code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : str =get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_sentencepiece_available():
import sentencepiece as sp
_lowercase : int =5
_lowercase : Dict =1_0
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Any = SpeechaTextTokenizer
lowercase : Dict = False
lowercase : Optional[Any] = True
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
super().setUp()
A : Optional[int] =sp.SentencePieceProcessor()
spm_model.Load(SCREAMING_SNAKE_CASE__ )
A : List[Any] =['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(SCREAMING_SNAKE_CASE__ ) )]
A : Optional[Any] =dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
A : List[str] =Path(self.tmpdirname )
save_json(SCREAMING_SNAKE_CASE__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(SCREAMING_SNAKE_CASE__ , save_dir / VOCAB_FILES_NAMES['spm_file'] )
A : Tuple =SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int:
A : Tuple ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : str =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_01 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]:
A : Union[str, Any] =SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
A : int =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['โThis', 'โis', 'โa', 'โt', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [2_89, 50, 14, 1_74, 3_86] , )
A : Dict =tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'รฉ', '.'] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
A : Tuple =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
# fmt: off
A : str ={'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
lowercase : Any = "valhalla/s2t_mustc_multilinguial_medium"
lowercase : Tuple = "C'est trop cool"
lowercase : Union[str, Any] = "Esto es genial"
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Any ) -> List[Any]:
A : SpeechaTextTokenizer =SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
self.assertIn(SCREAMING_SNAKE_CASE__ , self.tokenizer.all_special_ids )
A : Any =[ES_CODE, 4, 16_01, 47, 76_47, 2]
A : str =self.tokenizer.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]:
A : Tuple ='fr'
A : Tuple =self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , SCREAMING_SNAKE_CASE__ )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Any ='fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
A : str ='es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 661 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 1 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : int=10 , SCREAMING_SNAKE_CASE__ : Optional[int]=[8, 16, 32, 64] , SCREAMING_SNAKE_CASE__ : int=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="relu" , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Dict=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE__ : List[str]=[2, 3, 4] , SCREAMING_SNAKE_CASE__ : List[str]=1 , ) -> Union[str, Any]:
A : Tuple =parent
A : List[Any] =batch_size
A : Any =image_size
A : int =num_channels
A : str =embeddings_size
A : Any =hidden_sizes
A : Dict =depths
A : Optional[int] =is_training
A : Any =use_labels
A : Optional[Any] =hidden_act
A : Optional[Any] =num_labels
A : Optional[Any] =scope
A : str =len(SCREAMING_SNAKE_CASE__ )
A : Any =out_features
A : List[Any] =out_indices
A : Dict =num_groups
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]:
A : Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A : List[Any] =None
if self.use_labels:
A : str =ids_tensor([self.batch_size] , self.num_labels )
A : List[str] =self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> int:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Any:
A : Any =BitModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : int =model(SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple:
A : List[Any] =self.num_labels
A : List[str] =BitForImageClassification(SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : Any =model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
A : Any =BitBackbone(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : Any =model(SCREAMING_SNAKE_CASE__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
A : Any =None
A : int =BitBackbone(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
A : Dict =model(SCREAMING_SNAKE_CASE__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
A : Optional[Any] =self.prepare_config_and_inputs()
A , A , A : Tuple =config_and_inputs
A : Optional[Any] ={'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Dict = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
lowercase : Union[str, Any] = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
lowercase : str = False
lowercase : List[Any] = False
lowercase : List[str] = False
lowercase : str = False
lowercase : str = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : List[str] =BitModelTester(self )
A : Tuple =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
return
@unittest.skip(reason='Bit does not output attentions' )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]:
pass
@unittest.skip(reason='Bit does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
pass
@unittest.skip(reason='Bit does not support input and output embeddings' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]:
pass
def SCREAMING_SNAKE_CASE_ ( self : str ) -> int:
A , A : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : int =model_class(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A : str =[*signature.parameters.keys()]
A : List[Any] =['pixel_values']
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]:
A , A : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A : str =model_class(config=SCREAMING_SNAKE_CASE__ )
for name, module in model.named_modules():
if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[Any]:
def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ):
A : Union[str, Any] =model_class(SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
with torch.no_grad():
A : Tuple =model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
A : List[str] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A : Dict =self.model_tester.num_stages
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
A , A : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
A : Union[str, Any] =['preactivation', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
A : str =layer_type
A : Union[str, Any] =True
check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A : Union[str, Any] =True
check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@unittest.skip(reason='Bit does not use feedforward chunking' )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict:
pass
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict:
A : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A : str =BitModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
def A__ ( ) -> List[str]:
A : Any =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[Any]:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict:
A : int =BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =self.default_image_processor
A : str =prepare_img()
A : List[Any] =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ )
# forward pass
with torch.no_grad():
A : Tuple =model(**SCREAMING_SNAKE_CASE__ )
# verify the logits
A : List[str] =torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(SCREAMING_SNAKE_CASE__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
@require_torch
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : int = (BitBackbone,) if is_torch_available() else ()
lowercase : Dict = BitConfig
lowercase : Dict = False
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str:
A : Any =BitModelTester(self )
| 661 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['โThis', 'โis', 'โa', 'โt', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'รฉ',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsรฉ.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 1 |
from string import ascii_uppercase
_lowercase : str ={char: i for i, char in enumerate(ascii_uppercase)}
_lowercase : List[Any] =dict(enumerate(ascii_uppercase))
def A__ ( lowercase: str, lowercase: str ) -> str:
A : Optional[Any] =len(lowercase )
A : int =0
while True:
if x == i:
A : Optional[int] =0
if len(lowercase ) == len(lowercase ):
break
key += key[i]
i += 1
return key
def A__ ( lowercase: str, lowercase: str ) -> str:
A : List[str] =''
A : str =0
for letter in message:
if letter == " ":
cipher_text += " "
else:
A : Optional[int] =(dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def A__ ( lowercase: str, lowercase: str ) -> str:
A : Tuple =''
A : List[str] =0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
A : Optional[int] =(dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def A__ ( ) -> None:
A : str ='THE GERMAN ATTACK'
A : Optional[int] ='SECRET'
A : Optional[int] =generate_key(lowercase, lowercase )
A : List[Any] =cipher_text(lowercase, lowercase )
print(F'Encrypted Text = {s}' )
print(F'Original Text = {original_text(lowercase, lowercase )}' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 661 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : Any =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/deit-base-distilled-patch16-224''': (
'''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json'''
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[Any] = "deit"
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_68 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : Optional[int]=30_72 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0_2 , SCREAMING_SNAKE_CASE__ : Any=1e-12 , SCREAMING_SNAKE_CASE__ : str=2_24 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : List[Any]=16 , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Union[str, Any]:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : int =hidden_size
A : Tuple =num_hidden_layers
A : Dict =num_attention_heads
A : Dict =intermediate_size
A : Any =hidden_act
A : Tuple =hidden_dropout_prob
A : int =attention_probs_dropout_prob
A : Dict =initializer_range
A : int =layer_norm_eps
A : int =image_size
A : Tuple =patch_size
A : str =num_channels
A : str =qkv_bias
A : Optional[Any] =encoder_stride
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Dict = version.parse("1.11" )
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> float:
return 1e-4
| 661 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_lowercase : Optional[int] =logging.get_logger()
@dataclass
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
lowercase : nn.Module
lowercase : List[nn.Module] = field(default_factory=lowerCAmelCase_ )
lowercase : list = field(default_factory=lowerCAmelCase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Tensor ) -> List[Any]:
A : Optional[Any] =len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(SCREAMING_SNAKE_CASE__ )
def __call__( self : Any , SCREAMING_SNAKE_CASE__ : Tensor ) -> Dict:
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(SCREAMING_SNAKE_CASE__ )
[x.remove() for x in self.handles]
return self
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Union[str, Any]:
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda SCREAMING_SNAKE_CASE__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
lowercase : nn.Module
lowercase : nn.Module
lowercase : int = 0
lowercase : List = field(default_factory=lowerCAmelCase_ )
lowercase : List = field(default_factory=lowerCAmelCase_ )
def __call__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> str:
A : Tuple =Tracker(self.dest )(SCREAMING_SNAKE_CASE__ ).parametrized
A : int =Tracker(self.src )(SCREAMING_SNAKE_CASE__ ).parametrized
A : List[Any] =list(filter(lambda SCREAMING_SNAKE_CASE__ : type(SCREAMING_SNAKE_CASE__ ) not in self.src_skip , SCREAMING_SNAKE_CASE__ ) )
A : int =list(filter(lambda SCREAMING_SNAKE_CASE__ : type(SCREAMING_SNAKE_CASE__ ) not in self.dest_skip , SCREAMING_SNAKE_CASE__ ) )
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise Exception(
f'Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE__ )} operations while'
f' destination module has {len(SCREAMING_SNAKE_CASE__ )}.' )
for dest_m, src_m in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f'Transfered from={src_m} to={dest_m}' )
def A__ ( lowercase: str, lowercase: ResNetConfig, lowercase: Path, lowercase: bool = True ) -> Optional[int]:
print(F'Converting {name}...' )
with torch.no_grad():
A : Dict =timm.create_model(lowercase, pretrained=lowercase ).eval()
A : Any =ResNetForImageClassification(lowercase ).eval()
A : Dict =ModuleTransfer(src=lowercase, dest=lowercase )
A : Optional[int] =torch.randn((1, 3, 224, 224) )
module_transfer(lowercase )
assert torch.allclose(from_model(lowercase ), our_model(lowercase ).logits ), "The model logits don't match the original one."
A : int =F'resnet{"-".join(name.split("resnet" ) )}'
print(lowercase )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add model', use_temp_dir=lowercase, )
# we can use the convnext one
A : Union[str, Any] =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='Add image processor', use_temp_dir=lowercase, )
print(F'Pushed {checkpoint_name}' )
def A__ ( lowercase: Path, lowercase: str = None, lowercase: bool = True ) -> Any:
A : Optional[int] ='imagenet-1k-id2label.json'
A : str =1_000
A : Optional[Any] =(1, num_labels)
A : Dict ='huggingface/label-files'
A : int =num_labels
A : str =json.load(open(hf_hub_download(lowercase, lowercase, repo_type='dataset' ), 'r' ) )
A : Dict ={int(lowercase ): v for k, v in idalabel.items()}
A : List[Any] =idalabel
A : int ={v: k for k, v in idalabel.items()}
A : Union[str, Any] =partial(lowercase, num_labels=lowercase, idalabel=lowercase, labelaid=lowercase )
A : List[Any] ={
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1_024, 2_048], layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1_024, 2_048], layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(lowercase, names_to_config[model_name], lowercase, lowercase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowercase, lowercase, lowercase, lowercase )
return config, expected_shape
if __name__ == "__main__":
_lowercase : str =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported resnet* architecture,'''
''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
_lowercase : List[str] =parser.parse_args()
_lowercase : Path =args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 661 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 1 |
def A__ ( lowercase: int ) -> bool:
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
A : int =4
A : List[Any] =(1 << p) - 1
for _ in range(p - 2 ):
A : Optional[int] =((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(1_1))
| 661 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 1 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 1 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('''>=''', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
_lowercase : Union[str, Any] =get_logger(__name__)
def A__ ( lowercase: int, lowercase: str, lowercase: Union[str, Any], lowercase: Optional[int], lowercase: Optional[int]=0 ) -> Optional[int]:
os.makedirs(lowercase, exist_ok=lowercase )
with FSDP.state_dict_type(
lowercase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
A : List[Any] =model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
A : Optional[int] =F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin'
A : Union[str, Any] =os.path.join(lowercase, lowercase )
if accelerator.process_index == 0:
logger.info(F'Saving model to {output_model_file}' )
torch.save(lowercase, lowercase )
logger.info(F'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
A : Tuple =(
F'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
A : Dict =os.path.join(lowercase, lowercase )
logger.info(F'Saving model to {output_model_file}' )
torch.save(lowercase, lowercase )
logger.info(F'Model saved to {output_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
A : List[str] =os.path.join(lowercase, F'{MODEL_NAME}_{model_index}' )
os.makedirs(lowercase, exist_ok=lowercase )
logger.info(F'Saving model to {ckpt_dir}' )
A : Optional[int] ={'model': state_dict}
dist_cp.save_state_dict(
state_dict=lowercase, storage_writer=dist_cp.FileSystemWriter(lowercase ), planner=DefaultSavePlanner(), )
logger.info(F'Model saved to {ckpt_dir}' )
def A__ ( lowercase: Optional[int], lowercase: Dict, lowercase: Dict, lowercase: Optional[int], lowercase: Any=0 ) -> List[Any]:
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
lowercase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(lowercase ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object' )
return
A : List[str] =F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin'
A : Dict =os.path.join(lowercase, lowercase )
logger.info(F'Loading model from {input_model_file}' )
A : Optional[Any] =torch.load(lowercase )
logger.info(F'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
A : Dict =(
F'{MODEL_NAME}_rank{accelerator.process_index}.bin'
if model_index == 0
else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'
)
A : Optional[Any] =os.path.join(lowercase, lowercase )
logger.info(F'Loading model from {input_model_file}' )
A : int =torch.load(lowercase )
logger.info(F'Model loaded from {input_model_file}' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
A : List[str] =(
os.path.join(lowercase, F'{MODEL_NAME}_{model_index}' )
if F'{MODEL_NAME}' not in input_dir
else input_dir
)
logger.info(F'Loading model from {ckpt_dir}' )
A : Optional[Any] ={'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=lowercase, storage_reader=dist_cp.FileSystemReader(lowercase ), planner=DefaultLoadPlanner(), )
A : Optional[Any] =state_dict['model']
logger.info(F'Model loaded from {ckpt_dir}' )
model.load_state_dict(lowercase )
def A__ ( lowercase: Any, lowercase: str, lowercase: str, lowercase: Optional[Any], lowercase: int, lowercase: List[str]=0 ) -> Optional[int]:
os.makedirs(lowercase, exist_ok=lowercase )
with FSDP.state_dict_type(
lowercase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
A : Union[str, Any] =FSDP.optim_state_dict(lowercase, lowercase )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
A : int =(
F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
A : Union[str, Any] =os.path.join(lowercase, lowercase )
logger.info(F'Saving Optimizer state to {output_optimizer_file}' )
torch.save(lowercase, lowercase )
logger.info(F'Optimizer state saved in {output_optimizer_file}' )
else:
A : int =os.path.join(lowercase, F'{OPTIMIZER_NAME}_{optimizer_index}' )
os.makedirs(lowercase, exist_ok=lowercase )
logger.info(F'Saving Optimizer state to {ckpt_dir}' )
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state}, storage_writer=dist_cp.FileSystemWriter(lowercase ), planner=DefaultSavePlanner(), )
logger.info(F'Optimizer state saved in {ckpt_dir}' )
def A__ ( lowercase: Tuple, lowercase: int, lowercase: int, lowercase: Optional[int], lowercase: Union[str, Any], lowercase: Optional[Any]=0 ) -> int:
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
lowercase, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
A : Any =None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
A : Optional[Any] =(
F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin'
)
A : Union[str, Any] =os.path.join(lowercase, lowercase )
logger.info(F'Loading Optimizer state from {input_optimizer_file}' )
A : Tuple =torch.load(lowercase )
logger.info(F'Optimizer state loaded from {input_optimizer_file}' )
else:
A : Optional[Any] =(
os.path.join(lowercase, F'{OPTIMIZER_NAME}_{optimizer_index}' )
if F'{OPTIMIZER_NAME}' not in input_dir
else input_dir
)
logger.info(F'Loading Optimizer from {ckpt_dir}' )
A : Tuple =load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict(), optimizer_key='optimizer', storage_reader=dist_cp.FileSystemReader(lowercase ), )
A : Optional[Any] =optim_state['optimizer']
logger.info(F'Optimizer loaded from {ckpt_dir}' )
A : Tuple =FSDP.optim_state_dict_to_load(lowercase, lowercase, lowercase )
optimizer.load_state_dict(lowercase )
| 661 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 1 |
_lowercase : Any ='''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
def A__ ( ) -> None:
A : Dict =input('Enter message: ' )
A : Union[str, Any] =input('Enter key [alphanumeric]: ' )
A : Any =input('Encrypt/Decrypt [e/d]: ' )
if mode.lower().startswith('e' ):
A : List[str] ='encrypt'
A : str =encrypt_message(lowercase, lowercase )
elif mode.lower().startswith('d' ):
A : List[Any] ='decrypt'
A : Optional[Any] =decrypt_message(lowercase, lowercase )
print(F'\n{mode.title()}ed message:' )
print(lowercase )
def A__ ( lowercase: str, lowercase: str ) -> str:
return translate_message(lowercase, lowercase, 'encrypt' )
def A__ ( lowercase: str, lowercase: str ) -> str:
return translate_message(lowercase, lowercase, 'decrypt' )
def A__ ( lowercase: str, lowercase: str, lowercase: str ) -> str:
A : str =[]
A : Dict =0
A : List[str] =key.upper()
for symbol in message:
A : List[Any] =LETTERS.find(symbol.upper() )
if num != -1:
if mode == "encrypt":
num += LETTERS.find(key[key_index] )
elif mode == "decrypt":
num -= LETTERS.find(key[key_index] )
num %= len(lowercase )
if symbol.isupper():
translated.append(LETTERS[num] )
elif symbol.islower():
translated.append(LETTERS[num].lower() )
key_index += 1
if key_index == len(lowercase ):
A : Union[str, Any] =0
else:
translated.append(lowercase )
return "".join(lowercase )
if __name__ == "__main__":
main()
| 661 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, "sqlalchemy.sql.Selectable"] , SCREAMING_SNAKE_CASE__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , SCREAMING_SNAKE_CASE__ : Optional[Features] = None , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : str , ) -> Any:
super().__init__(features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =Sql(
cache_dir=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , sql=SCREAMING_SNAKE_CASE__ , con=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
A : str =None
A : List[Any] =None
A : int =None
A : List[Any] =None
self.builder.download_and_prepare(
download_config=SCREAMING_SNAKE_CASE__ , download_mode=SCREAMING_SNAKE_CASE__ , verification_mode=SCREAMING_SNAKE_CASE__ , base_path=SCREAMING_SNAKE_CASE__ , )
# Build dataset for splits
A : List[Any] =self.builder.as_dataset(
split='train' , verification_mode=SCREAMING_SNAKE_CASE__ , in_memory=self.keep_in_memory )
return dataset
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dataset , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> str:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'num_proc {num_proc} must be an integer > 0.' )
A : int =dataset
A : int =name
A : List[str] =con
A : Any =batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
A : int =num_proc
A : Union[str, Any] =to_sql_kwargs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> int:
A : str =self.to_sql_kwargs.pop('sql' , SCREAMING_SNAKE_CASE__ )
A : Optional[int] =self.to_sql_kwargs.pop('con' , SCREAMING_SNAKE_CASE__ )
A : Dict =self.to_sql_kwargs.pop('index' , SCREAMING_SNAKE_CASE__ )
A : List[Any] =self._write(index=SCREAMING_SNAKE_CASE__ , **self.to_sql_kwargs )
return written
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]:
A , A , A : Dict =args
A : Any ={**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs
A : str =query_table(
table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE__ , offset + self.batch_size ) , indices=self.dataset._indices , )
A : Dict =batch.to_pandas()
A : List[Any] =df.to_sql(self.name , self.con , index=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
return num_rows or len(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
A : Tuple =0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
A , A : Tuple =len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ):
written += num_rows
return written
| 661 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
from math import factorial, radians
def A__ ( lowercase: float, lowercase: int = 18, lowercase: int = 10 ) -> float:
A : int =angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
A : List[str] =radians(lowercase )
A : Tuple =angle_in_radians
A : Any =3
A : Optional[Any] =-1
for _ in range(lowercase ):
result += (b * (angle_in_radians**a)) / factorial(lowercase )
A : str =-b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(lowercase, lowercase )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 661 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=18 , SCREAMING_SNAKE_CASE__ : Optional[Any]=30 , SCREAMING_SNAKE_CASE__ : Dict=4_00 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple=32 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , ) -> Tuple:
A : List[Any] =parent
A : List[str] =batch_size
A : str =num_channels
A : Optional[int] =image_size
A : List[Any] =min_resolution
A : Optional[Any] =max_resolution
A : int =do_resize
A : Optional[Any] =size_divisor
A : Tuple =do_rescale
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple:
return {
"do_resize": self.do_resize,
"size_divisor": self.size_divisor,
"do_rescale": self.do_rescale,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Dict = GLPNImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
A : List[str] =GLPNImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]:
A : Dict =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size_divisor' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'resample' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_rescale' ) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
pass
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
# Initialize image_processing
A : Dict =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input (GLPNImageProcessor doesn't support batching)
A : Optional[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
# Initialize image_processing
A : List[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input (GLPNImageProcessor doesn't support batching)
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]:
# Initialize image_processing
A : Tuple =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input (GLPNImageProcessor doesn't support batching)
A : Dict =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 )
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
| 661 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 1 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = ["keras_nlp"]
def __init__( self : int , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> List[Any]:
requires_backends(self , ['keras_nlp'] )
| 661 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 1 |
import torch
from diffusers import DiffusionPipeline
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any:
super().__init__()
self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
def __call__( self : Any ) -> Any:
A : Dict =torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
A : Any =1
A : Dict =self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample
A : List[Any] =self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
A : List[str] =scheduler_output - scheduler_output + torch.ones_like(SCREAMING_SNAKE_CASE__ )
return result
| 661 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 1 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
_lowercase : List[Any] ={
'''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''',
'''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''',
'''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''',
'''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''',
'''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''',
'''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''',
''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''',
'''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''',
'''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/'''
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
_lowercase : List[Any] ={value: key for key, value in MORSE_CODE_DICT.items()}
def A__ ( lowercase: str ) -> str:
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def A__ ( lowercase: str ) -> str:
return "".join(REVERSE_DICT[char] for char in message.split() )
def A__ ( ) -> None:
A : List[Any] ='Morse code here!'
