : List[Any] =StableDiffusionPanoramaPipeline(**A__ )
A : List[Any] =sd_pipe.to(A__ )
sd_pipe.set_progress_bar_config(disable=A__ )
A : int =self.get_dummy_inputs(A__ )
A : Optional[int] ='french fries'
A : List[Any] =sd_pipe(**A__ , negative_prompt=A__ )
A : Any =output.images
A : Union[str, Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A : str =np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> str:
A : str ='cpu' # ensure determinism for the device-dependent torch.Generator
A : List[str] =self.get_dummy_components()
A : int =StableDiffusionPanoramaPipeline(**A__ )
A : Any =sd_pipe.to(A__ )
sd_pipe.set_progress_bar_config(disable=A__ )
A : Tuple =self.get_dummy_inputs(A__ )
A : int =sd_pipe(**A__ , view_batch_size=2 )
A : int =output.images
A : Union[str, Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A : Dict =np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
A : Dict ='cpu' # ensure determinism for the device-dependent torch.Generator
A : Any =self.get_dummy_components()
A : str =EulerAncestralDiscreteScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' )
A : Any =StableDiffusionPanoramaPipeline(**A__ )
A : Dict =sd_pipe.to(A__ )
sd_pipe.set_progress_bar_config(disable=A__ )
A : Tuple =self.get_dummy_inputs(A__ )
A : List[Any] =sd_pipe(**A__ ).images
A : Optional[int] =image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A : Optional[int] =np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
A : Optional[int] ='cpu' # ensure determinism for the device-dependent torch.Generator
A : Union[str, Any] =self.get_dummy_components()
A : Dict =PNDMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , skip_prk_steps=A__ )
A : Tuple =StableDiffusionPanoramaPipeline(**A__ )
A : List[str] =sd_pipe.to(A__ )
sd_pipe.set_progress_bar_config(disable=A__ )
A : List[Any] =self.get_dummy_inputs(A__ )
A : Optional[int] =sd_pipe(**A__ ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A : Union[str, Any] =np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ) -> str:
A : Optional[int] =torch.manual_seed(A__ )
A : List[Any] ={
'prompt': 'a photo of the dolomites',
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : List[Any] ='stabilityai/stable-diffusion-2-base'
A : Union[str, Any] =DDIMScheduler.from_pretrained(A__ , subfolder='scheduler' )
A : Optional[Any] =StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ )
pipe.to(A__ )
pipe.set_progress_bar_config(disable=A__ )
pipe.enable_attention_slicing()
A : int =self.get_inputs()
A : str =pipe(**A__ ).images
A : Optional[int] =image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
A : List[Any] =np.array(
[
0.3_6_9_6_8_3_9_2,
0.2_7_0_2_5_3_7_2,
0.3_2_4_4_6_7_6_6,
0.2_8_3_7_9_3_8_7,
0.3_6_3_6_3_2_7_4,
0.3_0_7_3_3_3_4_7,
0.2_7_1_0_0_0_2_7,
0.2_7_0_5_4_1_2_5,
0.2_5_5_3_6_0_9_6,
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : int =StableDiffusionPanoramaPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-base' , safety_checker=A__ )
A : int =LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(A__ )
pipe.set_progress_bar_config(disable=A__ )
pipe.enable_attention_slicing()
A : List[str] =self.get_inputs()
A : str =pipe(**A__ ).images
A : str =image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
A : Tuple =np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
A : Union[str, Any] =0
def callback_fn(SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ) -> None:
A : Any =True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
A : Any =latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
A : Optional[Any] =latents[0, -3:, -3:, -1]
A : Tuple =np.array(
[
0.1_8_6_8_1_8_6_9,
0.3_3_9_0_7_8_1_6,
0.5_3_6_1_2_7_6,
0.1_4_4_3_2_8_6_5,
-0.0_2_8_5_6_6_1_1,
-0.7_3_9_4_1_1_2_3,
0.2_3_3_9_7_9_8_7,
0.4_7_3_2_2_6_8_2,
-0.3_7_8_2_3_1_6_4,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
A : Dict =latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
A : Optional[Any] =latents[0, -3:, -3:, -1]
A : Tuple =np.array(
[
0.1_8_5_3_9_6_4_5,
0.3_3_9_8_7_2_4_8,
0.5_3_7_8_5_5_9,
0.1_4_4_3_7_1_4_2,
-0.0_2_4_5_5_2_6_1,
-0.7_3_3_8_3_1_7,
0.2_3_9_9_0_7_5_5,
0.4_7_3_5_6_2_7_2,
-0.3_7_8_6_5_0_5,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
A : Any =False
A : Optional[Any] ='stabilityai/stable-diffusion-2-base'
A : int =DDIMScheduler.from_pretrained(A__ , subfolder='scheduler' )
A : List[str] =StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ )
A : Dict =pipe.to(A__ )
pipe.set_progress_bar_config(disable=A__ )
pipe.enable_attention_slicing()
A : str =self.get_inputs()
pipe(**A__ , callback=A__ , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
A : Union[str, Any] ='stabilityai/stable-diffusion-2-base'
A : Optional[Any] =DDIMScheduler.from_pretrained(A__ , subfolder='scheduler' )
A : Any =StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ )
A : Optional[int] =pipe.to(A__ )
pipe.set_progress_bar_config(disable=A__ )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
A : Union[str, Any] =self.get_inputs()
A : List[Any] =pipe(**A__ )
A : int =torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 700 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 0 |
class SCREAMING_SNAKE_CASE_ : # Public class to implement a graph
'''simple docstring'''
def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[bool]] ) -> None:
A : str =row
A : List[str] =col
A : int =graph
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[bool]] ) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[bool]] ) -> None:
A : Any =[-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
A : Union[str, Any] =[-1, 0, 1, -1, 1, -1, 0, 1]
A : Union[str, Any] =True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE__ ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: # And finally, count all islands.
A : Any =[[False for j in range(self.COL )] for i in range(self.ROW )]
A : Dict =0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
count += 1
return count
| 701 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 0 |
def A__ ( lowercase: Dict ) -> List[str]:
for i in range(len(lowercase__ ) - 1, 0, -1 ):
A : Optional[Any] =False
for j in range(lowercase__, 0, -1 ):
if unsorted[j] < unsorted[j - 1]:
A , A : Tuple =unsorted[j - 1], unsorted[j]
A : Any =True
for j in range(lowercase__ ):
if unsorted[j] > unsorted[j + 1]:
A , A : Dict =unsorted[j + 1], unsorted[j]
A : Union[str, Any] =True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : Union[str, Any] =input('''Enter numbers separated by a comma:\n''').strip()
_lowercase : str =[int(item) for item in user_input.split(''',''')]
print(f'''{cocktail_shaker_sort(unsorted) = }''')
| 702 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 0 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
_lowercase : Dict ='true'
def A__ ( lowercase: str, lowercase: int=82, lowercase: Union[str, Any]=16 ) -> List[Any]:
set_seed(42 )
A : List[Any] =RegressionModel()
A : int =deepcopy(lowerCAmelCase_ )
A : Optional[int] =RegressionDataset(length=lowerCAmelCase_ )
A : Optional[Any] =DataLoader(lowerCAmelCase_, batch_size=lowerCAmelCase_ )
model.to(accelerator.device )
A : str =accelerator.prepare(lowerCAmelCase_, lowerCAmelCase_ )
return model, ddp_model, dataloader
def A__ ( lowercase: str, lowercase: Any=False ) -> Optional[int]:
A : Any =AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
A : str =load_dataset('glue', 'mrpc', split='validation' )
def tokenize_function(lowercase: Tuple ):
A : str =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowerCAmelCase_, max_length=lowerCAmelCase_ )
return outputs
with accelerator.main_process_first():
A : int =dataset.map(
lowerCAmelCase_, batched=lowerCAmelCase_, remove_columns=['idx', 'sentence1', 'sentence2'], )
A : Any =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: List[str] ):
if use_longest:
return tokenizer.pad(lowerCAmelCase_, padding='longest', return_tensors='pt' )
return tokenizer.pad(lowerCAmelCase_, padding='max_length', max_length=128, return_tensors='pt' )
return DataLoader(lowerCAmelCase_, shuffle=lowerCAmelCase_, collate_fn=lowerCAmelCase_, batch_size=16 )
def A__ ( lowercase: Tuple, lowercase: Union[str, Any] ) -> Optional[Any]:
A : List[Any] =Accelerator(dispatch_batches=lowerCAmelCase_, split_batches=lowerCAmelCase_ )
A : Dict =get_dataloader(lowerCAmelCase_, not dispatch_batches )
A : List[Any] =AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased', return_dict=lowerCAmelCase_ )
A : Tuple =accelerator.prepare(lowerCAmelCase_, lowerCAmelCase_ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def A__ ( lowercase: int, lowercase: Optional[int], lowercase: Dict ) -> Optional[int]:
A : str =[]
for batch in dataloader:
A : int =batch.values()
with torch.no_grad():
A : List[str] =model(lowerCAmelCase_ )
A : Optional[int] =accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
A : Union[str, Any] =[], []
for logit, targ in logits_and_targets:
logits.append(lowerCAmelCase_ )
targs.append(lowerCAmelCase_ )
A : Optional[int] =torch.cat(lowerCAmelCase_ ), torch.cat(lowerCAmelCase_ )
return logits, targs
def A__ ( lowercase: Any, lowercase: Any=82, lowercase: Optional[int]=False, lowercase: str=False, lowercase: str=16 ) -> str:
A : Optional[Any] =get_basic_setup(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
A : Optional[int] =generate_predictions(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
assert (
len(lowerCAmelCase_ ) == num_samples
), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCAmelCase_ )}'
def A__ ( lowercase: int = False, lowercase: Any = False ) -> List[Any]:
A : Any =evaluate.load('glue', 'mrpc' )
A : List[str] =get_mrpc_setup(lowerCAmelCase_, lowerCAmelCase_ )
# First do baseline
A : List[Any] =setup['''no''']
model.to(lowerCAmelCase_ )
model.eval()
for batch in dataloader:
batch.to(lowerCAmelCase_ )
with torch.inference_mode():
A : Optional[Any] =model(**lowerCAmelCase_ )
A : Tuple =outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=lowerCAmelCase_, references=batch['labels'] )
A : Optional[int] =metric.compute()
# Then do distributed
A : Any =setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
A : Dict =model(**lowerCAmelCase_ )
A : Tuple =outputs.logits.argmax(dim=-1 )
A : Union[str, Any] =batch['''labels''']
A : Optional[Any] =accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=lowerCAmelCase_, references=lowerCAmelCase_ )
A : Optional[int] =metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key], distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'
def A__ ( ) -> Any:
A : List[str] =Accelerator(split_batches=lowerCAmelCase_, dispatch_batches=lowerCAmelCase_ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' )