print(lowercase )
A : Optional[int] =encrypt(lowercase )
print(lowercase )
A : Optional[int] =decrypt(lowercase )
print(lowercase )
if __name__ == "__main__":
main()
| 661 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'๐ There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''๐ค Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
_lowercase : Tuple ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_lowercase : List[str] ={
'''vocab_file''': {
'''google/electra-small-generator''': (
'''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'''
),
'''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''',
'''google/electra-large-generator''': (
'''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'''
),
'''google/electra-small-discriminator''': (
'''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'''
),
'''google/electra-base-discriminator''': (
'''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'''
),
'''google/electra-large-discriminator''': (
'''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''google/electra-small-generator''': (
'''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'''
),
'''google/electra-base-generator''': (
'''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'''
),
'''google/electra-large-generator''': (
'''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'''
),
'''google/electra-small-discriminator''': (
'''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'''
),
'''google/electra-base-discriminator''': (
'''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'''
),
'''google/electra-large-discriminator''': (
'''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'''
),
},
}
_lowercase : int ={
'''google/electra-small-generator''': 5_1_2,
'''google/electra-base-generator''': 5_1_2,
'''google/electra-large-generator''': 5_1_2,
'''google/electra-small-discriminator''': 5_1_2,
'''google/electra-base-discriminator''': 5_1_2,
'''google/electra-large-discriminator''': 5_1_2,
}
_lowercase : Tuple ={
'''google/electra-small-generator''': {'''do_lower_case''': True},
'''google/electra-base-generator''': {'''do_lower_case''': True},
'''google/electra-large-generator''': {'''do_lower_case''': True},
'''google/electra-small-discriminator''': {'''do_lower_case''': True},
'''google/electra-base-discriminator''': {'''do_lower_case''': True},
'''google/electra-large-discriminator''': {'''do_lower_case''': True},
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = VOCAB_FILES_NAMES
lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Dict = PRETRAINED_INIT_CONFIGURATION
lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : List[Any] = ElectraTokenizer
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : str="[SEP]" , SCREAMING_SNAKE_CASE__ : int="[PAD]" , SCREAMING_SNAKE_CASE__ : Dict="[CLS]" , SCREAMING_SNAKE_CASE__ : str="[MASK]" , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Tuple:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
A : Optional[Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
A : Union[str, Any] =getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) )
A : Any =do_lower_case
A : Any =strip_accents
A : int =tokenize_chinese_chars
A : Tuple =normalizer_class(**SCREAMING_SNAKE_CASE__ )
A : Tuple =do_lower_case
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any=None ) -> Tuple:
A : int =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
A : List[str] =[self.sep_token_id]
A : int =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
A : Dict =self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 661 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 1 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
_lowercase : Union[str, Any] =logging.get_logger(__name__)
def A__ ( lowercase: List[Any], lowercase: Tuple=False ) -> str:
A : Union[str, Any] =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
('cls_token', 'vit.embeddings.cls_token'),
('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A : List[Any] =[(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Union[str, Any]=False ) -> Optional[int]:
for i in range(config.num_hidden_layers ):
if base_model:
A : Optional[Any] =''
else:
A : str ='vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A : Dict =state_dict.pop(F'blocks.{i}.attn.qkv.weight' )
A : str =state_dict.pop(F'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A : Optional[Any] =in_proj_weight[
: config.hidden_size, :
]
A : str =in_proj_bias[: config.hidden_size]
A : List[str] =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A : Dict =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A : Dict =in_proj_weight[
-config.hidden_size :, :
]
A : Any =in_proj_bias[-config.hidden_size :]
def A__ ( lowercase: Tuple ) -> Tuple:
A : List[str] =['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(lowercase, lowercase )
def A__ ( lowercase: Optional[int], lowercase: Optional[Any], lowercase: str ) -> Any:
A : str =dct.pop(lowercase )
A : Tuple =val
def A__ ( ) -> Optional[Any]:
A : int ='http://images.cocodataset.org/val2017/000000039769.jpg'
A : List[str] =Image.open(requests.get(lowercase, stream=lowercase ).raw )
return im
@torch.no_grad()
def A__ ( lowercase: str, lowercase: Union[str, Any], lowercase: Optional[int]=True ) -> Dict:
A : Any =ViTConfig()
# patch_size
if model_name[-1] == "8":
A : List[str] =8
# set labels if required
if not base_model:
A : Optional[int] =1_000
A : Optional[Any] ='huggingface/label-files'
A : Dict ='imagenet-1k-id2label.json'
A : int =json.load(open(hf_hub_download(lowercase, lowercase, repo_type='dataset' ), 'r' ) )
A : List[str] ={int(lowercase ): v for k, v in idalabel.items()}
A : Optional[int] =idalabel
A : Union[str, Any] ={v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
A : str =384
A : List[Any] =1_536
A : Tuple =12
A : List[str] =6
# load original model from torch hub
A : List[str] =torch.hub.load('facebookresearch/dino:main', lowercase )
original_model.eval()
# load state_dict of original model, remove and rename some keys
A : int =original_model.state_dict()
if base_model:
remove_classification_head_(lowercase )
A : Dict =create_rename_keys(lowercase, base_model=lowercase )
for src, dest in rename_keys:
rename_key(lowercase, lowercase, lowercase )
read_in_q_k_v(lowercase, lowercase, lowercase )
# load HuggingFace model
if base_model:
A : List[str] =ViTModel(lowercase, add_pooling_layer=lowercase ).eval()
else:
A : Dict =ViTForImageClassification(lowercase ).eval()
model.load_state_dict(lowercase )
# Check outputs on an image, prepared by ViTImageProcessor
A : Optional[Any] =ViTImageProcessor()
A : str =image_processor(images=prepare_img(), return_tensors='pt' )
A : Tuple =encoding['pixel_values']
A : Optional[Any] =model(lowercase )
if base_model:
A : Dict =original_model(lowercase )
assert torch.allclose(lowercase, outputs.last_hidden_state[:, 0, :], atol=1e-1 )
else:
A : int =original_model(lowercase )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase, outputs.logits, atol=1e-3 )
Path(lowercase ).mkdir(exist_ok=lowercase )
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''dino_vitb16''',
type=str,
help='''Name of the model trained with DINO you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--base_model''',
action='''store_true''',
help='''Whether to only convert the base model (no projection head weights).''',
)
parser.set_defaults(base_model=True)
_lowercase : List[Any] =parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 661 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 1 |
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
_lowercase : List[str] =TypeVar('''T''')
class SCREAMING_SNAKE_CASE_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : list[T] , SCREAMING_SNAKE_CASE__ : Callable[[T, T], T] ) -> None:
A : Any | T =None
A : int =len(SCREAMING_SNAKE_CASE__ )
A : list[T] =[any_type for _ in range(self.N )] + arr
A : List[Any] =fnc
self.build()
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> None:
for p in range(self.N - 1 , 0 , -1 ):
A : Optional[Any] =self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : T ) -> None:
p += self.N
A : Tuple =v
while p > 1:
A : int =p // 2
A : Tuple =self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> T | None: # noqa: E741
A , A : List[Any] =l + self.N, r + self.N
A : T | None =None
while l <= r:
if l % 2 == 1:
A : Tuple =self.st[l] if res is None else self.fn(SCREAMING_SNAKE_CASE__ , self.st[l] )
if r % 2 == 0:
A : List[Any] =self.st[r] if res is None else self.fn(SCREAMING_SNAKE_CASE__ , self.st[r] )
A , A : Optional[int] =(l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
_lowercase : Dict =[1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2]
_lowercase : Optional[int] ={
0: 7,
1: 2,
2: 6,
3: -1_4,
4: 5,
5: 4,
6: 7,
7: -1_0,
8: 9,
9: 1_0,
1_0: 1_2,
1_1: 1,
}
_lowercase : int =SegmentTree(test_array, min)
_lowercase : Optional[int] =SegmentTree(test_array, max)
_lowercase : Optional[int] =SegmentTree(test_array, lambda a, b: a + b)
def A__ ( ) -> None:
for i in range(len(lowercase ) ):
for j in range(lowercase, len(lowercase ) ):
A : Optional[Any] =reduce(lowercase, test_array[i : j + 1] )
A : Tuple =reduce(lowercase, test_array[i : j + 1] )
A : Dict =reduce(lambda lowercase, lowercase : a + b, test_array[i : j + 1] )
assert min_range == min_segment_tree.query(lowercase, lowercase )
assert max_range == max_segment_tree.query(lowercase, lowercase )
assert sum_range == sum_segment_tree.query(lowercase, lowercase )
test_all_segments()
for index, value in test_updates.items():
_lowercase : Optional[int] =value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 661 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_tensorflow_text_available():
from transformers.models.bert import TFBertTokenizer
_lowercase : Optional[int] =['''bert-base-uncased''', '''bert-base-cased''']
_lowercase : Any ='''hf-internal-testing/tiny-bert-tf-only'''
if is_tf_available():
class SCREAMING_SNAKE_CASE_ ( tf.keras.Model ):
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]:
super().__init__()
A : Optional[Any] =tokenizer
A : Any =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : int =TFAutoModel.from_config(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
A : List[str] =self.tokenizer(SCREAMING_SNAKE_CASE__ )
A : Tuple =self.bert(**SCREAMING_SNAKE_CASE__ )
return out["pooler_output"]
@require_tf
@require_tensorflow_text
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
super().setUp()
A : List[Any] =[
BertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2)
] # repeat for when fast_bert_tokenizer=false
A : Dict =[TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [
TFBertTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , use_fast_bert_tokenizer=SCREAMING_SNAKE_CASE__ )
for checkpoint in TOKENIZER_CHECKPOINTS
]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
A : Union[str, Any] =[
'This is a straightforward English test sentence.',
'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.',
'Now we\'re going to add some Chinese: ไธ ไบ ไธ ไธไบไธ',
'And some much more rare Chinese: ้ฝ ๅ ้ฝๅ ',
'Je vais aussi รฉcrire en franรงais pour tester les accents',
'Classical Irish also has some unusual characters, so in they go: Gaelaฤ, ๊ผ',
]
A : str =list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]:
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in (self.test_sentences, self.paired_sentences):
A : Union[str, Any] =tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='tf' , padding='longest' )
A : Dict =tf_tokenizer(SCREAMING_SNAKE_CASE__ )
for key in python_outputs.keys():
self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) )
self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
for tf_tokenizer in self.tf_tokenizers:
A : List[str] =tf_tokenizer(self.paired_sentences )
A : Tuple =tf_tokenizer(
text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , )
for key in merged_outputs.keys():
self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ) -> str:
for tf_tokenizer in self.tf_tokenizers:
A : Union[str, Any] =tf.function(SCREAMING_SNAKE_CASE__ )
for test_inputs in (self.test_sentences, self.paired_sentences):
A : Union[str, Any] =tf.constant(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =compiled_tokenizer(SCREAMING_SNAKE_CASE__ )
A : int =tf_tokenizer(SCREAMING_SNAKE_CASE__ )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any:
for tf_tokenizer in self.tf_tokenizers:
A : Tuple =ModelToSave(tokenizer=SCREAMING_SNAKE_CASE__ )
A : List[str] =tf.convert_to_tensor(self.test_sentences )
A : Union[str, Any] =model(SCREAMING_SNAKE_CASE__ ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
A : int =Path(SCREAMING_SNAKE_CASE__ ) / 'saved.model'
model.save(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tf.keras.models.load_model(SCREAMING_SNAKE_CASE__ )
A : List[Any] =loaded_model(SCREAMING_SNAKE_CASE__ )
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
| 661 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 1 |
def A__ ( lowercase: Optional[int] ) -> Dict:
A : Tuple =[]
A : Any =[]
A : Optional[int] ={
'^': 3,
'*': 2,
'/': 2,
'%': 2,
'+': 1,
'-': 1,
} # Priority of each operator
A : Any =len(lowercase ) if (len(lowercase ) > 7) else 7
# Print table header for output
print(
'Symbol'.center(8 ), 'Stack'.center(lowercase ), 'Postfix'.center(lowercase ), sep=' | ', )
print('-' * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(lowercase ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(lowercase ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(lowercase ) == 0:
stack.append(lowercase ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(lowercase ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(lowercase ) # push x to stack
print(
x.center(8 ), (''.join(lowercase )).ljust(lowercase ), (''.join(lowercase )).ljust(lowercase ), sep=' | ', ) # Output in tabular format
while len(lowercase ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
' '.center(8 ), (''.join(lowercase )).ljust(lowercase ), (''.join(lowercase )).ljust(lowercase ), sep=' | ', ) # Output in tabular format
return "".join(lowercase ) # return Postfix as str
def A__ ( lowercase: Any ) -> Any:
A : int =list(infix[::-1] ) # reverse the infix equation
for i in range(len(lowercase ) ):
if infix[i] == "(":
A : Tuple =')' # change "(" to ")"
elif infix[i] == ")":
A : Dict ='(' # change ")" to "("
return (infix_2_postfix(''.join(lowercase ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
_lowercase : Tuple =input('''\nEnter an Infix Equation = ''') # Input an Infix equation
_lowercase : List[Any] =''''''.join(Infix.split()) # Remove spaces from the input
print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
| 661 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 1 |
import mpmath # for roots of unity
import numpy as np
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ) -> Tuple:
# Input as list
A : Optional[Any] =list(poly_a or [0] )[:]
A : int =list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
A : List[str] =len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
A : Optional[int] =len(self.polyB )
# Add 0 to make lengths equal a power of 2
A : List[Any] =int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
A : Optional[Any] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
A : List[Any] =self.__multiply()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
A : str =[[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB]
# Corner case
if len(SCREAMING_SNAKE_CASE__ ) <= 1:
return dft[0]
#
A : List[str] =self.c_max_length // 2
while next_ncol > 0:
A : Any =[[] for i in range(SCREAMING_SNAKE_CASE__ )]
A : Optional[Any] =self.root**next_ncol
# First half of next step
A : Tuple =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(SCREAMING_SNAKE_CASE__ ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
A : Optional[Any] =1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(SCREAMING_SNAKE_CASE__ ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
A : Dict =new_dft
A : Optional[int] =next_ncol // 2
return dft[0]
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : List[Any] =self.__dft('A' )
A : Dict =self.__dft('B' )
A : Optional[Any] =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
A : Union[str, Any] =2
while next_ncol <= self.c_max_length:
A : Optional[int] =[[] for i in range(SCREAMING_SNAKE_CASE__ )]
A : Any =self.root ** (next_ncol // 2)
A : Union[str, Any] =1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
A : Any =new_inverse_c
next_ncol *= 2
# Unpack
A : List[Any] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self : str ) -> int:
A : List[Any] ='A = ' + ' + '.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) )
A : List[str] ='B = ' + ' + '.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) )
A : List[Any] ='A*B = ' + ' + '.join(
f'{coef}*x^{i}' for coef, i in enumerate(self.product ) )
return f'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
_lowercase : str =logging.get_logger(__name__)
_lowercase : Optional[int] ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_lowercase : List[str] ={
'''vocab_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/vocab.txt''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/vocab.txt''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt'''
),
'''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt''',
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt'''
),
'''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt''',
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json''',
'''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json''',
'''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json''',
'''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json''',
'''bert-base-multilingual-uncased''': (
'''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json'''
),
'''bert-base-multilingual-cased''': (
'''https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
'''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json''',
'''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json''',
'''bert-large-uncased-whole-word-masking''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json'''
),
'''bert-large-uncased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-large-cased-whole-word-masking-finetuned-squad''': (
'''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json'''
),
'''bert-base-cased-finetuned-mrpc''': (
'''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-cased''': (
'''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json'''
),
'''bert-base-german-dbmdz-uncased''': (
'''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-cased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json'''
),
'''TurkuNLP/bert-base-finnish-uncased-v1''': (
'''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json'''
),
'''wietsedv/bert-base-dutch-cased''': (
'''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json'''
),
},
}
_lowercase : str ={
'''bert-base-uncased''': 5_1_2,
'''bert-large-uncased''': 5_1_2,
'''bert-base-cased''': 5_1_2,
'''bert-large-cased''': 5_1_2,
'''bert-base-multilingual-uncased''': 5_1_2,
'''bert-base-multilingual-cased''': 5_1_2,
'''bert-base-chinese''': 5_1_2,
'''bert-base-german-cased''': 5_1_2,
'''bert-large-uncased-whole-word-masking''': 5_1_2,
'''bert-large-cased-whole-word-masking''': 5_1_2,
'''bert-large-uncased-whole-word-masking-finetuned-squad''': 5_1_2,
'''bert-large-cased-whole-word-masking-finetuned-squad''': 5_1_2,
'''bert-base-cased-finetuned-mrpc''': 5_1_2,
'''bert-base-german-dbmdz-cased''': 5_1_2,
'''bert-base-german-dbmdz-uncased''': 5_1_2,
'''TurkuNLP/bert-base-finnish-cased-v1''': 5_1_2,
'''TurkuNLP/bert-base-finnish-uncased-v1''': 5_1_2,
'''wietsedv/bert-base-dutch-cased''': 5_1_2,
}
_lowercase : Optional[int] ={
'''bert-base-uncased''': {'''do_lower_case''': True},
'''bert-large-uncased''': {'''do_lower_case''': True},
'''bert-base-cased''': {'''do_lower_case''': False},
'''bert-large-cased''': {'''do_lower_case''': False},
'''bert-base-multilingual-uncased''': {'''do_lower_case''': True},
'''bert-base-multilingual-cased''': {'''do_lower_case''': False},
'''bert-base-chinese''': {'''do_lower_case''': False},
'''bert-base-german-cased''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking''': {'''do_lower_case''': False},
'''bert-large-uncased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': True},
'''bert-large-cased-whole-word-masking-finetuned-squad''': {'''do_lower_case''': False},
'''bert-base-cased-finetuned-mrpc''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-cased''': {'''do_lower_case''': False},
'''bert-base-german-dbmdz-uncased''': {'''do_lower_case''': True},
'''TurkuNLP/bert-base-finnish-cased-v1''': {'''do_lower_case''': False},
'''TurkuNLP/bert-base-finnish-uncased-v1''': {'''do_lower_case''': True},
'''wietsedv/bert-base-dutch-cased''': {'''do_lower_case''': False},
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = VOCAB_FILES_NAMES
lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Optional[Any] = BertTokenizer
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]="[UNK]" , SCREAMING_SNAKE_CASE__ : List[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : str="[PAD]" , SCREAMING_SNAKE_CASE__ : List[str]="[CLS]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[MASK]" , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : str , ) -> Optional[Any]:
super().__init__(
SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
A : List[str] =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case
or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars
):
A : Any =getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) )
A : Union[str, Any] =do_lower_case
A : List[str] =strip_accents
A : Union[str, Any] =tokenize_chinese_chars
A : str =normalizer_class(**SCREAMING_SNAKE_CASE__ )
A : Dict =do_lower_case
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=None ) -> Dict:
A : Union[str, Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
A : List[Any] =[self.sep_token_id]
A : List[str] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
A : Union[str, Any] =self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ )
return tuple(SCREAMING_SNAKE_CASE__ )
| 661 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['โThis', 'โis', 'โa', 'โt', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'รฉ',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsรฉ.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Union[str, Any] ={}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int =['''NllbTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] =['''NllbTokenizerFast''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
_lowercase : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 661 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 1 |
from __future__ import annotations
from collections.abc import Callable
_lowercase : List[Any] =list[list[float | int]]
def A__ ( lowercase: Matrix, lowercase: Matrix ) -> Matrix:
A : int =len(lowercase )
A : Matrix =[[0 for _ in range(size + 1 )] for _ in range(lowercase )]
A : int
A : int
A : int
A : int
A : int
A : float
for row in range(lowercase ):
for col in range(lowercase ):
A : Union[str, Any] =matrix[row][col]
A : Dict =vector[row][0]
A : Tuple =0
A : Any =0
while row < size and col < size:
# pivoting
A : str =max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase, lowercase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
A , A : Union[str, Any] =augmented[pivot_row], augmented[row]
for rowa in range(row + 1, lowercase ):
A : Union[str, Any] =augmented[rowa][col] / augmented[row][col]
A : List[str] =0
for cola in range(col + 1, size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1, lowercase ):
for row in range(lowercase ):
A : List[Any] =augmented[row][col] / augmented[col][col]
for cola in range(lowercase, size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row], 10 )] for row in range(lowercase )
]
def A__ ( lowercase: list[int] ) -> Callable[[int], int]:
A : int =len(lowercase )
A : Matrix =[[0 for _ in range(lowercase )] for _ in range(lowercase )]
A : Matrix =[[0] for _ in range(lowercase )]
A : Matrix
A : int
A : int
A : int
for x_val, y_val in enumerate(lowercase ):
for col in range(lowercase ):
A : Any =(x_val + 1) ** (size - col - 1)
A : List[str] =y_val
A : Tuple =solve(lowercase, lowercase )
def interpolated_func(lowercase: int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(lowercase ) )
return interpolated_func
def A__ ( lowercase: int ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def A__ ( lowercase: Callable[[int], int] = question_function, lowercase: int = 10 ) -> int:
A : list[int] =[func(lowercase ) for x_val in range(1, order + 1 )]
A : list[Callable[[int], int]] =[
interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 )
]
A : int =0
A : Callable[[int], int]
A : int
for poly in polynomials:
A : Optional[Any] =1
while func(lowercase ) == poly(lowercase ):
x_val += 1
ret += poly(lowercase )
return ret
if __name__ == "__main__":
print(f'''{solution() = }''')
| 661 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def A__ ( lowercase: Any, lowercase: int, lowercase: List[str], lowercase: List[Any]="attention" ) -> Dict:
A : Any =params[F'{prefix}/layers_{i}/{layer_name}/key/kernel']
A : List[str] =params[F'{prefix}/layers_{i}/{layer_name}/out/kernel']
A : str =params[F'{prefix}/layers_{i}/{layer_name}/query/kernel']
A : Any =params[F'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def A__ ( lowercase: Dict, lowercase: Dict, lowercase: Any, lowercase: Union[str, Any]=False ) -> Tuple:
if split_mlp_wi:
A : Tuple =params[F'{prefix}/layers_{i}/mlp/wi_0/kernel']
A : Union[str, Any] =params[F'{prefix}/layers_{i}/mlp/wi_1/kernel']
A : Optional[int] =(wi_a, wi_a)
else:
A : Optional[int] =params[F'{prefix}/layers_{i}/mlp/wi/kernel']
A : Tuple =params[F'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def A__ ( lowercase: str, lowercase: Optional[Any], lowercase: Dict, lowercase: List[str] ) -> List[Any]:
return params[F'{prefix}/layers_{i}/{layer_name}/scale']
def A__ ( lowercase: dict, *, lowercase: int, lowercase: bool ) -> List[Any]:
A : Optional[int] =traverse_util.flatten_dict(variables['target'] )
A : List[str] ={'/'.join(lowercase ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
A : List[str] ='encoder/layers_0/mlp/wi_0/kernel' in old
print('Split MLP:', lowercase )
A : List[str] =collections.OrderedDict()
# Shared embeddings.
A : Union[str, Any] =old['token_embedder/embedding']
# Encoder.
for i in range(lowercase ):
# Block i, layer 0 (Self Attention).
A : str =tax_layer_norm_lookup(lowercase, lowercase, 'encoder', 'pre_attention_layer_norm' )
A , A , A , A : Optional[Any] =tax_attention_lookup(lowercase, lowercase, 'encoder', 'attention' )
A : Any =layer_norm
A : Tuple =k.T
A : Tuple =o.T
A : int =q.T
A : Any =v.T
# Block i, layer 1 (MLP).
A : Dict =tax_layer_norm_lookup(lowercase, lowercase, 'encoder', 'pre_mlp_layer_norm' )
A , A : Optional[Any] =tax_mlp_lookup(lowercase, lowercase, 'encoder', lowercase )
A : Optional[Any] =layer_norm
if split_mlp_wi:
A : Tuple =wi[0].T
A : List[Any] =wi[1].T
else:
A : Optional[Any] =wi.T
A : int =wo.T
A : List[str] =old[
'encoder/relpos_bias/rel_embedding'
].T
A : Optional[int] =old['encoder/encoder_norm/scale']
if not is_encoder_only:
# Decoder.
for i in range(lowercase ):
# Block i, layer 0 (Self Attention).
A : int =tax_layer_norm_lookup(lowercase, lowercase, 'decoder', 'pre_self_attention_layer_norm' )
A , A , A , A : Optional[int] =tax_attention_lookup(lowercase, lowercase, 'decoder', 'self_attention' )
A : Optional[int] =layer_norm
A : List[str] =k.T
A : Tuple =o.T
A : List[str] =q.T
A : Union[str, Any] =v.T
# Block i, layer 1 (Cross Attention).
A : str =tax_layer_norm_lookup(lowercase, lowercase, 'decoder', 'pre_cross_attention_layer_norm' )
A , A , A , A : Optional[Any] =tax_attention_lookup(lowercase, lowercase, 'decoder', 'encoder_decoder_attention' )
A : List[str] =layer_norm
A : Optional[int] =k.T
A : Optional[Any] =o.T
A : List[str] =q.T
A : Optional[int] =v.T
# Block i, layer 2 (MLP).
A : Dict =tax_layer_norm_lookup(lowercase, lowercase, 'decoder', 'pre_mlp_layer_norm' )
A , A : Tuple =tax_mlp_lookup(lowercase, lowercase, 'decoder', lowercase )
A : int =layer_norm
if split_mlp_wi:
A : Any =wi[0].T
A : Tuple =wi[1].T
else:
A : Optional[Any] =wi.T
A : Union[str, Any] =wo.T
A : Optional[int] =old['decoder/decoder_norm/scale']
A : List[str] =old[
'decoder/relpos_bias/rel_embedding'
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
A : Optional[Any] =old['decoder/logits_dense/kernel'].T
return new
def A__ ( lowercase: Union[str, Any], lowercase: bool ) -> int:
A : List[str] =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
A : List[Any] =state_dict['shared.weight']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
A : Dict =state_dict['shared.weight']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print('Using shared word embeddings as lm_head.' )
A : List[str] =state_dict['shared.weight']
return state_dict
def A__ ( lowercase: Any, lowercase: Optional[int], lowercase: List[Any], lowercase: Tuple ) -> Optional[int]:
A : str =checkpoints.load_tax_checkpoint(lowercase )
A : Union[str, Any] =convert_tax_to_pytorch(lowercase, num_layers=config.num_layers, is_encoder_only=lowercase )
A : List[Any] =make_state_dict(lowercase, lowercase )
model.load_state_dict(lowercase, strict=lowercase )
def A__ ( lowercase: Union[str, Any], lowercase: Optional[int], lowercase: List[Any], lowercase: bool = False ) -> List[Any]:
A : List[str] =TaConfig.from_json_file(lowercase )
print(F'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
A : Optional[Any] =TaEncoderModel(lowercase )
else:
A : Optional[Any] =TaForConditionalGeneration(lowercase )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase, lowercase, lowercase, lowercase )
# Save pytorch-model
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase )
print('Done' )
if __name__ == "__main__":
_lowercase : Any =argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''')
# Required parameters
parser.add_argument(
'''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False
)
_lowercase : Dict =parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 661 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 1 |
def A__ ( lowercase: int, lowercase: list ) -> Dict:
_enforce_args(lowercase, lowercase )
if n == 0:
return 0
A : Optional[int] =float('-inf' )
for i in range(1, n + 1 ):
A : Union[str, Any] =max(
lowercase, prices[i - 1] + naive_cut_rod_recursive(n - i, lowercase ) )
return max_revue
def A__ ( lowercase: int, lowercase: list ) -> Optional[Any]:
_enforce_args(lowercase, lowercase )
A : Dict =[float('-inf' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(lowercase, lowercase, lowercase )
def A__ ( lowercase: int, lowercase: list, lowercase: list ) -> Optional[Any]:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
A : Dict =float('-inf' )
for i in range(1, n + 1 ):
A : int =max(
lowercase, prices[i - 1] + _top_down_cut_rod_recursive(n - i, lowercase, lowercase ), )
A : str =max_revenue
return max_rev[n]
def A__ ( lowercase: int, lowercase: list ) -> Optional[int]:
_enforce_args(lowercase, lowercase )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
A : Dict =[float('-inf' ) for _ in range(n + 1 )]
A : List[Any] =0
for i in range(1, n + 1 ):
A : Dict =max_rev[i]
for j in range(1, i + 1 ):
A : List[str] =max(lowercase, prices[j - 1] + max_rev[i - j] )
A : int =max_revenue_i
return max_rev[n]
def A__ ( lowercase: int, lowercase: list ) -> int:
if n < 0:
A : Tuple =F'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(lowercase )
if n > len(lowercase ):
A : Dict =(
'Each integral piece of rod must have a corresponding price. '
F'Got n = {n} but length of prices = {len(lowercase )}'
)
raise ValueError(lowercase )
def A__ ( ) -> List[str]:
A : Optional[Any] =[6, 10, 12, 15, 20, 23]
A : List[str] =len(lowercase )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
A : Union[str, Any] =36
A : Dict =top_down_cut_rod(lowercase, lowercase )
A : Tuple =bottom_up_cut_rod(lowercase, lowercase )
A : Union[str, Any] =naive_cut_rod_recursive(lowercase, lowercase )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 661 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 1 |
def A__ ( lowercase: Tuple, lowercase: int ) -> List[Any]:
A : int =0
A : str =len(lowercase ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A : List[str] =left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(lowercase ):
return None
A : Union[str, Any] =sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
A : Union[str, Any] =left
A : Optional[Any] =point
elif point > right:
A : List[Any] =right
A : int =point
else:
if item < current_item:
A : Dict =point - 1
else:
A : Tuple =point + 1
return None
def A__ ( lowercase: Optional[Any], lowercase: Optional[int], lowercase: str, lowercase: Optional[int] ) -> int:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
A : Tuple =left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(lowercase ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(lowercase, lowercase, lowercase, lowercase )
elif point > right:
return interpolation_search_by_recursion(lowercase, lowercase, lowercase, lowercase )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
lowercase, lowercase, lowercase, point - 1 )
else:
return interpolation_search_by_recursion(
lowercase, lowercase, point + 1, lowercase )
def A__ ( lowercase: Tuple ) -> Any:
if collection != sorted(lowercase ):
raise ValueError('Collection must be ascending sorted' )
return True
if __name__ == "__main__":
import sys
_lowercase : List[str] =0
if debug == 1:
_lowercase : Optional[int] =[1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3]
try:
__assert_sorted(collection)
except ValueError:
sys.exit('''Sequence must be ascending sorted to apply interpolation search''')
_lowercase : List[Any] =6_7
_lowercase : Any =interpolation_search(collection, target)
if result is not None:
print(f'''{target} found at positions: {result}''')
else:
print('''Not found''')
| 661 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 1 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def A__ ( lowercase: Dict, lowercase: Union[str, Any] ) -> Optional[int]:
A : List[str] =[]
for part_id in partition_order:
A : Optional[Any] =df.where(F'SPARK_PARTITION_ID() = {part_id}' ).collect()
for row_idx, row in enumerate(lowercase ):
expected_row_ids_and_row_dicts.append((F'{part_id}_{row_idx}', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def A__ ( ) -> List[Any]:
A : Optional[int] =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate()
A : Any =spark.range(100 ).repartition(1 )
A : List[str] =Spark(lowercase )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def A__ ( ) -> str:
A : List[Any] =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate()
A : str =spark.range(10 ).repartition(2 )
A : Union[str, Any] =[1, 0]
A : Optional[Any] =_generate_iterable_examples(lowercase, lowercase ) # Reverse the partitions.
A : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(lowercase, lowercase )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
A , A : Any =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def A__ ( ) -> Union[str, Any]:
A : Dict =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate()
A : int =spark.range(10 ).repartition(1 )
A : str =SparkExamplesIterable(lowercase )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(lowercase ):
assert row_id == F'0_{i}'
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def A__ ( ) -> int:
A : str =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate()
A : Union[str, Any] =spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch('numpy.random.Generator' ) as generator_mock:
A : Dict =lambda lowercase : x.reverse()
A : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(lowercase, [2, 1, 0] )
A : Tuple =SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(lowercase ):
A , A : str =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def A__ ( ) -> Optional[int]:
A : Optional[int] =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate()
A : Dict =spark.range(20 ).repartition(4 )
# Partitions 0 and 2
A : Dict =SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0, num_workers=2 )
assert shard_it_a.n_shards == 2
A : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(lowercase, [0, 2] )
for i, (row_id, row_dict) in enumerate(lowercase ):
A , A : Dict =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
A : Any =SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1, num_workers=2 )
assert shard_it_a.n_shards == 2
A : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(lowercase, [1, 3] )
for i, (row_id, row_dict) in enumerate(lowercase ):
A , A : str =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def A__ ( ) -> Optional[int]:
A : Optional[Any] =pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate()
A : int =spark.range(100 ).repartition(1 )
A : Optional[Any] =Spark(lowercase )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 661 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowercase : List[str] =logging.get_logger(__name__)
_lowercase : Any ={
'''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = "yolos"
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : str=30_72 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE__ : Any=1e-12 , SCREAMING_SNAKE_CASE__ : List[str]=[5_12, 8_64] , SCREAMING_SNAKE_CASE__ : List[str]=16 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : int=1_00 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Dict=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5 , SCREAMING_SNAKE_CASE__ : Optional[int]=2 , SCREAMING_SNAKE_CASE__ : List[str]=5 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> List[str]:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : str =hidden_size
A : Tuple =num_hidden_layers
A : str =num_attention_heads
A : Any =intermediate_size
A : List[Any] =hidden_act
A : str =hidden_dropout_prob
A : List[str] =attention_probs_dropout_prob
A : Tuple =initializer_range
A : str =layer_norm_eps
A : Tuple =image_size
A : Union[str, Any] =patch_size
A : Union[str, Any] =num_channels
A : Union[str, Any] =qkv_bias
A : int =num_detection_tokens
A : List[str] =use_mid_position_embeddings
A : str =auxiliary_loss
# Hungarian matcher
A : Optional[Any] =class_cost
A : List[Any] =bbox_cost
A : Optional[int] =giou_cost
# Loss coefficients
A : List[str] =bbox_loss_coefficient
A : int =giou_loss_coefficient
A : List[Any] =eos_coefficient
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[Any] = version.parse("1.11" )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> float:
return 1e-4
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int:
return 12
| 661 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
def A__ ( lowercase: int ) -> None:
A : str =generate_pascal_triangle(lowercase )
for row_idx in range(lowercase ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=' ' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx], end=' ' )
else:
print(triangle[row_idx][col_idx], end='' )
print()
def A__ ( lowercase: int ) -> list[list[int]]:
if not isinstance(lowercase, lowercase ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
A : list[list[int]] =[]
for current_row_idx in range(lowercase ):
A : List[str] =populate_current_row(lowercase, lowercase )
triangle.append(lowercase )
return triangle
def A__ ( lowercase: list[list[int]], lowercase: int ) -> list[int]:
A : Tuple =[-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
A , A : List[str] =1, 1
for current_col_idx in range(1, lowercase ):
calculate_current_element(
lowercase, lowercase, lowercase, lowercase )
return current_row
def A__ ( lowercase: list[list[int]], lowercase: list[int], lowercase: int, lowercase: int, ) -> None:
A : Optional[int] =triangle[current_row_idx - 1][current_col_idx - 1]
A : Optional[Any] =triangle[current_row_idx - 1][current_col_idx]
A : int =above_to_left_elt + above_to_right_elt
def A__ ( lowercase: int ) -> list[list[int]]:
if not isinstance(lowercase, lowercase ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
A : list[list[int]] =[[1]]
for row_index in range(1, lowercase ):
A : Dict =[0] + result[-1] + [0]
A : Union[str, Any] =row_index + 1
# Calculate the number of distinct elements in a row
A : Any =sum(divmod(lowercase, 2 ) )
A : Any =[
temp_row[i - 1] + temp_row[i] for i in range(1, distinct_elements + 1 )
]
A : Dict =row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
A : Any =row_first_half + row_second_half
result.append(lowercase )
return result
def A__ ( ) -> None:
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowercase: Callable, lowercase: int ) -> None:
A : int =F'{func.__name__}({value})'
A : Optional[int] =timeit(F'__main__.{call}', setup='import __main__' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F'{call:38} -- {timing:.4f} seconds' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(lowercase, lowercase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 661 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'๐ There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''๐ค Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 1 |
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
lowercase : List[str]
lowercase : Optional[str] = None
# Automatically constructed
lowercase : ClassVar[str] = "dict"
lowercase : ClassVar[Any] = None
lowercase : str = field(default="Translation" , init=lowerCAmelCase_ , repr=lowerCAmelCase_ )
def __call__( self : Optional[int] ) -> Any:
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
return {k: Value('string' ) for k in sorted(self.languages )}
@dataclass
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
lowercase : Optional[List] = None
lowercase : Optional[int] = None
lowercase : Optional[str] = None
# Automatically constructed
lowercase : ClassVar[str] = "dict"
lowercase : ClassVar[Any] = None
lowercase : str = field(default="TranslationVariableLanguages" , init=lowerCAmelCase_ , repr=lowerCAmelCase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
A : Tuple =sorted(set(self.languages ) ) if self.languages else None
A : Optional[Any] =len(self.languages ) if self.languages else None
def __call__( self : Optional[int] ) -> Dict:
return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[str]:
A : Tuple =set(self.languages )
if self.languages and set(SCREAMING_SNAKE_CASE__ ) - lang_set:
raise ValueError(
f'Some languages in example ({", ".join(sorted(set(SCREAMING_SNAKE_CASE__ ) - lang_set ) )}) are not in valid set ({", ".join(SCREAMING_SNAKE_CASE__ )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
A : List[str] =[]
for lang, text in translation_dict.items():
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
A , A : Any =zip(*sorted(SCREAMING_SNAKE_CASE__ ) )
return {"language": languages, "translation": translations}
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Sequence, Value
return {
"language": Sequence(Value('string' ) ),
"translation": Sequence(Value('string' ) ),
}
| 661 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 1 |
def A__ ( lowercase: str, lowercase: str ) -> float:
def get_matched_characters(lowercase: str, lowercase: str ) -> str:
A : Tuple =[]
A : Optional[Any] =min(len(_stra ), len(_stra ) ) // 2
for i, l in enumerate(_stra ):
A : Any =int(max(0, i - limit ) )
A : int =int(min(i + limit + 1, len(_stra ) ) )
if l in _stra[left:right]:
matched.append(lowercase )
A : List[str] =F'{_stra[0:_stra.index(lowercase )]} {_stra[_stra.index(lowercase ) + 1:]}'
return "".join(lowercase )
# matching characters
A : Union[str, Any] =get_matched_characters(lowercase, lowercase )
A : Any =get_matched_characters(lowercase, lowercase )
A : Union[str, Any] =len(lowercase )
# transposition
A : Optional[int] =(
len([(ca, ca) for ca, ca in zip(lowercase, lowercase ) if ca != ca] ) // 2
)
if not match_count:
A : Dict =0.0
else:
A : List[Any] =(
1
/ 3
* (
match_count / len(lowercase )
+ match_count / len(lowercase )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
A : Optional[Any] =0
for ca, ca in zip(stra[:4], stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('''hello''', '''world'''))
| 661 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : Union[str, Any] ={
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Tuple =[
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 661 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Union[str, Any] ={
'''configuration_xlm_roberta''': [
'''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaConfig''',
'''XLMRobertaOnnxConfig''',
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict =['''XLMRobertaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict =['''XLMRobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[str] =[
'''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaForCausalLM''',
'''XLMRobertaForMaskedLM''',
'''XLMRobertaForMultipleChoice''',
'''XLMRobertaForQuestionAnswering''',
'''XLMRobertaForSequenceClassification''',
'''XLMRobertaForTokenClassification''',
'''XLMRobertaModel''',
'''XLMRobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] =[
'''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMRobertaForCausalLM''',
'''TFXLMRobertaForMaskedLM''',
'''TFXLMRobertaForMultipleChoice''',
'''TFXLMRobertaForQuestionAnswering''',
'''TFXLMRobertaForSequenceClassification''',
'''TFXLMRobertaForTokenClassification''',
'''TFXLMRobertaModel''',
'''TFXLMRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] =[
'''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxXLMRobertaForMaskedLM''',
'''FlaxXLMRobertaForCausalLM''',
'''FlaxXLMRobertaForMultipleChoice''',
'''FlaxXLMRobertaForQuestionAnswering''',
'''FlaxXLMRobertaForSequenceClassification''',
'''FlaxXLMRobertaForTokenClassification''',
'''FlaxXLMRobertaModel''',
'''FlaxXLMRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
_lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 661 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'๐ There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''๐ค Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 1 |
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
_lowercase : str =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> None:
warnings.warn(
'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DeiTImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , )
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
| 661 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 1 |
def A__ ( lowercase: float, lowercase: float ) -> float:
if mass < 0:
raise ValueError('The mass of a body cannot be negative' )
return 0.5 * mass * abs(lowercase ) * abs(lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 661 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 1 |
import random
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : str ) -> tuple[list[int], list[int]]:
A : List[Any] =[ord(SCREAMING_SNAKE_CASE__ ) for i in text]
A : int =[]
A : Any =[]
for i in plain:
A : List[str] =random.randint(1 , 3_00 )
A : Optional[Any] =(i + k) * k
cipher.append(SCREAMING_SNAKE_CASE__ )
key.append(SCREAMING_SNAKE_CASE__ )
return cipher, key
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ) -> str:
A : Union[str, Any] =[]
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
A : Union[str, Any] =int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(SCREAMING_SNAKE_CASE__ ) )
return "".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
_lowercase , _lowercase : List[str] =Onepad().encrypt('''Hello''')
print(c, k)
print(Onepad().decrypt(c, k))
| 661 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 1 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = ["torch", "transformers", "onnx"]
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any:
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = ["torch", "transformers", "onnx"]
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : str ) -> int:
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = ["torch", "transformers", "onnx"]
def __init__( self : Dict , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Any , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[Any] = ["torch", "transformers", "onnx"]
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> Dict:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[str] = ["torch", "transformers", "onnx"]
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any:
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
class SCREAMING_SNAKE_CASE_ ( metaclass=lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Union[str, Any] = ["torch", "transformers", "onnx"]
def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
requires_backends(self , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Dict , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
requires_backends(cls , ['torch', 'transformers', 'onnx'] )
| 661 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 1 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowercase : Optional[Any] =logging.get_logger(__name__)
_lowercase : Dict ={
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_lowercase : Any ={
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
_lowercase : Any ={'''facebook/blenderbot-3B''': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def A__ ( ) -> str:
A : Optional[int] =(
list(range(ord('!' ), ord('~' ) + 1 ) ) + list(range(ord('ยก' ), ord('ยฌ' ) + 1 ) ) + list(range(ord('ยฎ' ), ord('รฟ' ) + 1 ) )
)
A : Union[str, Any] =bs[:]
A : Optional[int] =0
for b in range(2**8 ):
if b not in bs:
bs.append(lowercase )
cs.append(2**8 + n )
n += 1
A : Any =[chr(lowercase ) for n in cs]
return dict(zip(lowercase, lowercase ) )
def A__ ( lowercase: Dict ) -> Any:
A : List[str] =set()
A : Tuple =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A : List[str] =char
return pairs
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[Any] = VOCAB_FILES_NAMES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str="replace" , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : str="</s>" , SCREAMING_SNAKE_CASE__ : str="</s>" , SCREAMING_SNAKE_CASE__ : Any="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="<unk>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<pad>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<mask>" , SCREAMING_SNAKE_CASE__ : List[Any]=False , **SCREAMING_SNAKE_CASE__ : Dict , ) -> str:
A : List[Any] =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token
A : List[Any] =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token
A : str =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token
A : Tuple =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token
A : List[Any] =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token
A : List[Any] =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A : List[Any] =AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as vocab_handle:
A : Dict =json.load(SCREAMING_SNAKE_CASE__ )
A : List[Any] ={v: k for k, v in self.encoder.items()}
A : Tuple =errors # how to handle errors in decoding
A : Dict =bytes_to_unicode()
A : Union[str, Any] ={v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as merges_handle:
A : int =merges_handle.read().split('\n' )[1:-1]
A : Tuple =[tuple(merge.split() ) for merge in bpe_merges]
A : str =dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) )
A : Tuple ={}
A : Any =add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A : str =re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
return len(self.encoder )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]:
return dict(self.encoder , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]:
if token in self.cache:
return self.cache[token]
A : Union[str, Any] =tuple(SCREAMING_SNAKE_CASE__ )
A : Any =get_pairs(SCREAMING_SNAKE_CASE__ )
if not pairs:
return token
while True:
A : Dict =min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
A , A : str =bigram
A : Optional[int] =[]
A : List[str] =0
while i < len(SCREAMING_SNAKE_CASE__ ):
try:
A : str =word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A : int =j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A : List[Any] =tuple(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =new_word
if len(SCREAMING_SNAKE_CASE__ ) == 1:
break
else:
A : Optional[int] =get_pairs(SCREAMING_SNAKE_CASE__ )
A : Any =' '.join(SCREAMING_SNAKE_CASE__ )
A : List[str] =word
return word
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]:
A : Union[str, Any] =[]
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ):
A : Optional[Any] =''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(' ' ) )
return bpe_tokens
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Dict:
return self.decoder.get(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str:
A : Optional[int] =''.join(SCREAMING_SNAKE_CASE__ )
A : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
A : Union[str, Any] =os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
A : Optional[Any] =os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '\n' )
A : Dict =0
with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
' Please check that the tokenizer is not corrupted!' )
A : str =token_index
writer.write(' '.join(SCREAMING_SNAKE_CASE__ ) + '\n' )
index += 1
return vocab_file, merge_file
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1]
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
A : Any =[self.sep_token_id]
A : Optional[Any] =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=False , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str:
A : List[str] =kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()):
A : Optional[Any] =' ' + text
return (text, kwargs)
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> Any:
return token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : "Conversation" ) -> List[int]:
A : List[Any] =[]
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(SCREAMING_SNAKE_CASE__ )
A : str =' '.join(SCREAMING_SNAKE_CASE__ )
A : str =self.encode(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > self.model_max_length:
A : Optional[Any] =input_ids[-self.model_max_length :]
logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' )
return input_ids
| 661 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 1 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
_lowercase : Tuple =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> None:
warnings.warn(
'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use BeitImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , )
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
| 661 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 1 |
import random
def A__ ( lowercase: int, lowercase: float, lowercase: bool = False ) -> dict:
A : dict ={i: [] for i in range(lowercase )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(lowercase )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(lowercase ):
for j in range(i + 1, lowercase ):
if random.random() < probability:
graph[i].append(lowercase )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(lowercase )
return graph
def A__ ( lowercase: int ) -> dict:
return {
i: [j for j in range(lowercase ) if i != j] for i in range(lowercase )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 1 |
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def A__ ( lowercase: List[str] ) -> Any:
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> int:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
pass
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[Any]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float ) -> List[Any]:
A : int =np.abs((a - b) ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , f'Difference between torch and flax is {diff} (>= {tol}).' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
A : Optional[int] =VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[int] =FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ )
A : Tuple =model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int]=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
A , A : Union[str, Any] =self.get_vision_text_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : List[str] ={'vision_model': vision_model, 'text_model': text_model}
A : str =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE__ )
A : Optional[int] =model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple:
A , A : Any =self.get_vision_text_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : List[str] ={'vision_model': vision_model, 'text_model': text_model}
A : int =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE__ )
A : int =model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
A : List[Any] =output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : int =FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =model(input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
A : List[Any] =after_output[0]
A : List[str] =np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]:
A , A : Optional[Any] =self.get_vision_text_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] ={'vision_model': vision_model, 'text_model': text_model}
A : List[str] =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =model(
input_ids=SCREAMING_SNAKE_CASE__ , pixel_values=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , output_attentions=SCREAMING_SNAKE_CASE__ )
A : Dict =output.vision_model_output.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
A : Tuple =to_atuple(vision_model.config.image_size )
A : int =to_atuple(vision_model.config.patch_size )
A : List[str] =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
A : Optional[Any] =num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
A : List[Any] =output.text_model_output.attentions
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
pt_model.to(SCREAMING_SNAKE_CASE__ )
pt_model.eval()
# prepare inputs
A : Any =inputs_dict
A : Optional[int] ={k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
A : List[str] =pt_model(**SCREAMING_SNAKE_CASE__ ).to_tuple()
A : Union[str, Any] =fx_model(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(SCREAMING_SNAKE_CASE__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : int =FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ )
A : int =fx_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(SCREAMING_SNAKE_CASE__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =VisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ , from_flax=SCREAMING_SNAKE_CASE__ )
pt_model_loaded.to(SCREAMING_SNAKE_CASE__ )
pt_model_loaded.eval()
with torch.no_grad():
A : str =pt_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple()
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(SCREAMING_SNAKE_CASE__ , pt_output_loaded.numpy() , 4e-2 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> int:
A : int =VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : int =VisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ )
A : Tuple =FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ )
A : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE__ )
A : Any =fx_state
self.check_pt_flax_equivalence(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
A : Any =VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : List[Any] =VisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ )
A : str =FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE__ )
A : str =load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , fx_model.params )
self.check_pt_flax_equivalence(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
A : List[str] =self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]:
A : Any =self.prepare_config_and_inputs()
self.check_save_load(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]:
A : Optional[int] =self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**SCREAMING_SNAKE_CASE__ )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]:
A : Optional[Any] =self.prepare_config_and_inputs()
A : Any =config_inputs_dict.pop('vision_config' )
A : Optional[int] =config_inputs_dict.pop('text_config' )
A : Dict =config_inputs_dict
self.check_equivalence_pt_to_flax(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.check_equivalence_flax_to_pt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A , A : int =self.get_pretrained_model_and_inputs()
A : Dict =model_a(**SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =model_a(**SCREAMING_SNAKE_CASE__ )
A : Any =after_outputs[0]
A : Any =np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-5 )
@require_flax
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : str =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=SCREAMING_SNAKE_CASE__ , text_from_pt=SCREAMING_SNAKE_CASE__ , )
A : Optional[int] =13
A : str =floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
A : Dict =ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
A : List[Any] =random_attention_mask([batch_size, 4] )
A : Any ={'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]:
A : Dict =FlaxViTModel(SCREAMING_SNAKE_CASE__ )
A : List[str] =FlaxBertModel(SCREAMING_SNAKE_CASE__ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict:
A : Any =FlaxViTModelTester(self )
A : Any =FlaxBertModelTester(self )
A : List[str] =vit_model_tester.prepare_config_and_inputs()
A : List[Any] =bert_model_tester.prepare_config_and_inputs()
A , A : List[str] =vision_config_and_inputs
A , A , A , A : Optional[int] =text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : Tuple =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=SCREAMING_SNAKE_CASE__ , text_from_pt=SCREAMING_SNAKE_CASE__ , )
A : Any =13
A : Tuple =floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
A : Optional[Any] =ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
A : List[Any] =random_attention_mask([batch_size, 4] )
A : List[Any] ={'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any:
A : Optional[Any] =FlaxCLIPVisionModel(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =FlaxBertModel(SCREAMING_SNAKE_CASE__ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : Any =FlaxCLIPVisionModelTester(self )
A : int =FlaxBertModelTester(self )
A : Optional[int] =clip_model_tester.prepare_config_and_inputs()
A : Any =bert_model_tester.prepare_config_and_inputs()
A , A : Any =vision_config_and_inputs
A , A , A , A : List[Any] =text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Dict =FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 )
A : List[str] =VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' )
A : Optional[Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
A : int =processor(
text=['una foto di un gatto', 'una foto di un cane'] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Tuple =model(**SCREAMING_SNAKE_CASE__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
A : List[str] =np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] )
self.assertTrue(np.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
| 661 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['โThis', 'โis', 'โa', 'โt', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'รฉ',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsรฉ.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 1 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 1 |
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
_lowercase : List[str] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> None:
warnings.warn(
'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PerceiverImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , )
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
| 661 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
from collections import defaultdict
from math import ceil, sqrt
def A__ ( lowercase: int = 1_000_000, lowercase: int = 10 ) -> int:
A : defaultdict =defaultdict(lowercase )
for outer_width in range(3, (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
A : int =max(
ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 )
else:
A : List[Any] =1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(lowercase, outer_width - 1, 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 661 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 1 |
def A__ ( lowercase: int = 1, lowercase: int = 1_000 ) -> int:
A : List[Any] =1
A : Optional[int] =0
for divide_by_number in range(lowercase, digit + 1 ):
A : list[int] =[]
A : str =numerator
for _ in range(1, digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(lowercase ):
A : List[Any] =len(lowercase )
A : int =divide_by_number
else:
has_been_divided.append(lowercase )
A : Any =now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 1 |
import sys
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : Optional[int] =len(lowercase )
A : Union[str, Any] =[[0 for x in range(lowercase )] for x in range(lowercase )]
A : List[str] =[[0 for x in range(lowercase )] for x in range(lowercase )]
for chain_length in range(2, lowercase ):
for a in range(1, n - chain_length + 1 ):
A : int =a + chain_length - 1
A : Dict =sys.maxsize
for c in range(lowercase, lowercase ):
A : Optional[int] =(
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
A : Optional[int] =cost
A : str =c
return matrix, sol
def A__ ( lowercase: str, lowercase: Optional[int], lowercase: Optional[int] ) -> Any:
if i == j:
print('A' + str(lowercase ), end=' ' )
else:
print('(', end=' ' )
print_optiomal_solution(lowercase, lowercase, optimal_solution[i][j] )
print_optiomal_solution(lowercase, optimal_solution[i][j] + 1, lowercase )
print(')', end=' ' )
def A__ ( ) -> List[str]:
A : List[Any] =[30, 35, 15, 5, 10, 20, 25]
A : str =len(lowercase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
A , A : Optional[Any] =matrix_chain_order(lowercase )
print('No. of Operation required: ' + str(matrix[1][n - 1] ) )
print_optiomal_solution(lowercase, 1, n - 1 )
if __name__ == "__main__":
main()
| 661 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 1 |
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
lowercase : Optional[Union[str, Path]] = None
lowercase : bool = False
lowercase : bool = False
lowercase : bool = False
lowercase : Optional[Dict] = None
lowercase : Optional[str] = None
lowercase : bool = False
lowercase : bool = False
lowercase : bool = False
lowercase : bool = True
lowercase : Optional[int] = None
lowercase : int = 1
lowercase : Optional[Union[str, bool]] = None
lowercase : bool = False
lowercase : Optional[Dict] = None
lowercase : Optional[str] = None
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> "DownloadConfig":
return self.__class__(**{k: copy.deepcopy(SCREAMING_SNAKE_CASE__ ) for k, v in self.__dict__.items()} )
| 661 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 1 |
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def A__ ( lowercase: Tuple ) -> str:
# vision encoder
if "img_encoder.pos_embed" in name:
A : Any =name.replace('img_encoder.pos_embed', 'vision_model.embeddings.position_embeddings' )
if "img_encoder.patch_embed.proj" in name:
A : Optional[Any] =name.replace('img_encoder.patch_embed.proj', 'vision_model.embeddings.patch_embeddings.projection' )
if "img_encoder.patch_embed.norm" in name:
A : List[str] =name.replace('img_encoder.patch_embed.norm', 'vision_model.embeddings.layernorm' )
if "img_encoder.layers" in name:
A : str =name.replace('img_encoder.layers', 'vision_model.encoder.stages' )
if "blocks" in name and "res" not in name:
A : int =name.replace('blocks', 'layers' )
if "attn" in name and "pre_assign" not in name:
A : Tuple =name.replace('attn', 'self_attn' )
if "proj" in name and "self_attn" in name and "text" not in name:
A : Optional[Any] =name.replace('proj', 'out_proj' )
if "pre_assign_attn.attn.proj" in name:
A : Optional[int] =name.replace('pre_assign_attn.attn.proj', 'pre_assign_attn.attn.out_proj' )
if "norm1" in name:
A : List[str] =name.replace('norm1', 'layer_norm1' )
if "norm2" in name and "pre_assign" not in name:
A : Union[str, Any] =name.replace('norm2', 'layer_norm2' )
if "img_encoder.norm" in name:
A : Tuple =name.replace('img_encoder.norm', 'vision_model.layernorm' )
# text encoder
if "text_encoder.token_embedding" in name:
A : Dict =name.replace('text_encoder.token_embedding', 'text_model.embeddings.token_embedding' )
if "text_encoder.positional_embedding" in name:
A : Tuple =name.replace('text_encoder.positional_embedding', 'text_model.embeddings.position_embedding.weight' )
if "text_encoder.transformer.resblocks." in name:
A : str =name.replace('text_encoder.transformer.resblocks.', 'text_model.encoder.layers.' )
if "ln_1" in name:
A : List[Any] =name.replace('ln_1', 'layer_norm1' )
if "ln_2" in name:
A : Any =name.replace('ln_2', 'layer_norm2' )
if "c_fc" in name:
A : int =name.replace('c_fc', 'fc1' )
if "c_proj" in name:
A : str =name.replace('c_proj', 'fc2' )
if "text_encoder" in name:
A : Union[str, Any] =name.replace('text_encoder', 'text_model' )
if "ln_final" in name:
A : int =name.replace('ln_final', 'final_layer_norm' )
# projection layers
if "img_projector.linear_hidden." in name:
A : int =name.replace('img_projector.linear_hidden.', 'visual_projection.' )
if "img_projector.linear_out." in name:
A : List[str] =name.replace('img_projector.linear_out.', 'visual_projection.3.' )
if "text_projector.linear_hidden" in name:
A : Tuple =name.replace('text_projector.linear_hidden', 'text_projection' )
if "text_projector.linear_out" in name:
A : Any =name.replace('text_projector.linear_out', 'text_projection.3' )
return name
def A__ ( lowercase: Optional[Any], lowercase: Dict ) -> Optional[int]:
for key in orig_state_dict.copy().keys():
A : List[Any] =orig_state_dict.pop(lowercase )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
A : str =key.split('.' )
A , A : List[Any] =int(key_split[2] ), int(key_split[4] )
A : int =config.vision_config.hidden_size
if "weight" in key:
A : Optional[Any] =val[:dim, :]
A : Dict =val[dim : dim * 2, :]
A : int =val[-dim:, :]
else:
A : str =val[:dim]
A : Optional[Any] =val[dim : dim * 2]
A : int =val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
A : int =key.split('.' )
A : Dict =int(key_split[3] )
A : List[str] =config.text_config.hidden_size
if "weight" in key:
A : str =val[:dim, :]
A : List[Any] =val[
dim : dim * 2, :
]
A : Optional[int] =val[-dim:, :]
else:
A : Any =val[:dim]
A : Optional[int] =val[dim : dim * 2]
A : Tuple =val[-dim:]
else:
A : Any =rename_key(lowercase )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
A : int =val.squeeze_()
else:
A : Union[str, Any] =val
return orig_state_dict
def A__ ( ) -> int:
A : Union[str, Any] ='http://images.cocodataset.org/val2017/000000039769.jpg'
A : int =Image.open(requests.get(lowercase, stream=lowercase ).raw )
return im
@torch.no_grad()
def A__ ( lowercase: Tuple, lowercase: Dict, lowercase: Union[str, Any]="groupvit-gcc-yfcc", lowercase: Optional[Any]=False ) -> Tuple:
A : Any =GroupViTConfig()
A : Optional[Any] =GroupViTModel(lowercase ).eval()
A : str =torch.load(lowercase, map_location='cpu' )['model']
A : List[Any] =convert_state_dict(lowercase, lowercase )
A , A : Optional[Any] =model.load_state_dict(lowercase, strict=lowercase )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0)
# verify result
A : List[str] =CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' )
A : Union[str, Any] =prepare_img()
A : Tuple =processor(text=['a photo of a cat', 'a photo of a dog'], images=lowercase, padding=lowercase, return_tensors='pt' )
with torch.no_grad():
A : Optional[int] =model(**lowercase )
if model_name == "groupvit-gcc-yfcc":
A : Optional[Any] =torch.tensor([[13.35_23, 6.36_29]] )
elif model_name == "groupvit-gcc-redcaps":
A : Union[str, Any] =torch.tensor([[16.18_73, 8.62_30]] )
else:
raise ValueError(F'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image, lowercase, atol=1e-3 )
processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
print('Successfully saved processor and model to', lowercase )
if push_to_hub:
print('Pushing to the hub...' )
processor.push_to_hub(lowercase, organization='nielsr' )
model.push_to_hub(lowercase, organization='nielsr' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.'''