test_mrpc(lowerCAmelCase_, lowerCAmelCase_ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
A : List[Any] =Accelerator(split_batches=lowerCAmelCase_, dispatch_batches=lowerCAmelCase_ )
if accelerator.is_local_main_process:
print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' )
test_torch_metrics(lowerCAmelCase_, 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
A : Optional[int] =Accelerator()
test_torch_metrics(lowerCAmelCase_, 512 )
accelerator.state._reset_state()
def A__ ( lowercase: List[Any] ) -> Optional[int]:
main()
if __name__ == "__main__":
main()
| 703 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 0 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE_ ( metaclass=_UpperCAmelCase ):
'''simple docstring'''
lowercase : Tuple = ["""onnx"""]
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
requires_backends(self , ['onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Dict , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
requires_backends(cls , ['onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : Dict ) -> Dict:
requires_backends(cls , ['onnx'] )
| 704 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 0 |
from itertools import product
def A__ ( lowercase: int, lowercase: int ) -> Union[str, Any]:
A : List[Any] =sides_number
A : List[Any] =max_face_number * dice_number
A : Dict =[0] * (max_total + 1)
A : Tuple =1
A : Dict =range(a_, max_face_number + 1 )
for dice_numbers in product(a_, repeat=a_ ):
A : Optional[Any] =sum(a_ )
totals_frequencies[total] += 1
return totals_frequencies
def A__ ( ) -> Tuple:
A : int =total_frequency_distribution(
sides_number=4, dice_number=9 )
A : Any =total_frequency_distribution(
sides_number=6, dice_number=6 )
A : Optional[int] =0
A : Union[str, Any] =9
A : List[Any] =4 * 9
A : List[Any] =6
for peter_total in range(a_, max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
A : Union[str, Any] =(4**9) * (6**6)
A : Tuple =peter_wins_count / total_games_number
A : Optional[int] =round(a_, ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(f'''{solution() = }''')
| 705 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_lowercase : Tuple ={
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] =["""PerceiverFeatureExtractor"""]
_lowercase : Optional[int] =["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int =[
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
_lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 706 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 0 |
import flax.linen as nn
import jax
import jax.numpy as jnp
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
'''simple docstring'''
lowercase : int
lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
A : str =nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]:
A : List[str] =hidden_states.shape
A : Dict =jax.image.resize(
__a , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
A : Tuple =self.conv(__a )
return hidden_states
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
'''simple docstring'''
lowercase : int
lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[Any] =nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Any:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
A : Union[str, Any] =self.conv(__a )
return hidden_states
class SCREAMING_SNAKE_CASE_ ( nn.Module ):
'''simple docstring'''
lowercase : int
lowercase : int = None
lowercase : float = 0.0
lowercase : bool = None
lowercase : jnp.dtype = jnp.floataa
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int:
A : List[str] =self.in_channels if self.out_channels is None else self.out_channels
A : int =nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
A : List[str] =nn.Conv(
__a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
A : Union[str, Any] =nn.Dense(__a , dtype=self.dtype )
A : Union[str, Any] =nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
A : Dict =nn.Dropout(self.dropout_prob )
A : List[str] =nn.Conv(
__a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
A : Optional[Any] =self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
A : List[str] =None
if use_nin_shortcut:
A : List[Any] =nn.Conv(
__a , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any=True ) -> Dict:
A : Optional[int] =hidden_states
A : List[Any] =self.norma(__a )
A : Any =nn.swish(__a )
A : str =self.conva(__a )
A : Any =self.time_emb_proj(nn.swish(__a ) )
A : Any =jnp.expand_dims(jnp.expand_dims(__a , 1 ) , 1 )
A : str =hidden_states + temb
A : Any =self.norma(__a )
A : Optional[Any] =nn.swish(__a )
A : Optional[Any] =self.dropout(__a , __a )
A : List[str] =self.conva(__a )
if self.conv_shortcut is not None:
A : str =self.conv_shortcut(__a )
return hidden_states + residual
| 707 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsé.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.