)
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''')
parser.add_argument(
'''--model_name''',
default='''groupvit-gccy-fcc''',
type=str,
help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether or not to push the converted model and processor to the ๐ค hub using the provided `model_name`.''',
)
_lowercase : Optional[Any] =parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 661 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
_lowercase : Tuple =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = ["pixel_values"]
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_55 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> None:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Any =size if size is not None else {'shortest_edge': 2_56}
A : Dict =get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ )
A : Dict =crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24}
A : Optional[Any] =get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' )
A : Dict =do_resize
A : Union[str, Any] =size
A : Optional[Any] =resample
A : int =do_center_crop
A : Dict =crop_size
A : Dict =do_rescale
A : Dict =rescale_factor
A : str =do_normalize
A : Dict =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A : Tuple =image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : str , ) -> np.ndarray:
A : Tuple =get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
A : Tuple =get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE__ )
return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> np.ndarray:
A : int =get_size_dict(SCREAMING_SNAKE_CASE__ )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> np.ndarray:
return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Any , ) -> np.ndarray:
return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Any:
A : Optional[int] =do_resize if do_resize is not None else self.do_resize
A : Tuple =size if size is not None else self.size
A : Any =get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ )
A : str =resample if resample is not None else self.resample
A : Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop
A : List[str] =crop_size if crop_size is not None else self.crop_size
A : List[str] =get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' )
A : Any =do_rescale if do_rescale is not None else self.do_rescale
A : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor
A : List[Any] =do_normalize if do_normalize is not None else self.do_normalize
A : str =image_mean if image_mean is not None else self.image_mean
A : Optional[Any] =image_std if image_std is not None else self.image_std
A : int =make_list_of_images(SCREAMING_SNAKE_CASE__ )
if not valid_images(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
A : Tuple =[to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images]
if do_resize:
A : List[str] =[self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images]
if do_center_crop:
A : Any =[self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images]
if do_rescale:
A : Union[str, Any] =[self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images]
if do_normalize:
A : Union[str, Any] =[self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images]
A : Union[str, Any] =[to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images]
A : List[Any] ={'pixel_values': images}
return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Tuple] = None ) -> Tuple:
A : Any =outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Union[str, Any] =target_sizes.numpy()
A : Optional[Any] =[]
for idx in range(len(SCREAMING_SNAKE_CASE__ ) ):
A : Union[str, Any] =torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE__ )
A : Dict =resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(SCREAMING_SNAKE_CASE__ )
else:
A : Tuple =logits.argmax(dim=1 )
A : Optional[int] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 661 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
from PIL import Image
def A__ ( lowercase: Image ) -> Image:
A , A : Dict =image.size
A : Union[str, Any] =0
A : str =image.load()
for i in range(lowercase ):
for j in range(lowercase ):
A : List[str] =pixels[j, i]
mean += pixel
mean //= width * height
for j in range(lowercase ):
for i in range(lowercase ):
A : List[Any] =255 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
_lowercase : Union[str, Any] =mean_threshold(Image.open('''path_to_image''').convert('''L'''))
image.save('''output_image_path''')
| 661 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 1 |
from random import shuffle
import tensorflow as tf
from numpy import array
def A__ ( lowercase: List[Any], lowercase: Optional[int] ) -> Any:
A : Union[str, Any] =int(lowercase )
assert noofclusters < len(lowercase )
# Find out the dimensionality
A : str =len(vectors[0] )
# Will help select random centroids from among the available vectors
A : List[str] =list(range(len(lowercase ) ) )
shuffle(lowercase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
A : Tuple =tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
A : Optional[Any] =tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
A : Optional[int] =[
tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase )
]
##These nodes will assign the centroid Variables the appropriate
##values
A : str =tf.placeholder('float64', [dim] )
A : str =[]
for centroid in centroids:
cent_assigns.append(tf.assign(lowercase, lowercase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
A : int =[tf.Variable(0 ) for i in range(len(lowercase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
A : Any =tf.placeholder('int32' )
A : Tuple =[]
for assignment in assignments:
cluster_assigns.append(tf.assign(lowercase, lowercase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
A : Optional[int] =tf.placeholder('float', [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
A : Dict =tf.reduce_mean(lowercase, 0 )
##Node for computing Euclidean distances
# Placeholders for input
A : Optional[int] =tf.placeholder('float', [dim] )
A : Any =tf.placeholder('float', [dim] )
A : Dict =tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase, lowercase ), 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
A : Tuple =tf.placeholder('float', [noofclusters] )
A : Optional[Any] =tf.argmin(lowercase, 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
A : Tuple =tf.initialize_all_variables()
# Initialize all variables
sess.run(lowercase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
A : str =100
for _ in range(lowercase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(lowercase ) ):
A : List[str] =vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
A : str =[
sess.run(lowercase, feed_dict={va: vect, va: sess.run(lowercase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
A : str =sess.run(
lowercase, feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n], feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(lowercase ):
# Collect all the vectors assigned to this cluster
A : Dict =[
vectors[i]
for i in range(len(lowercase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
A : int =sess.run(
lowercase, feed_dict={mean_input: array(lowercase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n], feed_dict={centroid_value: new_location} )
# Return centroids and assignments
A : Optional[int] =sess.run(lowercase )
A : Optional[int] =sess.run(lowercase )
return centroids, assignments
| 661 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowercase : List[str] =logging.get_logger(__name__)
_lowercase : str ={
'''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''',
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "resnet"
lowercase : Optional[int] = ["basic", "bottleneck"]
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=64 , SCREAMING_SNAKE_CASE__ : Dict=[2_56, 5_12, 10_24, 20_48] , SCREAMING_SNAKE_CASE__ : int=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE__ : str="bottleneck" , SCREAMING_SNAKE_CASE__ : str="relu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> List[str]:
super().__init__(**SCREAMING_SNAKE_CASE__ )
if layer_type not in self.layer_types:
raise ValueError(f'layer_type={layer_type} is not one of {",".join(self.layer_types )}' )
A : Optional[Any] =num_channels
A : int =embedding_size
A : Optional[int] =hidden_sizes
A : Any =depths
A : Tuple =layer_type
A : Union[str, Any] =hidden_act
A : str =downsample_in_first_stage
A : str =['stem'] + [f'stage{idx}' for idx in range(1 , len(SCREAMING_SNAKE_CASE__ ) + 1 )]
A , A : Optional[int] =get_aligned_output_features_output_indices(
out_features=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , stage_names=self.stage_names )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Dict = version.parse("1.11" )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> float:
return 1e-3
| 661 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 1 |
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
_lowercase : List[str] =logging.get_logger(__name__)
def A__ ( lowercase: Optional[Any], lowercase: int ) -> str:
try:
with open(lowercase, 'rb' ) as flax_state_f:
A : int =from_bytes(lowercase, flax_state_f.read() )
except UnpicklingError as e:
try:
with open(lowercase ) as f:
if f.read().startswith('version' ):
raise OSError(
'You seem to have cloned a repository without having git-lfs installed. Please'
' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'
' folder you cloned.' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(lowercase, lowercase )
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> Optional[Any]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
A : Optional[Any] =flatten_dict(jax.tree_util.tree_map(lambda lowercase : x.dtype == jnp.bfloataa, lowercase ) ).values()
if any(lowercase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
A : Any =jax.tree_util.tree_map(
lambda lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, lowercase )
A : int =''
A : Optional[int] =flatten_dict(lowercase, sep='.' )
A : Tuple =pt_model.state_dict()
# keep track of unexpected & missing keys
A : Tuple =[]
A : List[str] =set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A : Union[str, Any] =flax_key_tuple.split('.' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
A : Any =flax_key_tuple_array[:-1] + ['weight']
A : List[str] =jnp.transpose(lowercase, (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
A : List[Any] =flax_key_tuple_array[:-1] + ['weight']
A : Optional[int] =flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
A : Optional[int] =flax_key_tuple_array[:-1] + ['weight']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(lowercase ):
A : Any =(
flax_key_tuple_string.replace('_0', '.0' )
.replace('_1', '.1' )
.replace('_2', '.2' )
.replace('_3', '.3' )
.replace('_4', '.4' )
.replace('_5', '.5' )
.replace('_6', '.6' )
.replace('_7', '.7' )
.replace('_8', '.8' )
.replace('_9', '.9' )
)
A : Optional[Any] ='.'.join(lowercase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
A : List[str] =np.asarray(lowercase ) if not isinstance(lowercase, np.ndarray ) else flax_tensor
A : str =torch.from_numpy(lowercase )
# remove from missing keys
missing_keys.remove(lowercase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(lowercase )
pt_model.load_state_dict(lowercase )
# re-transform missing_keys to list
A : Union[str, Any] =list(lowercase )
if len(lowercase ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
if len(lowercase ) > 0:
logger.warning(
F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
' use it for predictions and inference.' )
return pt_model
| 661 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 1 |
def A__ ( lowercase: int = 10 ) -> str:
if not isinstance(lowercase, lowercase ) or n < 0:
raise ValueError('Invalid input' )
A : str =10**n
A : List[str] =28_433 * (pow(2, 7_830_457, lowercase )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(1_0) = }''')
| 661 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_lowercase : str ={
'''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''],
'''tokenization_biogpt''': ['''BioGptTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Optional[Any] =[
'''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BioGptForCausalLM''',
'''BioGptForTokenClassification''',
'''BioGptForSequenceClassification''',
'''BioGptModel''',
'''BioGptPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
_lowercase : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 661 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'๐ There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''๐ค Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 1 |
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
_lowercase : List[Any] =[
# (stable-diffusion, HF Diffusers)
('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''),
('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''),
('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''),
('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''),
('''input_blocks.0.0.weight''', '''conv_in.weight'''),
('''input_blocks.0.0.bias''', '''conv_in.bias'''),
('''out.0.weight''', '''conv_norm_out.weight'''),
('''out.0.bias''', '''conv_norm_out.bias'''),
('''out.2.weight''', '''conv_out.weight'''),
('''out.2.bias''', '''conv_out.bias'''),
]
_lowercase : str =[
# (stable-diffusion, HF Diffusers)
('''in_layers.0''', '''norm1'''),
('''in_layers.2''', '''conv1'''),
('''out_layers.0''', '''norm2'''),
('''out_layers.3''', '''conv2'''),
('''emb_layers.1''', '''time_emb_proj'''),
('''skip_connection''', '''conv_shortcut'''),
]
_lowercase : Optional[int] =[]
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
_lowercase : Optional[Any] =f'''down_blocks.{i}.resnets.{j}.'''
_lowercase : Optional[Any] =f'''input_blocks.{3*i + j + 1}.0.'''
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
_lowercase : Tuple =f'''down_blocks.{i}.attentions.{j}.'''
_lowercase : Optional[Any] =f'''input_blocks.{3*i + j + 1}.1.'''
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
_lowercase : Optional[int] =f'''up_blocks.{i}.resnets.{j}.'''
_lowercase : int =f'''output_blocks.{3*i + j}.0.'''
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
_lowercase : Optional[Any] =f'''up_blocks.{i}.attentions.{j}.'''
_lowercase : Any =f'''output_blocks.{3*i + j}.1.'''
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
_lowercase : List[Any] =f'''down_blocks.{i}.downsamplers.0.conv.'''
_lowercase : Any =f'''input_blocks.{3*(i+1)}.0.op.'''
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
_lowercase : Any =f'''up_blocks.{i}.upsamplers.0.'''
_lowercase : Any =f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.'''
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
_lowercase : List[str] ='''mid_block.attentions.0.'''
_lowercase : Optional[Any] ='''middle_block.1.'''
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
_lowercase : Optional[int] =f'''mid_block.resnets.{j}.'''
_lowercase : Union[str, Any] =f'''middle_block.{2*j}.'''
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def A__ ( lowercase: str ) -> str:
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
A : Optional[int] ={k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
A : Optional[Any] =sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
A : str =v.replace(lowercase, lowercase )
A : Union[str, Any] =v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
A : int =v.replace(lowercase, lowercase )
A : Tuple =v
A : List[Any] ={v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
_lowercase : str =[
# (stable-diffusion, HF Diffusers)
('''nin_shortcut''', '''conv_shortcut'''),
('''norm_out''', '''conv_norm_out'''),
('''mid.attn_1.''', '''mid_block.attentions.0.'''),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
_lowercase : int =f'''encoder.down_blocks.{i}.resnets.{j}.'''
_lowercase : Any =f'''encoder.down.{i}.block.{j}.'''
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
_lowercase : Dict =f'''down_blocks.{i}.downsamplers.0.'''
_lowercase : str =f'''down.{i}.downsample.'''
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
_lowercase : int =f'''up_blocks.{i}.upsamplers.0.'''
_lowercase : int =f'''up.{3-i}.upsample.'''
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
_lowercase : Optional[Any] =f'''decoder.up_blocks.{i}.resnets.{j}.'''
_lowercase : int =f'''decoder.up.{3-i}.block.{j}.'''
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
_lowercase : List[str] =f'''mid_block.resnets.{i}.'''
_lowercase : Any =f'''mid.block_{i+1}.'''
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
_lowercase : Tuple =[
# (stable-diffusion, HF Diffusers)
('''norm.''', '''group_norm.'''),
('''q.''', '''query.'''),
('''k.''', '''key.'''),
('''v.''', '''value.'''),
('''proj_out.''', '''proj_attn.'''),
]
def A__ ( lowercase: Optional[int] ) -> Tuple:
# convert HF linear weights to SD conv2d weights
return w.reshape(*w.shape, 1, 1 )
def A__ ( lowercase: List[Any] ) -> List[str]:
A : Optional[int] ={k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
A : int =v.replace(lowercase, lowercase )
A : List[Any] =v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
A : Union[str, Any] =v.replace(lowercase, lowercase )
A : Dict =v
A : Union[str, Any] ={v: vae_state_dict[k] for k, v in mapping.items()}
A : Dict =['q', 'k', 'v', 'proj_out']
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if F'mid.attn_1.{weight_name}.weight' in k:
print(F'Reshaping {k} for SD format' )
A : Optional[Any] =reshape_weight_for_sd(lowercase )
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
_lowercase : Dict =[
# (stable-diffusion, HF Diffusers)
('''resblocks.''', '''text_model.encoder.layers.'''),
('''ln_1''', '''layer_norm1'''),
('''ln_2''', '''layer_norm2'''),
('''.c_fc.''', '''.fc1.'''),
('''.c_proj.''', '''.fc2.'''),
('''.attn''', '''.self_attn'''),
('''ln_final.''', '''transformer.text_model.final_layer_norm.'''),
('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''),
('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''),
]
_lowercase : str ={re.escape(x[1]): x[0] for x in textenc_conversion_lst}
_lowercase : int =re.compile('''|'''.join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
_lowercase : Optional[int] ={'''q''': 0, '''k''': 1, '''v''': 2}
def A__ ( lowercase: Tuple ) -> Any:
A : Any ={}
A : Dict ={}
A : Optional[int] ={}
for k, v in text_enc_dict.items():
if (
k.endswith('.self_attn.q_proj.weight' )
or k.endswith('.self_attn.k_proj.weight' )
or k.endswith('.self_attn.v_proj.weight' )
):
A : Tuple =k[: -len('.q_proj.weight' )]
A : Optional[int] =k[-len('q_proj.weight' )]
if k_pre not in capture_qkv_weight:
A : Optional[Any] =[None, None, None]
A : Tuple =v
continue
if (
k.endswith('.self_attn.q_proj.bias' )
or k.endswith('.self_attn.k_proj.bias' )
or k.endswith('.self_attn.v_proj.bias' )
):
A : int =k[: -len('.q_proj.bias' )]
A : List[Any] =k[-len('q_proj.bias' )]
if k_pre not in capture_qkv_bias:
A : Optional[int] =[None, None, None]
A : Optional[Any] =v
continue
A : List[Any] =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )], lowercase )
A : Optional[int] =v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
A : Optional[int] =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )], lowercase )
A : List[Any] =torch.cat(lowercase )
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
A : int =textenc_pattern.sub(lambda lowercase : protected[re.escape(m.group(0 ) )], lowercase )
A : Tuple =torch.cat(lowercase )
return new_state_dict
def A__ ( lowercase: int ) -> Union[str, Any]:
return text_enc_dict
if __name__ == "__main__":
_lowercase : Tuple =argparse.ArgumentParser()
parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''')
parser.add_argument(
'''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.'''
)
_lowercase : str =parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
_lowercase : Optional[Any] =osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''')
_lowercase : List[Any] =osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''')
_lowercase : Union[str, Any] =osp.join(args.model_path, '''text_encoder''', '''model.safetensors''')
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
_lowercase : Optional[Any] =load_file(unet_path, device='''cpu''')
else:
_lowercase : Any =osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''')
_lowercase : Optional[int] =torch.load(unet_path, map_location='''cpu''')
if osp.exists(vae_path):
_lowercase : List[Any] =load_file(vae_path, device='''cpu''')
else:
_lowercase : Optional[Any] =osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''')
_lowercase : int =torch.load(vae_path, map_location='''cpu''')
if osp.exists(text_enc_path):
_lowercase : Union[str, Any] =load_file(text_enc_path, device='''cpu''')
else:
_lowercase : Optional[int] =osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''')
_lowercase : Optional[int] =torch.load(text_enc_path, map_location='''cpu''')
# Convert the UNet model
_lowercase : Dict =convert_unet_state_dict(unet_state_dict)
_lowercase : Optional[int] ={'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
_lowercase : str =convert_vae_state_dict(vae_state_dict)
_lowercase : Optional[Any] ={'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
_lowercase : Optional[Any] ='''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict
if is_vaa_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
_lowercase : Dict ={'''transformer.''' + k: v for k, v in text_enc_dict.items()}
_lowercase : Optional[Any] =convert_text_enc_state_dict_vaa(text_enc_dict)
_lowercase : List[Any] ={'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()}
else:
_lowercase : Dict =convert_text_enc_state_dict(text_enc_dict)
_lowercase : int ={'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
_lowercase : Optional[int] ={**unet_state_dict, **vae_state_dict, **text_enc_dict}
if args.half:
_lowercase : str ={k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
_lowercase : Optional[int] ={'''state_dict''': state_dict}
torch.save(state_dict, args.checkpoint_path)
| 661 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 1 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def A__ ( lowercase: Optional[Any] ) -> List[str]:
A : Dict =SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
A : List[Any] =4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
A : Dict =4
A : Any =48
A : Optional[int] ='pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
A : List[str] =[6, 6, 6, 6]
A : Tuple =60
A : Tuple =[6, 6, 6, 6]
A : Optional[Any] ='pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
A : List[str] =4
A : List[str] ='nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
A : Optional[Any] =1
A : Optional[Any] =1
A : Any =126
A : Any =7
A : Union[str, Any] =2_55.0
A : Dict =''
return config
def A__ ( lowercase: List[Any], lowercase: Any ) -> str:
if "patch_embed.proj" in name and "layers" not in name:
A : str =name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
A : str =name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
A : Optional[Any] =name.replace('layers', 'encoder.stages' )
if "residual_group.blocks" in name:
A : List[Any] =name.replace('residual_group.blocks', 'layers' )
if "attn.proj" in name:
A : str =name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
A : Union[str, Any] =name.replace('attn', 'attention.self' )
if "norm1" in name:
A : Optional[int] =name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
A : int =name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
A : List[Any] =name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
A : List[Any] =name.replace('mlp.fc2', 'output.dense' )
if "q_bias" in name:
A : Dict =name.replace('q_bias', 'query.bias' )
if "k_bias" in name:
A : Any =name.replace('k_bias', 'key.bias' )
if "v_bias" in name:
A : int =name.replace('v_bias', 'value.bias' )
if "cpb_mlp" in name:
A : Optional[Any] =name.replace('cpb_mlp', 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
A : List[str] =name.replace('patch_embed.proj', 'patch_embed.projection' )
if name == "norm.weight":
A : Union[str, Any] ='layernorm.weight'
if name == "norm.bias":
A : Union[str, Any] ='layernorm.bias'
if "conv_first" in name:
A : Optional[Any] =name.replace('conv_first', 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
A : Tuple =name.replace('conv_last', 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
A : Optional[int] =name.replace('conv_before_upsample.0', 'conv_before_upsample' )
if "upsample.0" in name:
A : Optional[int] =name.replace('upsample.0', 'upsample.convolution_0' )
if "upsample.2" in name:
A : str =name.replace('upsample.2', 'upsample.convolution_1' )
A : Union[str, Any] ='upsample.' + name
elif config.upsampler == "pixelshuffledirect":
A : Dict =name.replace('upsample.0.weight', 'upsample.conv.weight' )
A : Tuple =name.replace('upsample.0.bias', 'upsample.conv.bias' )
else:
pass
else:
A : List[Any] ='swin2sr.' + name
return name
def A__ ( lowercase: Optional[Any], lowercase: Optional[int] ) -> List[Any]:
for key in orig_state_dict.copy().keys():
A : Dict =orig_state_dict.pop(lowercase )
if "qkv" in key:
A : str =key.split('.' )
A : int =int(key_split[1] )
A : List[str] =int(key_split[4] )
A : int =config.embed_dim
if "weight" in key:
A : str =val[:dim, :]
A : List[str] =val[dim : dim * 2, :]
A : Optional[int] =val[-dim:, :]
else:
A : Optional[int] =val[:dim]
A : Dict =val[dim : dim * 2]
A : Union[str, Any] =val[-dim:]
pass
else:
A : Union[str, Any] =val
return orig_state_dict
def A__ ( lowercase: Optional[Any], lowercase: Optional[Any], lowercase: Optional[Any] ) -> Tuple:
A : Optional[Any] =get_config(lowercase )
A : Any =SwinaSRForImageSuperResolution(lowercase )
model.eval()
A : List[str] =torch.hub.load_state_dict_from_url(lowercase, map_location='cpu' )
A : Tuple =convert_state_dict(lowercase, lowercase )
A , A : List[Any] =model.load_state_dict(lowercase, strict=lowercase )
if len(lowercase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(lowercase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F'Unexpected key {key} in state_dict' )
# verify values
A : Dict ='https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
A : int =Image.open(requests.get(lowercase, stream=lowercase ).raw ).convert('RGB' )
A : Union[str, Any] =SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
A : Optional[int] =126 if 'Jpeg' in checkpoint_url else 256
A : Optional[int] =Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25] ),
] )
A : Optional[int] =transforms(lowercase ).unsqueeze(0 )
if config.num_channels == 1:
A : List[str] =pixel_values[:, 0, :, :].unsqueeze(1 )
A : List[str] =model(lowercase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
A : List[Any] =torch.Size([1, 3, 512, 512] )
A : List[Any] =torch.tensor(
[[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
A : Tuple =torch.Size([1, 3, 1_024, 1_024] )
A : List[Any] =torch.tensor(
[[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
A : int =torch.Size([1, 3, 1_024, 1_024] )
A : Optional[Any] =torch.tensor(
[[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
A : Optional[int] =torch.Size([1, 3, 512, 512] )
A : str =torch.tensor(
[[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
A : List[Any] =torch.Size([1, 3, 1_024, 1_024] )
A : int =torch.tensor(
[[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] )
assert (
outputs.reconstruction.shape == expected_shape
), F'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], lowercase, atol=1e-3 )
print('Looks ok!' )
A : Optional[Any] ={
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
A : Union[str, Any] =url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(lowercase )
if push_to_hub:
model.push_to_hub(F'caidas/{model_name}' )
processor.push_to_hub(F'caidas/{model_name}' )
if __name__ == "__main__":
_lowercase : Any =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
_lowercase : Optional[Any] =parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 661 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 1 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def A__ ( lowercase: Optional[int] ) -> List[str]:
A : int =[]
embed.append(
(
F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight',
F'stage{idx}.patch_embed.proj.weight',
) )
embed.append(
(
F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias',
F'stage{idx}.patch_embed.proj.bias',
) )
embed.append(
(
F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight',
F'stage{idx}.patch_embed.norm.weight',
) )
embed.append(
(
F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias',
F'stage{idx}.patch_embed.norm.bias',
) )
return embed
def A__ ( lowercase: List[Any], lowercase: List[Any] ) -> Any:
A : Optional[Any] =[]
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked',
F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight',
F'stage{idx}.blocks.{cnt}.attn.proj_q.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias',
F'stage{idx}.blocks.{cnt}.attn.proj_q.bias',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight',
F'stage{idx}.blocks.{cnt}.attn.proj_k.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias',
F'stage{idx}.blocks.{cnt}.attn.proj_k.bias',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight',
F'stage{idx}.blocks.{cnt}.attn.proj_v.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias',
F'stage{idx}.blocks.{cnt}.attn.proj_v.bias',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight',
F'stage{idx}.blocks.{cnt}.attn.proj.weight',
) )
attention_weights.append(
(
F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias',
F'stage{idx}.blocks.{cnt}.attn.proj.bias',
) )
attention_weights.append(
(F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') )
attention_weights.append(
(F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') )
attention_weights.append(
(F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') )
attention_weights.append(
(F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') )
attention_weights.append(
(F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') )
attention_weights.append(
(F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') )
attention_weights.append(
(F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') )
attention_weights.append(
(F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') )
return attention_weights
def A__ ( lowercase: int ) -> Dict:
A : List[str] =[]
token.append((F'cvt.encoder.stages.{idx}.cls_token', 'stage2.cls_token') )
return token
def A__ ( ) -> Optional[Any]:
A : Tuple =[]
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def A__ ( lowercase: List[str], lowercase: Union[str, Any], lowercase: Optional[Any], lowercase: List[Any] ) -> Union[str, Any]:
A : List[Any] ='imagenet-1k-id2label.json'
A : Optional[Any] =1_000
A : Optional[Any] ='huggingface/label-files'
A : Dict =num_labels
A : Optional[int] =json.load(open(cached_download(hf_hub_url(lowercase, lowercase, repo_type='dataset' ) ), 'r' ) )
A : Union[str, Any] ={int(lowercase ): v for k, v in idalabel.items()}
A : Union[str, Any] =idalabel
A : int ={v: k for k, v in idalabel.items()}
A : str =CvtConfig(num_labels=lowercase, idalabel=lowercase, labelaid=lowercase )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/', 1 )[-1][4:6] == "13":
A : Tuple =[1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/', 1 )[-1][4:6] == "21":
A : List[str] =[1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
A : Optional[int] =[2, 2, 20]
A : List[str] =[3, 12, 16]
A : Tuple =[192, 768, 1_024]
A : Optional[int] =CvtForImageClassification(lowercase )
A : List[str] =AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
A : Union[str, Any] =image_size
A : int =torch.load(lowercase, map_location=torch.device('cpu' ) )
A : Any =OrderedDict()
A : Tuple =[]
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
A : Optional[Any] =list_of_state_dict + cls_token(lowercase )
A : Optional[int] =list_of_state_dict + embeddings(lowercase )
for cnt in range(config.depth[idx] ):
A : Dict =list_of_state_dict + attention(lowercase, lowercase )
A : str =list_of_state_dict + final()
for gg in list_of_state_dict:
print(lowercase )
for i in range(len(lowercase ) ):
A : Dict =original_weights[list_of_state_dict[i][1]]
model.load_state_dict(lowercase )
model.save_pretrained(lowercase )
image_processor.save_pretrained(lowercase )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
_lowercase : Optional[int] =argparse.ArgumentParser()
parser.add_argument(
'''--cvt_model''',
default='''cvt-w24''',
type=str,
help='''Name of the cvt model you\'d like to convert.''',
)
parser.add_argument(
'''--image_size''',
default=3_8_4,
type=int,
help='''Input Image Size''',
)
parser.add_argument(
'''--cvt_file_name''',
default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''',
type=str,
help='''Input Image Size''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_lowercase : Union[str, Any] =parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 661 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 1 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowercase : Tuple =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Any = ["input_features", "attention_mask"]
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str=80 , SCREAMING_SNAKE_CASE__ : Optional[int]=1_60_00 , SCREAMING_SNAKE_CASE__ : Dict=80 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> List[str]:
super().__init__(feature_size=SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , padding_value=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : List[Any] =num_mel_bins
A : Any =do_ceptral_normalize
A : Optional[Any] =normalize_means
A : List[str] =normalize_vars
A : Optional[int] =True
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : np.ndarray , ) -> np.ndarray:
A : Union[str, Any] =waveform * (2**15) # Kaldi compliance: 16-bit signed integers
A : Union[str, Any] =torch.from_numpy(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
A : Any =ta_kaldi.fbank(SCREAMING_SNAKE_CASE__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[bool] = True , SCREAMING_SNAKE_CASE__ : Optional[bool] = True , SCREAMING_SNAKE_CASE__ : float = 0.0 , ) -> np.ndarray:
# make sure we normalize float32 arrays
if normalize_means:
A : List[str] =x[:input_length].mean(axis=0 )
A : Tuple =np.subtract(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if normalize_vars:
A : Optional[int] =x[:input_length].std(axis=0 )
A : Optional[Any] =np.divide(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if input_length < x.shape[0]:
A : Tuple =padding_value
# make sure array is in float32
A : Dict =x.astype(np.floataa )
return x
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : List[np.ndarray] , SCREAMING_SNAKE_CASE__ : Optional[np.ndarray] = None ) -> List[np.ndarray]:
A : List[Any] =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
]
def __call__( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> BatchFeature:
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'
f' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
A : List[Any] =isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'Only mono-channel audio is supported for input to {self}' )
A : Optional[int] =is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
A : Optional[Any] =[np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ):
A : str =np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A : Optional[Any] =raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A : Union[str, Any] =[raw_speech]
# extract fbank features
A : Dict =[self._extract_fbank_features(SCREAMING_SNAKE_CASE__ ) for waveform in raw_speech]
# convert into correct format for padding
A : int =BatchFeature({'input_features': features} )
A : Optional[int] =self.pad(
SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# make sure list is in array format
A : Optional[Any] =padded_inputs.get('input_features' )
if isinstance(input_features[0] , SCREAMING_SNAKE_CASE__ ):
A : Union[str, Any] =[np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.floataa ) for feature in input_features]
A : str =padded_inputs.get('attention_mask' )
if attention_mask is not None:
A : List[str] =[np.asarray(SCREAMING_SNAKE_CASE__ , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
A : int =(
np.array(SCREAMING_SNAKE_CASE__ , dtype=np.intaa )
if self._get_padding_strategies(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
A : Tuple =self.normalize(
padded_inputs['input_features'] , attention_mask=SCREAMING_SNAKE_CASE__ )
if return_tensors is not None:
A : int =padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE__ )
return padded_inputs
| 661 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 1 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[Any]:
A : List[str] ={
'task_specific_params': {
'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4},
'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4},
'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6},
}
}
A : List[str] ={
'task_specific_params.summarization.length_penalty': 1.0,
'task_specific_params.summarization.max_length': 1_28,
'task_specific_params.summarization.min_length': 12,
'task_specific_params.summarization.num_beams': 4,
'task_specific_params.summarization_cnn.length_penalty': 2.0,
'task_specific_params.summarization_cnn.max_length': 1_42,
'task_specific_params.summarization_cnn.min_length': 56,
'task_specific_params.summarization_cnn.num_beams': 4,
'task_specific_params.summarization_xsum.length_penalty': 1.0,
'task_specific_params.summarization_xsum.max_length': 62,
'task_specific_params.summarization_xsum.min_length': 11,
'task_specific_params.summarization_xsum.num_beams': 6,
}
self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any:
A : str =np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , x.transpose() ) )
A : Optional[int] =np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : int =np.random.randn(3 , 4 )
A : List[Any] =torch.tensor(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) )
A : Any =np.random.randn(3 , 4 , 5 )
A : Optional[int] =torch.tensor(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
A : Optional[Any] =np.random.randn(3 , 4 )
A : List[Any] =tf.constant(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , transpose(SCREAMING_SNAKE_CASE__ ).numpy() ) )
A : Union[str, Any] =np.random.randn(3 , 4 , 5 )
A : List[Any] =tf.constant(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]:
A : str =np.random.randn(3 , 4 )
A : Tuple =jnp.array(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ ) ) ) )
A : Optional[Any] =np.random.randn(3 , 4 , 5 )
A : Union[str, Any] =jnp.array(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE__ , axes=(1, 2, 0) ) ) ) )
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]:
A : List[str] =np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) )
A : Union[str, Any] =np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
A : Union[str, Any] =np.random.randn(3 , 4 )
A : List[Any] =torch.tensor(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) )
A : Optional[int] =np.random.randn(3 , 4 , 5 )
A : Any =torch.tensor(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]:
A : str =np.random.randn(3 , 4 )
A : int =tf.constant(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ).numpy() ) )
A : List[Any] =np.random.randn(3 , 4 , 5 )
A : List[str] =tf.constant(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ).numpy() ) )
@require_flax
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
A : Any =np.random.randn(3 , 4 )
A : List[str] =jnp.array(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (4, 3) ) ) ) )
A : str =np.random.randn(3 , 4 , 5 )
A : Tuple =jnp.array(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE__ , (12, 5) ) ) ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]:
A : List[str] =np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.squeeze(SCREAMING_SNAKE_CASE__ ) ) )
A : Dict =np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]:
A : int =np.random.randn(1 , 3 , 4 )
A : Optional[int] =torch.tensor(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) )
A : Tuple =np.random.randn(1 , 4 , 1 , 5 )
A : Any =torch.tensor(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]:
A : Optional[Any] =np.random.randn(1 , 3 , 4 )
A : Union[str, Any] =tf.constant(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , squeeze(SCREAMING_SNAKE_CASE__ ).numpy() ) )
A : Any =np.random.randn(1 , 4 , 1 , 5 )
A : Optional[Any] =tf.constant(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ).numpy() ) )
@require_flax
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int:
A : List[str] =np.random.randn(1 , 3 , 4 )
A : int =jnp.array(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ ) ) ) )
A : List[Any] =np.random.randn(1 , 4 , 1 , 5 )
A : Any =jnp.array(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE__ , axis=2 ) ) ) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int:
A : Tuple =np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple:
A : Union[str, Any] =np.random.randn(3 , 4 )
A : Optional[Any] =torch.tensor(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> str:
A : str =np.random.randn(3 , 4 )
A : int =tf.constant(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ).numpy() ) )
@require_flax
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
A : Optional[int] =np.random.randn(3 , 4 )
A : Optional[int] =jnp.array(SCREAMING_SNAKE_CASE__ )
self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE__ , axis=1 ) ) ) )
| 661 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 1 |
from __future__ import annotations
_lowercase : Tuple =1.6_0_2_1E-1_9 # units = C
def A__ ( lowercase: float, lowercase: float, lowercase: float, ) -> tuple[str, float]:
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('You cannot supply more or less than 2 values' )
elif conductivity < 0:
raise ValueError('Conductivity cannot be negative' )
elif electron_conc < 0:
raise ValueError('Electron concentration cannot be negative' )
elif mobility < 0:
raise ValueError('mobility cannot be negative' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['โThis', 'โis', 'โa', 'โt', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'รฉ',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsรฉ.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 1 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
torch.manual_seed(0 )
A : Optional[int] =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Dict =self.dummy_uncond_unet
A : int =ScoreSdeVeScheduler()
A : Union[str, Any] =ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.manual_seed(0 )
A : Dict =sde_ve(num_inference_steps=2 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE__ ).images
A : List[Any] =torch.manual_seed(0 )
A : List[str] =sde_ve(num_inference_steps=2 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ )[
0
]
A : List[Any] =image[0, -3:, -3:, -1]
A : List[Any] =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : str =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]:
A : int ='google/ncsnpp-church-256'
A : Dict =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =ScoreSdeVeScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =ScoreSdeVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
sde_ve.to(SCREAMING_SNAKE_CASE__ )
sde_ve.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : List[str] =sde_ve(num_inference_steps=10 , output_type='numpy' , generator=SCREAMING_SNAKE_CASE__ ).images
A : Dict =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Dict =np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 1 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[Any] = (CMStochasticIterativeScheduler,)
lowercase : Optional[int] = 10
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]:
A : List[str] ={
'num_train_timesteps': 2_01,
'sigma_min': 0.0_0_2,
'sigma_max': 8_0.0,
}
config.update(**SCREAMING_SNAKE_CASE__ )
return config
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
A : str =10
A : List[str] =self.get_scheduler_config()
A : Any =self.scheduler_classes[0](**SCREAMING_SNAKE_CASE__ )
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
A : str =scheduler.timesteps[0]
A : Tuple =scheduler.timesteps[1]
A : Dict =self.dummy_sample
A : List[str] =0.1 * sample
A : Tuple =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
A : Dict =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
A : Dict =self.scheduler_classes[0]
A : Union[str, Any] =self.get_scheduler_config()
A : Union[str, Any] =scheduler_class(**SCREAMING_SNAKE_CASE__ )
A : Tuple =1
scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ )
A : Any =scheduler.timesteps
A : Optional[Any] =torch.manual_seed(0 )
A : List[Any] =self.dummy_model()
A : Any =self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(SCREAMING_SNAKE_CASE__ ):
# 1. scale model input
A : Optional[Any] =scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# 2. predict noise residual
A : str =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# 3. predict previous sample x_t-1
A : Optional[Any] =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample
A : Any =pred_prev_sample
A : Dict =torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
A : Dict =torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1e-2
assert abs(result_mean.item() - 0.2_5_1_0 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self : int ) -> str:
A : int =self.scheduler_classes[0]
A : str =self.get_scheduler_config()
A : Dict =scheduler_class(**SCREAMING_SNAKE_CASE__ )
A : int =[1_06, 0]
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =scheduler.timesteps
A : Dict =torch.manual_seed(0 )
A : str =self.dummy_model()
A : str =self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
A : Union[str, Any] =scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# 2. predict noise residual
A : str =model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# 3. predict previous sample x_t-1
A : int =scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample
A : Union[str, Any] =pred_prev_sample
A : int =torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) )
A : Dict =torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) )
assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1e-2
assert abs(result_mean.item() - 0.4_5_2_7 ) < 1e-3
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
A : Union[str, Any] =self.scheduler_classes[0]
A : List[str] =self.get_scheduler_config()
A : Tuple =scheduler_class(**SCREAMING_SNAKE_CASE__ )
A : List[Any] =[39, 30, 12, 15, 0]
with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='`timesteps` must be in descending order.' ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
A : Optional[int] =self.scheduler_classes[0]
A : int =self.get_scheduler_config()
A : Any =scheduler_class(**SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =[39, 30, 12, 1, 0]
A : Dict =len(SCREAMING_SNAKE_CASE__ )
with self.assertRaises(SCREAMING_SNAKE_CASE__ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ):
scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE__ , timesteps=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[Any]:
A : Optional[Any] =self.scheduler_classes[0]
A : Tuple =self.get_scheduler_config()
A : List[Any] =scheduler_class(**SCREAMING_SNAKE_CASE__ )
A : List[Any] =[scheduler.config.num_train_timesteps]
with self.assertRaises(
SCREAMING_SNAKE_CASE__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ):
scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE__ )
| 661 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 1 |
from pathlib import Path
import numpy as np
from PIL import Image
def A__ ( lowercase: np.ndarray ) -> np.ndarray:
A , A , A : Dict =rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def A__ ( lowercase: np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def A__ ( lowercase: np.ndarray, lowercase: np.ndarray ) -> np.ndarray:
A : int =np.zeros_like(lowercase )
A : Optional[int] =np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
A : Optional[int] =image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
A : str =(
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
A : List[Any] =int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
_lowercase : Any =Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg'''
_lowercase : Tuple =np.array(Image.open(lena_path))
# kernel to be applied
_lowercase : Dict =np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
_lowercase : Optional[int] =dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
_lowercase : List[str] =Image.fromarray(output).convert('''RGB''')
pil_img.save('''result_dilation.png''')
| 661 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 1 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
_lowercase : str =logging.getLogger()
_lowercase : Optional[int] =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Any:
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Tuple ={'source': 'What is love ?', 'target': 'life'}
A : Optional[int] ={'train': 12, 'val': 2, 'test': 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
A : List[Any] ='\n'.join([contents[field]] * n_lines[split] )
with open(os.path.join(SCREAMING_SNAKE_CASE__ , f'{split}.{field}' ) , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str = "pytorch" ) -> Optional[int]:
A : Tuple =self.get_auto_remove_tmp_dir()
A : List[Any] =os.path.join(SCREAMING_SNAKE_CASE__ , 'output' )
A : List[str] =os.path.join(SCREAMING_SNAKE_CASE__ , 'data' )
self._create_dummy_data(data_dir=SCREAMING_SNAKE_CASE__ )
A : int =f'\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n '.split()
if gpus > 0:
testargs.append(f'--gpus={gpus}' )
if is_apex_available():
testargs.append('--fp16' )
else:
testargs.append('--gpus=0' )
testargs.append('--distributed_backend=ddp_cpu' )
testargs.append('--num_processes=2' )
A : str =[sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=self.get_env() )
A : Optional[int] =os.path.join(SCREAMING_SNAKE_CASE__ , 'metrics.json' )
with open(SCREAMING_SNAKE_CASE__ ) as f:
A : int =json.load(SCREAMING_SNAKE_CASE__ )
return result
@require_torch_gpu
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
A : Any =self._run_finetune(gpus=1 )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_multi_gpu
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
A : Union[str, Any] =self._run_finetune(gpus=2 )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_gpu
@require_ray
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Tuple =self._run_finetune(gpus=1 , distributed_retriever='ray' )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_multi_gpu
@require_ray
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int:
A : str =self._run_finetune(gpus=1 , distributed_retriever='ray' )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
| 661 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..utils import cached_file
# docstyle-ignore
_lowercase : Optional[Any] ='''
Human: <<task>>
Assistant: '''
_lowercase : Union[str, Any] ='''huggingface-tools/default-prompts'''
_lowercase : Any ={'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''}
def A__ ( lowercase: List[Any], lowercase: Dict, lowercase: str="run" ) -> List[Any]:
if prompt_or_repo_id is None:
A : List[str] =DEFAULT_PROMPTS_REPO
# prompt is considered a repo ID when it does not contain any kind of space
if re.search('\\s', lowercase ) is not None:
return prompt_or_repo_id
A : str =cached_file(
lowercase, PROMPT_FILES[mode], repo_type='dataset', user_agent={'agent': agent_name} )
with open(lowercase, 'r', encoding='utf-8' ) as f:
return f.read()
| 661 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 1 |
def A__ ( lowercase: int, lowercase: int ) -> int:
return int(input_a == input_a == 0 )
def A__ ( ) -> None:
print('Truth Table of NOR Gate:' )
print('| Input 1 | Input 2 | Output |' )
print(F'| 0 | 0 | {nor_gate(0, 0 )} |' )
print(F'| 0 | 1 | {nor_gate(0, 1 )} |' )
print(F'| 1 | 0 | {nor_gate(1, 0 )} |' )
print(F'| 1 | 1 | {nor_gate(1, 1 )} |' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 661 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_lowercase : Union[str, Any] =logging.get_logger(__name__)
_lowercase : Any ='''โ'''
_lowercase : Optional[int] ={
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_lowercase : Any ={
'''vocab_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''',
},
'''spm_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_config_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''',
},
}
_lowercase : Union[str, Any] ={
'''facebook/m2m100_418M''': 1_0_2_4,
}
# fmt: off
_lowercase : List[str] ={
'''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''],
'''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de''']
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : List[Any] = VOCAB_FILES_NAMES
lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase : str = ["input_ids", "attention_mask"]
lowercase : List[int] = []
lowercase : List[int] = []
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]="<s>" , SCREAMING_SNAKE_CASE__ : List[Any]="</s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : List[str]="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[Any]="m2m100" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , SCREAMING_SNAKE_CASE__ : int=8 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> None:
A : Optional[Any] ={} if sp_model_kwargs is None else sp_model_kwargs
A : Any =language_codes
A : int =FAIRSEQ_LANGUAGE_CODES[language_codes]
A : Dict ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code}
A : Optional[int] =kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
self.get_lang_token(SCREAMING_SNAKE_CASE__ )
for lang_code in fairseq_language_code
if self.get_lang_token(SCREAMING_SNAKE_CASE__ ) not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=SCREAMING_SNAKE_CASE__ , tgt_lang=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , language_codes=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
A : Dict =vocab_file
A : List[str] =load_json(SCREAMING_SNAKE_CASE__ )
A : List[str] ={v: k for k, v in self.encoder.items()}
A : Dict =spm_file
A : Any =load_spm(SCREAMING_SNAKE_CASE__ , self.sp_model_kwargs )
A : Optional[Any] =len(self.encoder )
A : List[str] ={
self.get_lang_token(SCREAMING_SNAKE_CASE__ ): self.encoder_size + i for i, lang_code in enumerate(SCREAMING_SNAKE_CASE__ )
}
A : int ={lang_code: self.encoder_size + i for i, lang_code in enumerate(SCREAMING_SNAKE_CASE__ )}
A : List[Any] ={v: k for k, v in self.lang_token_to_id.items()}
A : str =src_lang if src_lang is not None else 'en'
A : Optional[int] =tgt_lang
A : int =self.get_lang_id(self._src_lang )
self.set_src_lang_special_tokens(self._src_lang )
A : Optional[Any] =num_madeup_words
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> int:
return len(self.encoder ) + len(self.lang_token_to_id )
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> None:
A : Tuple =new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any:
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder[self.unk_token] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str:
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
A : int =[]
A : Tuple =''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token
A : Tuple =[]
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE__ )
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ )
return out_string.strip()
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =[1] * len(self.prefix_tokens )
A : Any =[1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE__ )) + suffix_ones
return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE__ )) + ([0] * len(SCREAMING_SNAKE_CASE__ )) + suffix_ones
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : List[Any] ={self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ) -> Dict:
A : str =self.__dict__.copy()
A : List[Any] =None
return state
def __setstate__( self : Tuple , SCREAMING_SNAKE_CASE__ : Dict ) -> None:
A : Dict =d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
A : List[Any] ={}
A : Any =load_spm(self.spm_file , self.sp_model_kwargs )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
A : int =Path(SCREAMING_SNAKE_CASE__ )
if not save_dir.is_dir():
raise OSError(f'{save_directory} should be a directory' )
A : Dict =save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file']
)
A : str =save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file']
)
save_json(self.encoder , SCREAMING_SNAKE_CASE__ )
if os.path.abspath(self.spm_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , SCREAMING_SNAKE_CASE__ )
elif not os.path.isfile(self.spm_file ):
with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi:
A : Union[str, Any] =self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__ )
return (str(SCREAMING_SNAKE_CASE__ ), str(SCREAMING_SNAKE_CASE__ ))
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str = "en" , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , SCREAMING_SNAKE_CASE__ : str = "ro" , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> BatchEncoding:
A : Any =src_lang
A : List[Any] =tgt_lang
self.set_src_lang_special_tokens(self.src_lang )
return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
A : Any =src_lang
A : List[str] =self(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Optional[int] =self.get_lang_id(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[int]:
self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> None:
A : List[Any] =self.get_lang_token(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.lang_token_to_id[lang_token]
A : Dict =[self.cur_lang_id]
A : Tuple =[self.eos_token_id]
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> None:
A : Optional[Any] =self.get_lang_token(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =self.lang_token_to_id[lang_token]
A : Union[str, Any] =[self.cur_lang_id]
A : Dict =[self.eos_token_id]
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> str:
return self.lang_code_to_token[lang]
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> int:
A : Tuple =self.get_lang_token(SCREAMING_SNAKE_CASE__ )
return self.lang_token_to_id[lang_token]
def A__ ( lowercase: str, lowercase: Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
A : str =sentencepiece.SentencePieceProcessor(**lowercase )
spm.Load(str(lowercase ) )
return spm
def A__ ( lowercase: str ) -> Union[Dict, List]:
with open(lowercase, 'r' ) as f:
return json.load(lowercase )
def A__ ( lowercase: List[str], lowercase: str ) -> None:
with open(lowercase, 'w' ) as f:
json.dump(lowercase, lowercase, indent=2 )
| 661 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 1 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : int =get_tests_dir('''fixtures/test_sentencepiece.model''')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
_lowercase : Union[str, Any] =2_5_0_0_0_4
_lowercase : Any =2_5_0_0_2_0
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Any = MBartaaTokenizer
lowercase : Union[str, Any] = MBartaaTokenizerFast
lowercase : Dict = True
lowercase : str = True
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
A : str =MBartaaTokenizer(SCREAMING_SNAKE_CASE__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int:
A : Optional[int] ='<s>'
A : str =0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int:
A : Optional[Any] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_54 )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
self.assertEqual(self.get_tokenizer().vocab_size , 10_54 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple:
A : List[Any] =MBartaaTokenizer(SCREAMING_SNAKE_CASE__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['โThis', 'โis', 'โa', 'โt', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : List[str] =tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'รฉ', '.'] , )
A : Dict =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A : Optional[int] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str:
# fmt: off
A : Union[str, Any] ={'input_ids': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : Dict =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Tuple =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[Any] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : Dict =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Union[str, Any] =tempfile.mkdtemp()
A : Any =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : Optional[Any] =tempfile.mkdtemp()
A : List[Any] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[str] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = "facebook/mbart-large-50-one-to-many-mmt"
lowercase : int = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
lowercase : str = [
"ลeful ONU declarฤ cฤ nu existฤ o soluลฃie militarฤ รฎn Siria",
"Secretarul General Ban Ki-moon declarฤ cฤ rฤspunsul sฤu la intensificarea sprijinului militar al Rusiei"
" pentru Siria este cฤ \"nu existฤ o soluลฃie militarฤ\" la conflictul de aproape cinci ani ลi cฤ noi arme nu vor"
" face decรขt sฤ รฎnrฤutฤลฃeascฤ violenลฃele ลi mizeria pentru milioane de oameni.",
]
lowercase : str = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2]
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int ) -> Dict:
A : MBartaaTokenizer =MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
A : Any =1
return cls
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_00_04 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_00_20 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_00_38 )
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Optional[Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
self.assertIn(SCREAMING_SNAKE_CASE__ , self.tokenizer.all_special_ids )
A : List[str] =[RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2]
A : Any =self.tokenizer.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
A : str =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Any:
A : Optional[int] =['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE__ )
A : Tuple =10
A : List[Any] =self.tokenizer(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ ).input_ids[0]
self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE__ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_00_53, 25_00_01] )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : Dict =tempfile.mkdtemp()
A : str =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =MBartaaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE__ )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict:
A : Optional[int] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
A : str =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Any:
A : Union[str, Any] =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
A : List[str] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
A : Dict =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE__ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
A : int =self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=3 , return_tensors='pt' )
A : Tuple =self.tokenizer(
text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=10 , return_tensors='pt' )
A : Tuple =targets['input_ids']
A : Any =shift_tokens_right(SCREAMING_SNAKE_CASE__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
A : Dict =self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(SCREAMING_SNAKE_CASE__ ) , {
# en_XX, A, test, EOS
'input_ids': [[25_00_04, 62, 30_34, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_00_01,
} , )
| 661 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 1 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 |
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A__ ( lowercase: int, lowercase: str ) -> Dict:
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Dict, lowercase: Tuple, lowercase: str ) -> str:
A : Any =tmp_path / 'cache'
A : Dict ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : Dict =JsonDatasetReader(lowercase, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Any, lowercase: Union[str, Any] ) -> Tuple:
A : Tuple =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : Optional[Any] =features.copy() if features else default_expected_features
A : Union[str, Any] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : str =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
], )
def A__ ( lowercase: Optional[int], lowercase: str, lowercase: Dict ) -> Optional[int]:
A : int =tmp_path / 'cache'
A : Tuple ={'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
A : int =features.copy() if features else default_expected_features
A : str =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def A__ ( lowercase: Optional[Any], lowercase: str ) -> Tuple:
# jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"}
A : str ={'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
A : Dict =features.copy()
A : List[str] =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : int =tmp_path / 'cache'
A : Optional[int] =JsonDatasetReader(lowercase, features=lowercase, cache_dir=lowercase ).read()
assert isinstance(lowercase, lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Union[str, Any], lowercase: Any, lowercase: str ) -> Optional[Any]:
A : Optional[int] =tmp_path / 'cache'
A : Optional[Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =JsonDatasetReader(lowercase, cache_dir=lowercase, split=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type', [str, list] )
def A__ ( lowercase: Optional[Any], lowercase: int, lowercase: Union[str, Any] ) -> List[Any]:
if issubclass(lowercase, lowercase ):
A : int =jsonl_path
elif issubclass(lowercase, lowercase ):
A : Any =[jsonl_path]
A : Optional[Any] =tmp_path / 'cache'
A : Tuple ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[str] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_dataset(lowercase, lowercase )
def A__ ( lowercase: List[str], lowercase: Tuple, lowercase: Optional[Any]=("train",) ) -> Tuple:
assert isinstance(lowercase, lowercase )
for split in splits:
A : List[str] =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory', [False, True] )
def A__ ( lowercase: Tuple, lowercase: Optional[int], lowercase: Any ) -> str:
A : List[str] =tmp_path / 'cache'
A : Union[str, Any] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A : str =JsonDatasetReader({'train': jsonl_path}, cache_dir=lowercase, keep_in_memory=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize(
'features', [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
], )
def A__ ( lowercase: Optional[int], lowercase: Optional[int], lowercase: Optional[int] ) -> Tuple:
A : Any =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : str =features.copy() if features else default_expected_features
A : Dict =(
Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
A : Optional[Any] =JsonDatasetReader({'train': jsonl_path}, features=lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase )
@pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] )
def A__ ( lowercase: Any, lowercase: List[Any], lowercase: List[Any] ) -> Tuple:
if split:
A : Optional[int] ={split: jsonl_path}
else:
A : Dict ='train'
A : Optional[Any] ={'train': jsonl_path, 'test': jsonl_path}
A : Tuple =tmp_path / 'cache'
A : List[str] ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
A : List[Any] =JsonDatasetReader(lowercase, cache_dir=lowercase ).read()
_check_json_datasetdict(lowercase, lowercase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def A__ ( lowercase: List[Any] ) -> Tuple:
return json.load(lowercase )
def A__ ( lowercase: List[Any] ) -> Tuple:
return [json.loads(lowercase ) for line in buffer]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ ).write()
buffer.seek(0 )
A : Any =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : int =load_json_function(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[Any]:
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , lines=SCREAMING_SNAKE_CASE__ , orient=SCREAMING_SNAKE_CASE__ , num_proc=2 ).write()
buffer.seek(0 )
A : List[Any] =load_json(SCREAMING_SNAKE_CASE__ )
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(SCREAMING_SNAKE_CASE__ , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(SCREAMING_SNAKE_CASE__ ) == 10
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
with io.BytesIO() as buffer:
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
A : Union[str, Any] =tmp_path_factory.mktemp('data' ) / f'test.json.{extension}'
A : Union[str, Any] =str(shared_datadir / f'test_file.json.{extension}' )
JsonDatasetWriter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compression=SCREAMING_SNAKE_CASE__ ).write()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : str =f.read()
with fsspec.open(SCREAMING_SNAKE_CASE__ , 'rb' , compression='infer' ) as f:
A : List[str] =f.read()
assert exported_content == original_content
| 661 | 1 |
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
_lowercase : List[str] ={
'''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''],
'''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str =[
'''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GPTNeoXJapaneseForCausalLM''',
'''GPTNeoXJapaneseLayer''',
'''GPTNeoXJapaneseModel''',
'''GPTNeoXJapanesePreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
_lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 661 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Optional[int] = DDIMPipeline
lowercase : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
lowercase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
torch.manual_seed(0 )
A : str =UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
A : Optional[int] =DDIMScheduler()
A : Optional[Any] ={'unet': unet, 'scheduler': scheduler}
return components
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=0 ) -> Any:
if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ):
A : List[Any] =torch.manual_seed(SCREAMING_SNAKE_CASE__ )
else:
A : Union[str, Any] =torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ )
A : Optional[int] ={
'batch_size': 1,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
A : Union[str, Any] ='cpu'
A : Tuple =self.get_dummy_components()
A : Union[str, Any] =self.pipeline_class(**SCREAMING_SNAKE_CASE__ )
pipe.to(SCREAMING_SNAKE_CASE__ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : str =self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ )
A : str =pipe(**SCREAMING_SNAKE_CASE__ ).images
A : Optional[Any] =image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
A : Optional[Any] =np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
A : str =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
super().test_save_load_local(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Any ='google/ddpm-cifar10-32'
A : Optional[int] =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMScheduler()
A : int =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddim.to(SCREAMING_SNAKE_CASE__ )
ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Dict =torch.manual_seed(0 )
A : Optional[Any] =ddim(generator=SCREAMING_SNAKE_CASE__ , eta=0.0 , output_type='numpy' ).images
A : str =image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A : Tuple =np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Optional[int] ='google/ddpm-ema-bedroom-256'
A : str =UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : str =DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =DDIMPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ )
ddpm.to(SCREAMING_SNAKE_CASE__ )
ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ )
A : Any =torch.manual_seed(0 )
A : Optional[int] =ddpm(generator=SCREAMING_SNAKE_CASE__ , output_type='numpy' ).images
A : List[Any] =image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
A : Optional[int] =np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 661 | 1 |
import heapq
import sys
import numpy as np
_lowercase : str =tuple[int, int]
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[str] ) -> int:
A : int =[]
A : Optional[Any] =set()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
if not self.empty():
return self.elements[0][0]
else:
return float('inf' )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> str:
return len(self.elements ) == 0
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> List[str]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(SCREAMING_SNAKE_CASE__ )
else:
# update
# print("update", item)
A : str =[]
((A) , (A)) : Dict =heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((A) , (A)) : int =heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> str:
if item in self.set:
self.set.remove(SCREAMING_SNAKE_CASE__ )
A : str =[]
((A) , (A)) : List[str] =heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((A) , (A)) : List[Any] =heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[Any]:
return self.elements[0][1]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
((A) , (A)) : Any =heapq.heappop(self.elements )
self.set.remove(SCREAMING_SNAKE_CASE__ )
return (priority, item)
def A__ ( lowercase: TPos, lowercase: TPos ) -> Union[str, Any]:
# euclidean distance
A : Union[str, Any] =np.array(lowercase )
A : Tuple =np.array(lowercase )
return np.linalg.norm(a - b )
def A__ ( lowercase: TPos, lowercase: TPos ) -> str:
# integer division by time variable
return consistent_heuristic(lowercase, lowercase ) // t
def A__ ( lowercase: TPos, lowercase: TPos ) -> int:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def A__ ( lowercase: TPos, lowercase: int, lowercase: TPos, lowercase: dict[TPos, float] ) -> List[str]:
A : int =g_function[start] + Wa * heuristics[i](lowercase, lowercase )
return ans
def A__ ( lowercase: List[Any], lowercase: str, lowercase: Optional[int] ) -> Tuple:
A : Any =np.chararray((n, n) )
for i in range(lowercase ):
for j in range(lowercase ):
A : Optional[int] ='*'
for i in range(lowercase ):
for j in range(lowercase ):
if (j, (n - 1) - i) in blocks:
A : Any ='#'
A : Union[str, Any] ='-'
A : str =back_pointer[goal]
while x != start:
((A) , (A)) : List[str] =x
# print(x)
A : str ='-'
A : Dict =back_pointer[x]
A : Any ='-'
for i in range(lowercase ):
for j in range(lowercase ):
if (i, j) == (0, n - 1):
print(grid[i][j], end=' ' )
print('<-- End position', end=' ' )
else:
print(grid[i][j], end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
print('PATH TAKEN BY THE ALGORITHM IS:-' )
A : Union[str, Any] =back_pointer[goal]
while x != start:
print(lowercase, end=' ' )
A : str =back_pointer[x]
print(lowercase )
sys.exit()
def A__ ( lowercase: TPos ) -> str:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def A__ ( lowercase: Union[str, Any], lowercase: Union[str, Any], lowercase: Tuple, lowercase: Dict, lowercase: List[Any], lowercase: List[Any], lowercase: str, lowercase: str, ) -> Optional[int]:
for itera in range(lowercase ):
open_list[itera].remove_element(lowercase )
# print("s", s)
# print("j", j)
((A) , (A)) : Dict =s
A : Dict =(x - 1, y)
A : Union[str, Any] =(x + 1, y)
A : List[str] =(x, y + 1)
A : int =(x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(lowercase ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(lowercase )
A : Union[str, Any] =-1
A : Union[str, Any] =float('inf' )
if valid(lowercase ) and g_function[neighbours] > g_function[s] + 1:
A : Optional[int] =g_function[s] + 1
A : List[str] =s
if neighbours not in close_list_anchor:
open_list[0].put(lowercase, key(lowercase, 0, lowercase, lowercase ) )
if neighbours not in close_list_inad:
for var in range(1, lowercase ):
if key(lowercase, lowercase, lowercase, lowercase ) <= Wa * key(
lowercase, 0, lowercase, lowercase ):
open_list[j].put(
lowercase, key(lowercase, lowercase, lowercase, lowercase ) )
def A__ ( ) -> Dict:
A : Dict =[]
for x in range(1, 5 ):
for y in range(1, 6 ):
some_list.append((x, y) )
for x in range(15, 20 ):
some_list.append((x, 17) )
for x in range(10, 19 ):
for y in range(1, 15 ):
some_list.append((x, y) )
# L block
for x in range(1, 4 ):
for y in range(12, 19 ):
some_list.append((x, y) )
for x in range(3, 13 ):
for y in range(16, 19 ):
some_list.append((x, y) )
return some_list
_lowercase : str ={0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
_lowercase : Dict =[
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(1_0, 1),
(1_1, 1),
(1_2, 1),
(1_3, 1),
(1_4, 1),
(1_5, 1),
(1_6, 1),
(1_7, 1),
(1_8, 1),
(1_9, 1),
]
_lowercase : int =make_common_ground()
_lowercase : List[str] =blocks_blk
# hyper parameters
_lowercase : Union[str, Any] =1
_lowercase : Any =1
_lowercase : str =2_0
_lowercase : Dict =3 # one consistent and two other inconsistent
# start and end destination
_lowercase : Dict =(0, 0)
_lowercase : str =(n - 1, n - 1)
_lowercase : Tuple =1
def A__ ( lowercase: TPos, lowercase: TPos, lowercase: int ) -> Union[str, Any]:
A : int ={start: 0, goal: float('inf' )}
A : str ={start: -1, goal: -1}
A : Union[str, Any] =[]
A : List[str] =set()
for i in range(lowercase ):
open_list.append(PriorityQueue() )
open_list[i].put(lowercase, key(lowercase, lowercase, lowercase, lowercase ) )
A : list[int] =[]
A : list[int] =[]
while open_list[0].minkey() < float('inf' ):
for i in range(1, lowercase ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('inf' ):
do_something(lowercase, lowercase, lowercase )
else:
A , A : str =open_list[i].top_show()
visited.add(lowercase )
expand_state(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, )
close_list_inad.append(lowercase )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('inf' ):
do_something(lowercase, lowercase, lowercase )
else:
A : str =open_list[0].top_show()
visited.add(lowercase )
expand_state(
lowercase, 0, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, )
close_list_anchor.append(lowercase )
print('No path found to goal' )
print()
for i in range(n - 1, -1, -1 ):
for j in range(lowercase ):
if (j, i) in blocks:
print('#', end=' ' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('*', end=' ' )
else:
print('-', end=' ' )
else:
print('*', end=' ' )
if (j, i) == (n - 1, n - 1):
print('<-- End position', end=' ' )
print()
print('^' )
print('Start position' )
print()
print('# is an obstacle' )
print('- is the path taken by algorithm' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 661 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Union[str, Any]:
A : Dict =tempfile.mkdtemp()
A : int =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[int]:
A : str =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Optional[int] =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : Optional[int] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : str =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Union[str, Any] =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =self.get_image_processor()
A : Optional[Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Dict =self.prepare_image_inputs()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : Optional[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Any:
A : str =self.get_image_processor()
A : Union[str, Any] =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : str =[torch.ones((1, 3, 5, 5) )]
A : Optional[Any] =[[17_64, 26_46]]
A : List[Any] =[[6_83, 10_24]]
A : Union[str, Any] =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : str =[np.ones((1, 3, 5, 5) )]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
A : Any =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) )
@require_vision
@require_tf
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> str:
A : Tuple =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Union[str, Any] =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
A : Optional[Any] =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Any =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A : Optional[Any] =self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
A : Dict =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE__ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Any =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : Tuple =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='np' )
A : List[Any] =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
A : int =self.get_image_processor()
A : Any =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =[tf.ones((1, 3, 5, 5) )]
A : Tuple =[[17_64, 26_46]]
A : Union[str, Any] =[[6_83, 10_24]]
A : int =processor.post_process_masks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : List[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
A : Any =[np.ones((1, 3, 5, 5) )]
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
A : Any =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A : List[str] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , np.array(SCREAMING_SNAKE_CASE__ ) , np.array(SCREAMING_SNAKE_CASE__ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]:
A : Optional[int] =tempfile.mkdtemp()
A : Union[str, Any] =SamImageProcessor()
A : Dict =SamProcessor(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any:
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple:
A : Any =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
A : Tuple =[Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : Optional[Any] =self.get_image_processor()
A : Dict =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A : Optional[int] =[tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ )]
A : Union[str, Any] =[torch.tensor(SCREAMING_SNAKE_CASE__ )]
A : int =[[17_64, 26_46]]
A : int =[[6_83, 10_24]]
A : Dict =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='tf' )
A : Optional[Any] =processor.post_process_masks(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Union[str, Any] =self.get_image_processor()
A : int =SamProcessor(image_processor=SCREAMING_SNAKE_CASE__ )
A : int =self.prepare_image_inputs()
A : List[Any] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Tuple =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )['pixel_values'].numpy()
A : Optional[int] =image_processor(SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
A : Dict =processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_lowercase : str ={
'''configuration_pix2struct''': [
'''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Pix2StructConfig''',
'''Pix2StructTextConfig''',
'''Pix2StructVisionConfig''',
],
'''processing_pix2struct''': ['''Pix2StructProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int =['''Pix2StructImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any =[
'''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Pix2StructPreTrainedModel''',
'''Pix2StructForConditionalGeneration''',
'''Pix2StructVisionModel''',
'''Pix2StructTextModel''',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
_lowercase : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 661 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_lowercase : Optional[Any] =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def A__ ( lowercase: Optional[int] ) -> Optional[int]:
A : str =test_results.split(' ' )
A : List[str] =0
A : Tuple =0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
A : List[str] =expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowercase ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def A__ ( lowercase: List[Any] ) -> str:
A : Union[str, Any] ={}
A : Optional[Any] =None
A : Union[str, Any] =False
for line in failures_short_lines.split('\n' ):
if re.search(r'_ \[doctest\]', lowercase ):
A : List[Any] =True
A : Any =line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
A : Dict =line
A : List[str] =False
return failures
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
A : Tuple =title
A : Dict =doc_test_results['time_spent'].split(',' )[0]
A : Union[str, Any] =doc_test_results['success']
A : Any =doc_test_results['failures']
A : Optional[Any] =self.n_success + self.n_failures
# Failures and success of the modeling tests
A : Union[str, Any] =doc_test_results
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> str:
A : Any =[self._time_spent]
A : List[str] =0
for time in time_spent:
A : List[Any] =time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
A : List[str] =[0, 0, time_parts[0]]
A , A , A : Tuple =int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
A , A , A : str =total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'๐ There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
f' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict:
A : Tuple =40
A : Optional[Any] ={k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
A : Any =''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += f'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Optional[int] =[self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
A : Tuple =[
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[int]:
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
A : Any =f'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
A : Dict =client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
A : List[str] =''
for key, value in failures.items():
A : Any =value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += f'*{key}*\n_{value}_\n\n'
A : Union[str, Any] =job_name
A : Any ={'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
A : int ={
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
A : Union[str, Any] =self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
A : Union[str, Any] =sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
A : Any =f'*Num failures* :{len(job_result["failed"] )} \n'
A : List[Any] =job_result['failures']
A : Any =self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def A__ ( ) -> Union[str, Any]:
A : Any =os.environ['GITHUB_RUN_ID']
A : List[Any] =F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
A : Union[str, Any] =requests.get(lowercase ).json()
A : List[Any] ={}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
A : List[str] =math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowercase ):
A : List[str] =requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.', lowercase )
return {}
def A__ ( lowercase: str ) -> Optional[Any]:
A : Any ={}
if os.path.exists(lowercase ):
A : List[Any] =os.listdir(lowercase )
for file in files:
try:
with open(os.path.join(lowercase, lowercase ), encoding='utf-8' ) as f:
A : Optional[int] =f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(lowercase, lowercase )}.' ) from e
return _artifact
def A__ ( ) -> int:
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
A : Dict =name
A : Dict =[]
def __str__( self : Optional[Any] ) -> List[str]:
return self.name
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
self.paths.append({'name': self.name, 'path': path} )
A : Dict[str, Artifact] ={}
A : str =filter(os.path.isdir, os.listdir() )
for directory in directories:
A : Tuple =directory
if artifact_name not in _available_artifacts:
A : int =Artifact(lowercase )
_available_artifacts[artifact_name].add_path(lowercase )
return _available_artifacts
if __name__ == "__main__":
_lowercase : Optional[int] =get_job_links()
_lowercase : str =retrieve_available_artifacts()
_lowercase : List[Any] =collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_lowercase : Optional[Any] ={
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_lowercase : List[Any] =github_actions_job_links.get('''run_doctests''')
_lowercase : int =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
_lowercase : Dict =retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
_lowercase , _lowercase , _lowercase : List[Any] =handle_test_results(artifact['''stats'''])
_lowercase : Any =failed
_lowercase : Union[str, Any] =success
_lowercase : str =time_spent[1:-1] + ''', '''
_lowercase : Any =extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
_lowercase : Tuple =line.replace('''FAILED ''', '''''')
_lowercase : int =line.split()[0].replace('''\n''', '''''')
if "::" in line:
_lowercase , _lowercase : str =line.split('''::''')
else:
_lowercase , _lowercase : Union[str, Any] =line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_lowercase : Any =docs[file_regex]
doc_test_results[category]["failed"].append(test)
_lowercase : Any =all_failures[test] if test in all_failures else '''N/A'''
_lowercase : Tuple =failure
break
_lowercase : Optional[int] =Message('''๐ค Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply()
| 661 | 1 |
def A__ ( lowercase: list, lowercase: int, lowercase: int = 0, lowercase: int = 0 ) -> int:
A : Dict =right or len(lowercase ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(lowercase, lowercase, left + 1, right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 |
_lowercase : Dict ='''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 661 | 1 |
import os
from collections.abc import Iterator
def A__ ( lowercase: str = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(lowercase ):
A : Union[str, Any] =[d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(lowercase )[1] in (".py", ".ipynb"):
yield os.path.join(lowercase, lowercase ).lstrip('./' )
def A__ ( lowercase: Tuple ) -> Any:
return F'{i * " "}*' if i else "\n##"
def A__ ( lowercase: str, lowercase: str ) -> str:
A : Union[str, Any] =old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(lowercase ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(lowercase )} {new_part.replace("_", " " ).title()}' )
return new_path
def A__ ( lowercase: str = "." ) -> None:
A : str =''
for filepath in sorted(good_file_paths(lowercase ) ):
A , A : str =os.path.split(lowercase )
if filepath != old_path:
A : Optional[int] =print_path(lowercase, lowercase )
A : Optional[Any] =(filepath.count(os.sep ) + 1) if filepath else 0
A : Any =F'{filepath}/{filename}'.replace(' ', '%20' )
A : Tuple =os.path.splitext(filename.replace('_', ' ' ).title() )[0]
print(F'{md_prefix(lowercase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md('''.''')
| 661 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 |
import math
def A__ ( lowercase: int ) -> list:
A : Optional[Any] =[True] * n
A : Tuple =False
A : List[Any] =False
A : Dict =True
for i in range(3, int(n**0.5 + 1 ), 2 ):
A : Dict =i * 2
while index < n:
A : Dict =False
A : Dict =index + i
A : Tuple =[2]
for i in range(3, lowercase, 2 ):
if is_prime[i]:
primes.append(lowercase )
return primes
def A__ ( lowercase: int = 999_966_663_333 ) -> int:
A : Optional[int] =math.floor(math.sqrt(lowercase ) ) + 100
A : Optional[int] =prime_sieve(lowercase )
A : Optional[Any] =0
A : List[Any] =0
A : Union[str, Any] =primes[prime_index]
while (last_prime**2) <= limit:
A : Tuple =primes[prime_index + 1]
A : Optional[int] =last_prime**2
A : Tuple =next_prime**2
# Get numbers divisible by lps(current)
A : int =lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
A : List[Any] =upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
A : Any =0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
A : List[str] =next_prime
prime_index += 1
return matches_sum
if __name__ == "__main__":
print(solution())
| 661 | 1 |
from typing import List
from .keymap import KEYMAP, get_character
def A__ ( lowercase: str ) -> List[str]:
def decorator(lowercase: int ):
A : Tuple =getattr(lowercase, 'handle_key', [] )
handle += [key]
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
def A__ ( *lowercase: List[str] ) -> Dict:
def decorator(lowercase: Union[str, Any] ):
A : Optional[int] =getattr(lowercase, 'handle_key', [] )
handle += keys
setattr(lowercase, 'handle_key', lowercase )
return func
return decorator
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __new__( cls : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
A : Dict =super().__new__(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not hasattr(SCREAMING_SNAKE_CASE__ , 'key_handler' ):
setattr(SCREAMING_SNAKE_CASE__ , 'key_handler' , {} )
setattr(SCREAMING_SNAKE_CASE__ , 'handle_input' , KeyHandler.handle_input )
for value in attrs.values():
A : Optional[Any] =getattr(SCREAMING_SNAKE_CASE__ , 'handle_key' , [] )
for key in handled_keys:
A : str =value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE_ ( cls : str ) -> Any:
A : str =get_character()
if char != KEYMAP["undefined"]:
A : List[str] =ord(SCREAMING_SNAKE_CASE__ )
A : List[str] =cls.key_handler.get(SCREAMING_SNAKE_CASE__ )
if handler:
A : List[str] =char
return handler(cls )
else:
return None
def A__ ( cls: Optional[int] ) -> str:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 661 |
import heapq
def A__ ( lowercase: dict ) -> set[int]:
A : list[list] =[]
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] )
# chosen_vertices = set of chosen vertices
A : Dict =set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
A : List[str] =heapq.heappop(lowercase )[1][0]
chosen_vertices.add(lowercase )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
A : str =elem[1][1].index(lowercase )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(lowercase )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
| 661 | 1 |
from statistics import mean, stdev
def A__ ( lowercase: list, lowercase: int = 3 ) -> list:
A : int =min(lowercase )
A : int =max(lowercase )
# normalize data
return [round((x - x_min) / (x_max - x_min), lowercase ) for x in data]
def A__ ( lowercase: list, lowercase: int = 3 ) -> list:
A : Optional[int] =mean(lowercase )
A : Union[str, Any] =stdev(lowercase )
# standardize data
return [round((x - mu) / (sigma), lowercase ) for x in data]
| 661 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_lowercase : List[Any] =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
A : Tuple =feature_size
A : int =sampling_rate
A : List[str] =padding_value
A : Tuple =kwargs.pop('padding_side' , 'right' )
A : str =kwargs.pop('return_attention_mask' , SCREAMING_SNAKE_CASE__ )
super().__init__(**SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union[
BatchFeature,
List[BatchFeature],
Dict[str, BatchFeature],
Dict[str, List[BatchFeature]],
List[Dict[str, BatchFeature]],
] , SCREAMING_SNAKE_CASE__ : Union[bool, str, PaddingStrategy] = True , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
A : Tuple ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'
f' to this method that includes {self.model_input_names[0]}, but you provided'
f' {list(processed_features.keys() )}' )
A : Dict =processed_features[self.model_input_names[0]]
A : int =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(SCREAMING_SNAKE_CASE__ ) == 0:
if return_attention_mask:
A : List[Any] =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
A : List[str] =required_input[0]
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
A : Any =0
while len(required_input[index] ) == 0:
index += 1
if index < len(SCREAMING_SNAKE_CASE__ ):
A : Dict =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(SCREAMING_SNAKE_CASE__ ):
A : List[Any] ='tf'
elif is_torch_tensor(SCREAMING_SNAKE_CASE__ ):
A : Optional[int] ='pt'
elif isinstance(SCREAMING_SNAKE_CASE__ , (int, float, list, tuple, np.ndarray) ):
A : Union[str, Any] ='np'
else:
raise ValueError(
f'type of {first_element} unknown: {type(SCREAMING_SNAKE_CASE__ )}. '
'Should be one of a python, numpy, pytorch or tensorflow object.' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
A : int =to_numpy(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =[to_numpy(SCREAMING_SNAKE_CASE__ ) for v in value]
# Convert padding_strategy in PaddingStrategy
A : List[Any] =self._get_padding_strategies(padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ )
A : Optional[int] =processed_features[self.model_input_names[0]]
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if not all(len(SCREAMING_SNAKE_CASE__ ) == batch_size for v in processed_features.values() ):
raise ValueError('Some items in the output dictionary have a different batch size than others.' )
A : Tuple =[]
for i in range(SCREAMING_SNAKE_CASE__ ):
A : int ={k: v[i] for k, v in processed_features.items()}
# truncation
A : List[Any] =self._truncate(
SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , )
truncated_inputs.append(SCREAMING_SNAKE_CASE__ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
A : Any =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
A : Optional[Any] =PaddingStrategy.MAX_LENGTH
A : List[Any] ={}
for i in range(SCREAMING_SNAKE_CASE__ ):
# padding
A : Optional[Any] =self._pad(
truncated_inputs[i] , max_length=SCREAMING_SNAKE_CASE__ , padding_strategy=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
for key, value in outputs.items():
if key not in batch_outputs:
A : Dict =[]
if value.dtype is np.dtype(np.floataa ):
A : Tuple =value.astype(np.floataa )
batch_outputs[key].append(SCREAMING_SNAKE_CASE__ )
return BatchFeature(SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> dict:
A : Optional[int] =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Tuple =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : int =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(SCREAMING_SNAKE_CASE__ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
A : str =np.ones(len(SCREAMING_SNAKE_CASE__ ) , dtype=np.intaa )
if needs_to_be_padded:
A : Union[str, Any] =max_length - len(SCREAMING_SNAKE_CASE__ )
if self.padding_side == "right":
if return_attention_mask:
A : Dict =np.pad(
processed_features['attention_mask'] , (0, difference) )
A : str =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
A : List[Any] =np.pad(
processed_features['attention_mask'] , (difference, 0) )
A : Union[str, Any] =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
A : Tuple =np.pad(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'constant' , constant_values=self.padding_value )
else:
raise ValueError('Invalid padding strategy:' + str(self.padding_side ) )
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Union[Dict[str, np.ndarray], BatchFeature] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' )
A : Tuple =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
A : Any =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
A : List[str] =len(SCREAMING_SNAKE_CASE__ ) > max_length
if needs_to_be_truncated:
A : Union[str, Any] =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
A : Dict =processed_features['attention_mask'][:max_length]
return processed_features
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Dict=None ) -> Union[str, Any]:
# Get padding strategy
if padding is not False:
if padding is True:
A : List[Any] =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Tuple =PaddingStrategy(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
A : Optional[int] =padding
else:
A : List[str] =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'
' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' )
return padding_strategy
| 661 | 1 |
from __future__ import annotations
_lowercase : str =1_0
def A__ ( lowercase: list[int] ) -> list[int]:
A : Optional[Any] =1
A : Optional[int] =max(lowercase )
while placement <= max_digit:
# declare and initialize empty buckets
A : list[list] =[[] for _ in range(lowercase )]
# split list_of_ints between the buckets
for i in list_of_ints:
A : Optional[Any] =int((i / placement) % RADIX )
buckets[tmp].append(lowercase )
# put each buckets' contents into list_of_ints
A : str =0
for b in range(lowercase ):
for i in buckets[b]:
A : Union[str, Any] =i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
_lowercase : Optional[int] =logging.get_logger(__name__)
_lowercase : List[str] ={
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : int = "deberta-v2"
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=12_81_00 , SCREAMING_SNAKE_CASE__ : List[Any]=15_36 , SCREAMING_SNAKE_CASE__ : Dict=24 , SCREAMING_SNAKE_CASE__ : List[str]=24 , SCREAMING_SNAKE_CASE__ : List[str]=61_44 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-7 , SCREAMING_SNAKE_CASE__ : Optional[int]=False , SCREAMING_SNAKE_CASE__ : Tuple=-1 , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : List[str]=0 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , **SCREAMING_SNAKE_CASE__ : Dict , ) -> Dict:
super().__init__(**SCREAMING_SNAKE_CASE__ )
A : Dict =hidden_size
A : Optional[Any] =num_hidden_layers
A : Optional[int] =num_attention_heads
A : Optional[int] =intermediate_size
A : Any =hidden_act
A : Any =hidden_dropout_prob
A : Union[str, Any] =attention_probs_dropout_prob
A : Optional[Any] =max_position_embeddings
A : Tuple =type_vocab_size
A : Tuple =initializer_range
A : int =relative_attention
A : int =max_relative_positions
A : Optional[Any] =pad_token_id
A : Union[str, Any] =position_biased_input
# Backwards compatibility
if type(SCREAMING_SNAKE_CASE__ ) == str:
A : Any =[x.strip() for x in pos_att_type.lower().split('|' )]
A : Any =pos_att_type
A : Tuple =vocab_size
A : Any =layer_norm_eps
A : Optional[Any] =kwargs.get('pooler_hidden_size' , SCREAMING_SNAKE_CASE__ )
A : str =pooler_dropout
A : Any =pooler_hidden_act
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
A : List[Any] ={0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A : int ={0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ) -> int:
return 12
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> Mapping[str, Any]:
A : str =super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 661 | 1 |
from __future__ import annotations
_lowercase : Optional[Any] ='''Muhammad Umer Farooq'''
_lowercase : Dict ='''MIT'''
_lowercase : Optional[int] ='''1.0.0'''
_lowercase : Union[str, Any] ='''Muhammad Umer Farooq'''
_lowercase : Optional[Any] ='''[email protected]'''
_lowercase : Dict ='''Alpha'''
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> None:
super().__init__()
A : list[str] =[]
A : List[Any] =domain
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[tuple[str, str | None]] ) -> None:
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
A : int =parse.urljoin(self.domain , SCREAMING_SNAKE_CASE__ )
self.urls.append(SCREAMING_SNAKE_CASE__ )
def A__ ( lowercase: str ) -> str:
return ".".join(get_sub_domain_name(lowercase ).split('.' )[-2:] )
def A__ ( lowercase: str ) -> str:
return parse.urlparse(lowercase ).netloc
def A__ ( lowercase: str = "https://github.com" ) -> list[str]:
A : List[str] =get_domain_name(lowercase )
# Initialize the parser
A : str =Parser(lowercase )
try:
# Open URL
A : Tuple =requests.get(lowercase )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
A : List[Any] =set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
A : int =requests.get(lowercase )
# Get the valid email.
A : str =re.findall('[a-zA-Z0-9]+@' + domain, read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(lowercase )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(lowercase )
if __name__ == "__main__":
_lowercase : Any =emails_from_url('''https://github.com''')
print(f'''{len(emails)} emails found:''')
print('''\n'''.join(sorted(emails)))
| 661 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 | 1 |
from abc import ABC, abstractmethod
from typing import List, Optional
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Tuple ) -> Any:
# test for the above condition
self.test()
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]:
A : Tuple =0
A : List[str] =False
while not completed:
if counter == 1:
self.reset()
A : Any =self.advance()
if not self.does_advance(SCREAMING_SNAKE_CASE__ ):
raise Exception(
'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' )
A , A , A : Union[str, Any] =self.update(SCREAMING_SNAKE_CASE__ )
counter += 1
if counter > 1_00_00:
raise Exception('update() does not fulfill the constraint.' )
if self.remaining() != 0:
raise Exception('Custom Constraint is not defined correctly.' )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]:
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> Any:
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict:
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Tuple:
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=False ) -> str:
raise NotImplementedError(
f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] ) -> Dict:
super(SCREAMING_SNAKE_CASE__ , self ).__init__()
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or len(SCREAMING_SNAKE_CASE__ ) == 0:
raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' )
if any((not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' )
A : Dict =token_ids
A : List[str] =len(self.token_ids )
A : List[Any] =-1 # the index of the currently fulfilled step
A : List[Any] =False
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Dict:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE__ )}' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE__ : int ) -> List[str]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE__ )}' )
A : Tuple =False
A : int =False
A : int =False
if self.does_advance(SCREAMING_SNAKE_CASE__ ):
self.fulfilled_idx += 1
A : Optional[int] =True
if self.fulfilled_idx == (self.seqlen - 1):
A : Optional[Any] =True
A : List[str] =completed
else:
# failed to make progress.
A : Dict =True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
A : List[Any] =False
A : List[str] =0
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Tuple:
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=False ) -> int:
A : List[str] =PhrasalConstraint(self.token_ids )
if stateful:
A : str =self.seqlen
A : Dict =self.fulfilled_idx
A : Any =self.completed
return new_constraint
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[List[int]] , SCREAMING_SNAKE_CASE__ : int=True ) -> int:
A : Any =max([len(SCREAMING_SNAKE_CASE__ ) for one in nested_token_ids] )
A : Tuple ={}
for token_ids in nested_token_ids:
A : List[Any] =root
for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE__ ):
if token_id not in level:
A : int ={}
A : str =level[token_id]
if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError(
'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'
f' {nested_token_ids}.' )
A : str =root
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]:
A : Tuple =self.trie
for current_token in current_seq:
A : List[Any] =start[current_token]
A : str =list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
A : List[str] =self.next_tokens(SCREAMING_SNAKE_CASE__ )
return len(SCREAMING_SNAKE_CASE__ ) == 0
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]:
A : List[Any] =list(root.values() )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
return 1
else:
return sum([self.count_leaves(SCREAMING_SNAKE_CASE__ ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
A : List[str] =self.count_leaves(SCREAMING_SNAKE_CASE__ )
return len(SCREAMING_SNAKE_CASE__ ) != leaf_count
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : List[List[int]] ) -> Tuple:
super(SCREAMING_SNAKE_CASE__ , self ).__init__()
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or len(SCREAMING_SNAKE_CASE__ ) == 0:
raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' )
if any(not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for token_ids in nested_token_ids ):
raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' )
if any(
any((not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' )
A : Dict =DisjunctiveTrie(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =nested_token_ids
A : List[str] =self.trie.max_height
A : str =[]
A : Optional[Any] =False
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
A : Dict =self.trie.next_tokens(self.current_seq )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE__ )}' )
A : Tuple =self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE__ )}' )
A : int =False
A : Dict =False
A : Tuple =False
if self.does_advance(SCREAMING_SNAKE_CASE__ ):
self.current_seq.append(SCREAMING_SNAKE_CASE__ )
A : str =True
else:
A : Tuple =True
self.reset()
A : Union[str, Any] =self.trie.reached_leaf(self.current_seq )
A : Any =completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Tuple:
A : Tuple =False
A : List[Any] =[]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int=False ) -> int:
A : List[Any] =DisjunctiveConstraint(self.token_ids )
if stateful:
A : Optional[int] =self.seqlen
A : List[str] =self.current_seq
A : List[Any] =self.completed
return new_constraint
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[Constraint] ) -> Any:
A : Any =constraints
# max # of steps required to fulfill a given constraint
A : Any =max([c.seqlen for c in constraints] )
A : List[str] =len(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =False
self.init_state()
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]:
A : Union[str, Any] =[]
A : Dict =None
A : List[Any] =[constraint.copy(stateful=SCREAMING_SNAKE_CASE__ ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]:
A : int =0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]:
A : Optional[Any] =[]
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
A : Any =constraint.advance()
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
token_list.append(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
token_list.extend(SCREAMING_SNAKE_CASE__ )
else:
A : List[Any] =self.inprogress_constraint.advance()
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
token_list.append(SCREAMING_SNAKE_CASE__ )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
token_list.extend(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE__ : Optional[List[int]] ) -> Tuple:
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
A , A : Optional[Any] =self.add(SCREAMING_SNAKE_CASE__ )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> List[Any]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' )
A , A : str =False, False
if self.completed:
A : int =True
A : List[str] =False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
A , A , A : List[Any] =self.inprogress_constraint.update(SCREAMING_SNAKE_CASE__ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE__ ) )
A : Union[str, Any] =None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
A : Optional[int] =None
if len(self.pending_constraints ) == 0:
# we're done!
A : Union[str, Any] =True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(SCREAMING_SNAKE_CASE__ ):
A , A , A : str =pending_constraint.update(SCREAMING_SNAKE_CASE__ )
if not stepped:
raise Exception(
'`constraint.update(token_id)` is not yielding incremental progress, '
'even though `constraint.does_advance(token_id)` is true.' )
if complete:
self.complete_constraints.append(SCREAMING_SNAKE_CASE__ )
A : Tuple =None
if not complete and stepped:
A : Optional[Any] =pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
A : Tuple =(
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
A : Optional[int] =True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Optional[int]=True ) -> Any:
A : Dict =ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
A : Any =[
constraint.copy(stateful=SCREAMING_SNAKE_CASE__ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
A : List[str] =self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE__ )
A : Tuple =[constraint.copy() for constraint in self.pending_constraints]
return new_state
| 661 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_lowercase : Optional[int] =get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[str] = XLMRobertaTokenizer
lowercase : Dict = XLMRobertaTokenizerFast
lowercase : str = True
lowercase : Tuple = True
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
A : List[str] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]:
A : List[str] ='<pad>'
A : int =1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
A : List[str] =list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Union[str, Any] =XLMRobertaTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['โThis', 'โis', 'โa', 'โt', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A : Any =tokenizer.tokenize('I was born in 92000, and this is falsรฉ.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'รฉ',
'.',
] , )
A : Tuple =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A : Union[str, Any] =tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A : Any =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A : List[Any] =self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : Dict =self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
A : str =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
A : List[str] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Dict =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=True
A : Optional[int] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Checks everything loads correctly in the same way
A : Tuple =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
# Save tokenizer rust, legacy_format=False
A : List[Any] =tempfile.mkdtemp()
A : Optional[int] =tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A : List[Any] =tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]:
return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE__ , f.name )
A : Optional[Any] =XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE__ )
A : int =pickle.dumps(SCREAMING_SNAKE_CASE__ )
pickle.loads(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Union[str, Any]:
if not self.test_rust_tokenizer:
return
A : Union[str, Any] =self.get_tokenizer()
A : int =self.get_rust_tokenizer()
A : List[str] ='I was born in 92000, and this is falsรฉ.'
A : Union[str, Any] =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Tuple =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.get_rust_tokenizer()
A : int =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : Dict =rust_tokenizer.encode(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]:
A : Any ='Hello World!'
A : Optional[Any] =[0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str:
A : Any =(
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A : int =[
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any:
# fmt: off
A : List[Any] ={'input_ids': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
| 661 | 1 |
from typing import Optional
import numpy as np
import torch
from torch import nn
from transformers import GPTaConfig, GPTaLMHeadModel
from transformers.modeling_utils import ModuleUtilsMixin
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Tuple = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
@register_to_config
def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : int = 5_02_57 , SCREAMING_SNAKE_CASE__ : int = 10_24 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "gelu_new" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 1e-5 , SCREAMING_SNAKE_CASE__ : float = 0.0_2 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , ) -> List[str]:
super().__init__()
A : str =prefix_length
if prefix_inner_dim != n_embd and prefix_hidden_dim is None:
raise ValueError(
f'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and'
f' `n_embd`: {n_embd} are not equal.' )
A : List[Any] =prefix_inner_dim
A : Dict =prefix_hidden_dim
A : List[str] =(
nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim )
if self.prefix_hidden_dim is not None
else nn.Identity()
)
A : Optional[int] =(
nn.Linear(self.prefix_hidden_dim , SCREAMING_SNAKE_CASE__ ) if self.prefix_hidden_dim is not None else nn.Identity()
)
A : Dict =GPTaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , n_positions=SCREAMING_SNAKE_CASE__ , n_embd=SCREAMING_SNAKE_CASE__ , n_layer=SCREAMING_SNAKE_CASE__ , n_head=SCREAMING_SNAKE_CASE__ , n_inner=SCREAMING_SNAKE_CASE__ , activation_function=SCREAMING_SNAKE_CASE__ , resid_pdrop=SCREAMING_SNAKE_CASE__ , embd_pdrop=SCREAMING_SNAKE_CASE__ , attn_pdrop=SCREAMING_SNAKE_CASE__ , layer_norm_epsilon=SCREAMING_SNAKE_CASE__ , initializer_range=SCREAMING_SNAKE_CASE__ , scale_attn_weights=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ , scale_attn_by_inverse_layer_idx=SCREAMING_SNAKE_CASE__ , reorder_and_upcast_attn=SCREAMING_SNAKE_CASE__ , )
A : Dict =GPTaLMHeadModel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.Tensor] = None , ) -> Optional[Any]:
A : str =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
A : Any =self.encode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =self.decode_prefix(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =torch.cat((prefix_embeds, embedding_text) , dim=1 )
if labels is not None:
A : int =self.get_dummy_token(input_ids.shape[0] , input_ids.device )
A : Optional[int] =torch.cat((dummy_token, input_ids) , dim=1 )
A : Dict =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )
if self.prefix_hidden_dim is not None:
return out, hidden
else:
return out
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.device ) -> torch.Tensor:
return torch.zeros(SCREAMING_SNAKE_CASE__ , self.prefix_length , dtype=torch.intaa , device=SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
return self.encode_prefix(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
A : Dict =torch.split(SCREAMING_SNAKE_CASE__ , 1 , dim=0 )
A : int =[]
A : Optional[int] =[]
for feature in features:
A : int =self.decode_prefix(feature.to(SCREAMING_SNAKE_CASE__ ) ) # back to the clip feature
# Only support beam search for now
A , A : Dict =self.generate_beam(
input_embeds=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ )
generated_tokens.append(output_tokens[0] )
generated_seq_lengths.append(seq_lengths[0] )
A : str =torch.stack(SCREAMING_SNAKE_CASE__ )
A : int =torch.stack(SCREAMING_SNAKE_CASE__ )
return generated_tokens, generated_seq_lengths
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : int = 5 , SCREAMING_SNAKE_CASE__ : int = 67 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : Optional[int] = None , ) -> Dict:
A : Dict =eos_token_id
A : str =None
A : List[Any] =None
A : List[Any] =torch.ones(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.int )
A : str =torch.zeros(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=torch.bool )
if input_embeds is not None:
A : Any =input_embeds
else:
A : List[Any] =self.transformer.transformer.wte(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
A : Any =self.transformer(inputs_embeds=SCREAMING_SNAKE_CASE__ )
A : str =outputs.logits
A : Union[str, Any] =logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
A : List[str] =logits.softmax(-1 ).log()
if scores is None:
A , A : Any =logits.topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Any =generated.expand(SCREAMING_SNAKE_CASE__ , *generated.shape[1:] )
A , A : Tuple =next_tokens.permute(1 , 0 ), scores.squeeze(0 )
if tokens is None:
A : Union[str, Any] =next_tokens
else:
A : str =tokens.expand(SCREAMING_SNAKE_CASE__ , *tokens.shape[1:] )
A : Optional[int] =torch.cat((tokens, next_tokens) , dim=1 )
else:
A : Optional[Any] =-float(np.inf )
A : Tuple =0
A : Optional[Any] =scores[:, None] + logits
seq_lengths[~is_stopped] += 1
A : int =scores_sum / seq_lengths[:, None]
A , A : Optional[int] =scores_sum_average.view(-1 ).topk(SCREAMING_SNAKE_CASE__ , -1 )
A : Dict =next_tokens // scores_sum.shape[1]
A : Optional[Any] =seq_lengths[next_tokens_source]
A : Tuple =next_tokens % scores_sum.shape[1]
A : Optional[Any] =next_tokens.unsqueeze(1 )
A : Optional[Any] =tokens[next_tokens_source]
A : Any =torch.cat((tokens, next_tokens) , dim=1 )
A : List[str] =generated[next_tokens_source]
A : List[Any] =scores_sum_average * seq_lengths
A : Optional[Any] =is_stopped[next_tokens_source]
A : Optional[int] =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 )
A : Any =torch.cat((generated, next_token_embed) , dim=1 )
A : Optional[int] =is_stopped + next_tokens.eq(SCREAMING_SNAKE_CASE__ ).squeeze()
if is_stopped.all():
break
A : Optional[Any] =scores / seq_lengths
A : str =scores.argsort(descending=SCREAMING_SNAKE_CASE__ )
# tokens tensors are already padded to max_seq_length
A : Optional[Any] =[tokens[i] for i in order]
A : Any =torch.stack(SCREAMING_SNAKE_CASE__ , dim=0 )
A : str =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype )
return output_texts, seq_lengths
| 661 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : int =logging.get_logger(__name__)
_lowercase : Dict ={
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''',
# See all XGLM models at https://huggingface.co/models?filter=xglm
}
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[int] = "xglm"
lowercase : Any = ["past_key_values"]
lowercase : Dict = {
"num_attention_heads": "attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "num_layers",
}
def __init__( self : int , SCREAMING_SNAKE_CASE__ : List[Any]=25_60_08 , SCREAMING_SNAKE_CASE__ : Dict=20_48 , SCREAMING_SNAKE_CASE__ : List[Any]=10_24 , SCREAMING_SNAKE_CASE__ : str=40_96 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : List[Any]=1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , **SCREAMING_SNAKE_CASE__ : Dict , ) -> int:
A : str =vocab_size
A : Union[str, Any] =max_position_embeddings
A : Optional[Any] =d_model
A : Optional[int] =ffn_dim
A : int =num_layers
A : Any =attention_heads
A : Dict =activation_function
A : List[Any] =dropout
A : str =attention_dropout
A : List[Any] =activation_dropout
A : List[Any] =layerdrop
A : List[Any] =init_std
A : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True
A : List[str] =use_cache
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
| 661 | 1 |
def A__ ( lowercase: int ) -> int:
assert isinstance(lowercase, lowercase ), F'The input value of [n={number}] is not an integer'
if number == 1:
return 2
elif number < 1:
A : Any =F'The input value of [n={number}] has to be > 0'
raise ValueError(lowercase )
else:
A : Any =sylvester(number - 1 )
A : List[Any] =num - 1
A : Union[str, Any] =num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
| 661 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowercase : List[str] ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def A__ ( ) -> List[Any]:
A : Any =_ask_options(
'In which compute environment are you running?', ['This machine', 'AWS (Amazon SageMaker)'], _convert_compute_environment, )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
A : Tuple =get_sagemaker_input()
else:
A : str =get_cluster_input()
return config
def A__ ( lowercase: int=None ) -> str:
if subparsers is not None:
A : List[str] =subparsers.add_parser('config', description=lowercase )
else:
A : Union[str, Any] =argparse.ArgumentParser('Accelerate config command', description=lowercase )
parser.add_argument(
'--config_file', default=lowercase, help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
), )
if subparsers is not None:
parser.set_defaults(func=lowercase )
return parser
def A__ ( lowercase: Tuple ) -> List[Any]:
A : Union[str, Any] =get_user_input()
if args.config_file is not None:
A : Optional[Any] =args.config_file
else:
if not os.path.isdir(lowercase ):
os.makedirs(lowercase )
A : Union[str, Any] =default_yaml_config_file
if config_file.endswith('.json' ):
config.to_json_file(lowercase )
else:
config.to_yaml_file(lowercase )
print(F'accelerate configuration saved at {config_file}' )
def A__ ( ) -> Optional[int]:
A : Any =config_command_parser()
A : int =parser.parse_args()
config_command(lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : Any =1_6
_lowercase : int =3_2
def A__ ( lowercase: Union[str, Any] ) -> List[Any]:
return int(x / 2**20 )
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __enter__( self : Tuple ) -> Tuple:
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
A : Optional[int] =torch.cuda.memory_allocated()
return self
def __exit__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
gc.collect()
torch.cuda.empty_cache()
A : Dict =torch.cuda.memory_allocated()
A : Any =torch.cuda.max_memory_allocated()
A : List[str] =bamb(self.end - self.begin )
A : Optional[Any] =bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased", lowercase: int = 320, lowercase: int = 160, ) -> int:
A : Any =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset(
'glue', 'mrpc', split={'train': F'train[:{n_train}]', 'validation': F'validation[:{n_val}]'} )
def tokenize_function(lowercase: str ):
# max_length=None => use the model max length (it's actually the default)
A : List[Any] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Dict =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Optional[Any] =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: List[str] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Optional[int] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : Optional[Any] =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Tuple, lowercase: Optional[Any] ) -> List[str]:
# Initialize accelerator
A : Optional[Any] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : Optional[Any] =config['lr']
A : Union[str, Any] =int(config['num_epochs'] )
A : Dict =int(config['seed'] )
A : Optional[Any] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : List[Any] =get_dataloaders(lowercase, lowercase, lowercase, args.n_train, args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : Optional[int] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : Any =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : List[Any] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Tuple =1
A : str =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : str =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : Optional[int] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : str =0
# We also need to keep track of the stating epoch so files are named properly
A : Optional[Any] =0
# Now we train the model
A : Tuple ={}
for epoch in range(lowercase, lowercase ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(lowercase ):
A : Dict =model(**lowercase )
A : Optional[Any] =outputs.loss
A : str =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) )
accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) )
accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) )
accelerator.print(
'Total Peak Memory consumed during the train (max): {}'.format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
A : List[Any] =tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, 'peak_memory_utilization.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> List[str]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--peak_memory_upper_bound', type=lowercase, default=lowercase, help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.', )
parser.add_argument(
'--n_train', type=lowercase, default=320, help='Number of training examples to use.', )
parser.add_argument(
'--n_val', type=lowercase, default=160, help='Number of validation examples to use.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=1, help='Number of train epochs.', )
A : List[Any] =parser.parse_args()
A : Any ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 |
import collections
import importlib.util
import os
import re
from pathlib import Path
_lowercase : List[str] ='''src/transformers'''
# Matches is_xxx_available()
_lowercase : Dict =re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
_lowercase : List[Any] =re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_lowercase : Tuple =re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
_lowercase : Dict =re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
_lowercase : List[Any] =re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_lowercase : str =re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
_lowercase : Optional[int] =re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
_lowercase : Any =re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
_lowercase : List[Any] =re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
_lowercase : Optional[Any] =re.compile(R'''^\s*try:''')
# Catches a line with else:
_lowercase : List[Any] =re.compile(R'''^\s*else:''')
def A__ ( lowercase: Dict ) -> int:
if _re_test_backend.search(lowercase ) is None:
return None
A : Any =[b[0] for b in _re_backend.findall(lowercase )]
backends.sort()
return "_and_".join(lowercase )
def A__ ( lowercase: Any ) -> List[Any]:
with open(lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
A : Optional[Any] =f.readlines()
A : Dict =0
while line_index < len(lowercase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase ):
return None
# First grab the objects without a specific backend in _import_structure
A : Optional[int] =[]
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
A : int =lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase ):
A : int =_re_one_line_import_struct.search(lowercase ).groups()[0]
A : int =re.findall('\[([^\]]+)\]', lowercase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
A : Optional[int] =_re_import_struct_key_value.search(lowercase )
if single_line_import_search is not None:
A : Dict =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(lowercase ) > 0]
objects.extend(lowercase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
A : str ={'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
A : Optional[int] =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : str =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
A : Optional[Any] =lines[line_index]
if _re_import_struct_add_one.search(lowercase ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase ) is not None:
A : Optional[Any] =_re_import_struct_add_many.search(lowercase ).groups()[0].split(', ' )
A : int =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_between_brackets.search(lowercase ) is not None:
A : Optional[int] =_re_between_brackets.search(lowercase ).groups()[0].split(', ' )
A : Optional[int] =[obj[1:-1] for obj in imports if len(lowercase ) > 0]
objects.extend(lowercase )
elif _re_quote_object.search(lowercase ) is not None:
objects.append(_re_quote_object.search(lowercase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
A : Optional[Any] =objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A : Optional[Any] =[]
while (
line_index < len(lowercase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
A : Any =lines[line_index]
A : Optional[int] =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
A : Optional[Any] ={'none': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase ):
# If the line is an if is_backend_available, we grab all objects associated.
A : str =find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A : Optional[Any] =None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A : List[str] =[]
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
A : Any =lines[line_index]
A : Any =_re_import.search(lowercase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
A : Dict =objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A__ ( lowercase: Any, lowercase: int ) -> Dict:
def find_duplicates(lowercase: List[str] ):
return [k for k, v in collections.Counter(lowercase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A : List[Any] =[]
for key in import_dict_objects.keys():
A : List[Any] =find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
A : Tuple =find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A : Tuple ='base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def A__ ( ) -> List[str]:
A : Dict =[]
for root, _, files in os.walk(lowercase ):
if "__init__.py" in files:
A : Any =os.path.join(lowercase, '__init__.py' )
A : Union[str, Any] =parse_init(lowercase )
if objects is not None:
A : str =analyze_results(*lowercase )
if len(lowercase ) > 0:
A : Any =F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(lowercase ) )
if len(lowercase ) > 0:
raise ValueError('\n\n'.join(lowercase ) )
def A__ ( ) -> int:
A : List[str] =[]
for path, directories, files in os.walk(lowercase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(lowercase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase ) / folder).glob('*.py' ) ) ) == 0:
continue
A : Any =str((Path(lowercase ) / folder).relative_to(lowercase ) )
A : List[str] =short_path.replace(os.path.sep, '.' )
submodules.append(lowercase )
for fname in files:
if fname == "__init__.py":
continue
A : Optional[Any] =str((Path(lowercase ) / fname).relative_to(lowercase ) )
A : Dict =short_path.replace('.py', '' ).replace(os.path.sep, '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(lowercase )
return submodules
_lowercase : Tuple =[
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def A__ ( ) -> Tuple:
# This is to make sure the transformers module imported is the one in the repo.
A : str =importlib.util.spec_from_file_location(
'transformers', os.path.join(lowercase, '__init__.py' ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A : Any =spec.loader.load_module()
A : Any =[
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(lowercase ) > 0:
A : Dict ='\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 661 | 1 |
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
_lowercase : Dict =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : uuid.UUID = None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None ) -> Optional[int]:
if not conversation_id:
A : Any =uuid.uuida()
if past_user_inputs is None:
A : List[Any] =[]
if generated_responses is None:
A : int =[]
A : uuid.UUID =conversation_id
A : List[str] =past_user_inputs
A : List[str] =generated_responses
A : Optional[str] =text
def __eq__( self : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool = False ) -> Optional[int]:
if self.new_user_input:
if overwrite:
logger.warning(
f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '
f'with: "{text}".' )
A : Optional[Any] =text
else:
logger.warning(
f'User input added while unprocessed input was existing: "{self.new_user_input}" new input '
f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' )
else:
A : Optional[Any] =text
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
A : int =None
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> Dict:
self.generated_responses.append(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self : Any ) -> List[str]:
A : str =f'Conversation id: {self.uuid} \n'
for is_user, text in self.iter_texts():
A : Optional[int] ='user' if is_user else 'bot'
output += f'{name} >> {text} \n'
return output
@add_end_docstrings(
lowerCAmelCase_ , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : str , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if self.tokenizer.pad_token_id is None:
A : Optional[Any] =self.tokenizer.eos_token
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
A : Optional[int] ={}
A : Any ={}
A : List[str] ={}
if min_length_for_response is not None:
A : List[Any] =min_length_for_response
if minimum_tokens is not None:
A : Dict =minimum_tokens
if "max_length" in generate_kwargs:
A : int =generate_kwargs['max_length']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
A : List[Any] =clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(SCREAMING_SNAKE_CASE__ )
return preprocess_params, forward_params, postprocess_params
def __call__( self : int , SCREAMING_SNAKE_CASE__ : Union[Conversation, List[Conversation]] , SCREAMING_SNAKE_CASE__ : Dict=0 , **SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
A : Dict =super().__call__(SCREAMING_SNAKE_CASE__ , num_workers=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) == 1:
return outputs[0]
return outputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Conversation , SCREAMING_SNAKE_CASE__ : str=32 ) -> Dict[str, Any]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError('ConversationalPipeline, expects Conversation as inputs' )
if conversation.new_user_input is None:
raise ValueError(
f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '
'Add user inputs with the conversation\'s `add_user_input` method' )
if hasattr(self.tokenizer , '_build_conversation_input_ids' ):
A : int =self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE__ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
A : Union[str, Any] =self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE__ )
if self.framework == "pt":
A : Any =torch.LongTensor([input_ids] )
elif self.framework == "tf":
A : Union[str, Any] =tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=10 , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
A : int =generate_kwargs.get('max_length' , self.model.config.max_length )
A : Dict =model_inputs['input_ids'].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' )
A : Any =max_length - minimum_tokens
A : str =model_inputs['input_ids'][:, -trim:]
if "attention_mask" in model_inputs:
A : List[Any] =model_inputs['attention_mask'][:, -trim:]
A : int =model_inputs.pop('conversation' )
A : List[Any] =max_length
A : Optional[Any] =self.model.generate(**SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if self.model.config.is_encoder_decoder:
A : str =1
else:
A : List[Any] =n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any=True ) -> Tuple:
A : Optional[Any] =model_outputs['output_ids']
A : Optional[int] =self.tokenizer.decode(
output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ , )
A : Any =model_outputs['conversation']
conversation.mark_processed()
conversation.append_response(SCREAMING_SNAKE_CASE__ )
return conversation
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : Conversation ) -> Dict:
A : Any =self.tokenizer.eos_token_id
A : Optional[int] =[]
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) )
if len(SCREAMING_SNAKE_CASE__ ) > self.tokenizer.model_max_length:
A : Tuple =input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 661 |
import logging
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import arg_to_scheduler
from transformers import TrainingArguments
_lowercase : Any =logging.getLogger(__name__)
@dataclass
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
lowercase : Optional[float] = field(
default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "Whether to SortishSamler or not."} )
lowercase : bool = field(
default=lowerCAmelCase_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase : bool = field(default=lowerCAmelCase_ , metadata={"help": "whether to use adafactor"} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(default=lowerCAmelCase_ , metadata={"help": "Dropout probability. Goes into model.config."} )
lowercase : Optional[float] = field(
default=lowerCAmelCase_ , metadata={"help": "Attention dropout probability. Goes into model.config."} )
lowercase : Optional[str] = field(
default="linear" , metadata={"help": f'Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'} , )
| 661 | 1 |
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
_lowercase : Any =logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self : int , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> None:
warnings.warn(
'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use FlavaImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , )
super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
| 661 |
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
_lowercase : int =2
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def __init__( self : List[Any] , *, # begin keyword-only arguments
SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : int=None , ) -> List[Any]:
A , A , A , A : Optional[Any] =bos, unk, pad, eos
A : Dict =[]
A : Union[str, Any] =[]
A : Any ={}
A : int =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : Any =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[Any] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =self.add_symbol(SCREAMING_SNAKE_CASE__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(SCREAMING_SNAKE_CASE__ )
A : List[str] =len(self.symbols )
def __eq__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.indices == other.indices
def __getitem__( self : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[Any] ) -> Union[str, Any]:
return len(self.symbols )
def __contains__( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
A : Union[str, Any] =cls()
d.add_from_file(SCREAMING_SNAKE_CASE__ )
return d
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Any:
if word in self.indices and not overwrite:
A : int =self.indices[word]
A : Union[str, Any] =self.count[idx] + n
return idx
else:
A : Tuple =len(self.symbols )
A : str =idx
self.symbols.append(SCREAMING_SNAKE_CASE__ )
self.count.append(SCREAMING_SNAKE_CASE__ )
return idx
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
return 0
def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[Any]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
try:
with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as fd:
self.add_from_file(SCREAMING_SNAKE_CASE__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(SCREAMING_SNAKE_CASE__ ) )
return
A : str =f.readlines()
A : int =self._load_meta(SCREAMING_SNAKE_CASE__ )
for line in lines[indices_start_line:]:
try:
A , A : Optional[int] =line.rstrip().rsplit(' ' , 1 )
if field == "#fairseq:overwrite":
A : int =True
A , A : Optional[Any] =line.rsplit(' ' , 1 )
else:
A : Any =False
A : Tuple =int(SCREAMING_SNAKE_CASE__ )
A : Optional[int] =line
if word in self and not overwrite:
raise RuntimeError(
'Duplicate word found when loading Dictionary: \'{}\'. '
'Duplicate words can overwrite earlier ones by adding the '
'#fairseq:overwrite flag at the end of the corresponding row '
'in the dictionary file. If using the Camembert model, please '
'download an updated copy of the model file.'.format(SCREAMING_SNAKE_CASE__ ) )
self.add_symbol(SCREAMING_SNAKE_CASE__ , n=SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ )
except ValueError:
raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' )
def A__ ( lowercase: Union[str, Any] ) -> str:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
A : int =dict((re.sub(r'@@$', '', lowercase ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', lowercase ), v) for k, v in d.items() )
A : int ='<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[F'{k}</w>']
A : List[Any] =d[k] # restore
return da
def A__ ( lowercase: Optional[int], lowercase: Optional[Any] ) -> str:
# prep
if not os.path.exists(lowercase ):
raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' )
os.makedirs(lowercase, exist_ok=lowercase )
print(F'Writing results to {pytorch_dump_folder_path}' )
# handle various types of models
A : List[str] =os.path.join(lowercase, 'checkpoint.pt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {checkpoint_file} does not exist!' )
A : Optional[Any] =torch.load(lowercase, map_location='cpu' )
A : Any =chkpt['cfg']['model']
# dicts
A : Any =os.path.join(lowercase, 'dict.txt' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {dict_file} does not exist!' )
A : Dict =Dictionary.load(lowercase )
A : Optional[Any] =rewrite_dict_keys(src_dict.indices )
A : Tuple =len(lowercase )
A : Any =os.path.join(lowercase, VOCAB_FILES_NAMES['vocab_file'] )
print(F'Generating {src_vocab_file} of {src_vocab_size} records' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# merges_file (bpecodes)
A : List[str] =os.path.join(lowercase, 'bpecodes' )
if not os.path.isfile(lowercase ):
raise ValueError(F'path to the file {bpecodes_file} does not exist!' )
A : List[str] =os.path.join(lowercase, VOCAB_FILES_NAMES['merges_file'] )
shutil.copyfile(lowercase, lowercase )
# model config
A : Tuple =os.path.join(lowercase, 'config.json' )
A : Tuple ={
'activation_dropout': args['activation_dropout'],
'architectures': ['BioGptForCausalLM'],
'attention_probs_dropout_prob': args['attention_dropout'],
'bos_token_id': 0,
'eos_token_id': 2,
'hidden_act': args['activation_fn'],
'hidden_dropout_prob': args['dropout'],
'hidden_size': args['decoder_embed_dim'],
'initializer_range': 0.02,
'intermediate_size': args['decoder_ffn_embed_dim'],
'layer_norm_eps': 1e-1_2,
'layerdrop': args['decoder_layerdrop'],
'max_position_embeddings': args['max_target_positions'],
'model_type': 'biogpt',
'num_attention_heads': args['decoder_attention_heads'],
'num_hidden_layers': args['decoder_layers'],
'pad_token_id': 1,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_decoder_input_output_embed'],
'vocab_size': src_vocab_size,
}
# good hparam defaults to start with
print(F'Generating {biogpt_model_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# tokenizer config
A : int =os.path.join(lowercase, lowercase )
A : List[str] ={
'bos_token': '<s>',
'eos_token': '</s>',
'model_max_length': 1_024,
'pad_token': '<pad>',
'special_tokens_map_file': None,
'tokenizer_class': 'BioGptTokenizer',
'unk_token': '<unk>',
}
print(F'Generating {biogpt_tokenizer_config_file}' )
with open(lowercase, 'w', encoding='utf-8' ) as f:
f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) )
# model
A : List[Any] =chkpt['model']
# remove unneeded keys
A : List[Any] =[
'decoder.version',
]
for k in ignore_keys:
model_state_dict.pop(lowercase, lowercase )
A : str =list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('output_projection.weight' ):
A : Union[str, Any] =model_state_dict.pop(lowercase )
else:
A : List[str] =model_state_dict.pop(lowercase )
A : Any =BioGptConfig.from_pretrained(lowercase )
A : str =BioGptForCausalLM(lowercase )
# check that it loads ok
model_new.load_state_dict(lowercase )
# save
A : Tuple =os.path.join(lowercase, lowercase )
print(F'Generating {pytorch_weights_dump_path}' )
torch.save(lowercase, lowercase )
print('Conversion is done!' )
if __name__ == "__main__":
_lowercase : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--biogpt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase : List[Any] =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 661 | 1 |
_lowercase : dict[tuple[int, int, int], int] ={}
def A__ ( lowercase: int, lowercase: int, lowercase: int ) -> int:
# if we are absent twice, or late 3 consecutive days,
# no further prize strings are possible
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
A : int =(days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
A : Union[str, Any] =_calculate(days - 1, lowercase, late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
A : Dict =_calculate(days - 1, absent + 1, 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
A : int =_calculate(days - 1, lowercase, 0 )
A : Tuple =state_late + state_absent + state_ontime
A : Tuple =prizestrings
return prizestrings
def A__ ( lowercase: int = 30 ) -> int:
return _calculate(lowercase, absent=0, late=0 )
if __name__ == "__main__":
print(solution())
| 661 |
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''')
# TF training parameters
_lowercase : str =False
_lowercase : Optional[Any] =False
def A__ ( lowercase: Namespace ) -> Optional[int]:
return TrainCommand(lowercase )
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> Dict:
A : Optional[Any] =parser.add_parser('train' , help='CLI tool to train a model on a task.' )
train_parser.add_argument(
'--train_data' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , )
train_parser.add_argument(
'--column_label' , type=SCREAMING_SNAKE_CASE__ , default=0 , help='Column of the dataset csv file with example labels.' )
train_parser.add_argument(
'--column_text' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Column of the dataset csv file with example texts.' )
train_parser.add_argument(
'--column_id' , type=SCREAMING_SNAKE_CASE__ , default=2 , help='Column of the dataset csv file with example ids.' )
train_parser.add_argument(
'--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).' )
train_parser.add_argument('--validation_data' , type=SCREAMING_SNAKE_CASE__ , default='' , help='path to validation dataset.' )
train_parser.add_argument(
'--validation_split' , type=SCREAMING_SNAKE_CASE__ , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , )
train_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE__ , default='./' , help='path to saved the trained model.' )
train_parser.add_argument(
'--task' , type=SCREAMING_SNAKE_CASE__ , default='text_classification' , help='Task to train the model on.' )
train_parser.add_argument(
'--model' , type=SCREAMING_SNAKE_CASE__ , default='bert-base-uncased' , help='Model\'s name or path to stored model.' )
train_parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=32 , help='Batch size for training.' )
train_parser.add_argument('--valid_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=64 , help='Batch size for validation.' )
train_parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=3e-5 , help='Learning rate.' )
train_parser.add_argument('--adam_epsilon' , type=SCREAMING_SNAKE_CASE__ , default=1e-08 , help='Epsilon for Adam optimizer.' )
train_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ )
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Namespace ) -> List[Any]:
A : Optional[int] =logging.get_logger('transformers-cli/training' )
A : Dict ='tf' if is_tf_available() else 'torch'
os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE__ )
A : Optional[Any] =args.output
A : List[str] =args.column_label
A : int =args.column_text
A : Union[str, Any] =args.column_id
self.logger.info(f'Loading {args.task} pipeline for {args.model}' )
if args.task == "text_classification":
A : Optional[Any] =TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f'Loading dataset from {args.train_data}' )
A : Tuple =Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Dict =None
if args.validation_data:
self.logger.info(f'Loading validation dataset from {args.validation_data}' )
A : List[Any] =Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
A : Optional[Any] =args.validation_split
A : str =args.train_batch_size
A : Any =args.valid_batch_size
A : Dict =args.learning_rate
A : List[str] =args.adam_epsilon
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[str]:
raise NotImplementedError
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 661 | 1 |
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def A__ ( lowercase: List[Any], lowercase: Optional[int] ) -> Optional[Any]:
A : List[str] =checkpoint
A : int ={}
A : str =vae_state_dict['encoder.conv_in.weight']
A : Any =vae_state_dict['encoder.conv_in.bias']
A : str =vae_state_dict['encoder.conv_out.weight']
A : Optional[int] =vae_state_dict['encoder.conv_out.bias']
A : str =vae_state_dict['encoder.norm_out.weight']
A : List[Any] =vae_state_dict['encoder.norm_out.bias']
A : List[str] =vae_state_dict['decoder.conv_in.weight']
A : Dict =vae_state_dict['decoder.conv_in.bias']
A : Optional[int] =vae_state_dict['decoder.conv_out.weight']
A : Tuple =vae_state_dict['decoder.conv_out.bias']
A : Any =vae_state_dict['decoder.norm_out.weight']
A : Optional[Any] =vae_state_dict['decoder.norm_out.bias']
A : Union[str, Any] =vae_state_dict['quant_conv.weight']
A : str =vae_state_dict['quant_conv.bias']
A : Tuple =vae_state_dict['post_quant_conv.weight']
A : Optional[Any] =vae_state_dict['post_quant_conv.bias']
# Retrieves the keys for the encoder down blocks only
A : List[str] =len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} )
A : List[str] ={
layer_id: [key for key in vae_state_dict if F'down.{layer_id}' in key] for layer_id in range(lowercase )
}
# Retrieves the keys for the decoder up blocks only
A : List[Any] =len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} )
A : Any ={
layer_id: [key for key in vae_state_dict if F'up.{layer_id}' in key] for layer_id in range(lowercase )
}
for i in range(lowercase ):
A : List[str] =[key for key in down_blocks[i] if F'down.{i}' in key and F'down.{i}.downsample' not in key]
if F'encoder.down.{i}.downsample.conv.weight' in vae_state_dict:
A : Union[str, Any] =vae_state_dict.pop(
F'encoder.down.{i}.downsample.conv.weight' )
A : Dict =vae_state_dict.pop(
F'encoder.down.{i}.downsample.conv.bias' )
A : List[str] =renew_vae_resnet_paths(lowercase )
A : Union[str, Any] ={'old': F'down.{i}.block', 'new': F'down_blocks.{i}.resnets'}
assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase )
A : str =[key for key in vae_state_dict if 'encoder.mid.block' in key]
A : int =2
for i in range(1, num_mid_res_blocks + 1 ):
A : Optional[Any] =[key for key in mid_resnets if F'encoder.mid.block_{i}' in key]
A : List[Any] =renew_vae_resnet_paths(lowercase )
A : List[str] ={'old': F'mid.block_{i}', 'new': F'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase )
A : int =[key for key in vae_state_dict if 'encoder.mid.attn' in key]
A : List[Any] =renew_vae_attention_paths(lowercase )
A : List[str] ={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase )
conv_attn_to_linear(lowercase )
for i in range(lowercase ):
A : List[str] =num_up_blocks - 1 - i
A : Any =[
key for key in up_blocks[block_id] if F'up.{block_id}' in key and F'up.{block_id}.upsample' not in key
]
if F'decoder.up.{block_id}.upsample.conv.weight' in vae_state_dict:
A : Union[str, Any] =vae_state_dict[
F'decoder.up.{block_id}.upsample.conv.weight'
]
A : int =vae_state_dict[
F'decoder.up.{block_id}.upsample.conv.bias'
]
A : Tuple =renew_vae_resnet_paths(lowercase )
A : str ={'old': F'up.{block_id}.block', 'new': F'up_blocks.{i}.resnets'}
assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase )
A : int =[key for key in vae_state_dict if 'decoder.mid.block' in key]
A : List[Any] =2
for i in range(1, num_mid_res_blocks + 1 ):
A : Union[str, Any] =[key for key in mid_resnets if F'decoder.mid.block_{i}' in key]
A : List[str] =renew_vae_resnet_paths(lowercase )
A : Any ={'old': F'mid.block_{i}', 'new': F'mid_block.resnets.{i - 1}'}
assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase )
A : Dict =[key for key in vae_state_dict if 'decoder.mid.attn' in key]
A : Union[str, Any] =renew_vae_attention_paths(lowercase )
A : Union[str, Any] ={'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'}
assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase )
conv_attn_to_linear(lowercase )
return new_checkpoint
def A__ ( lowercase: str, lowercase: str, ) -> Optional[Any]:
# Only support V1
A : str =requests.get(
' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' )
A : Union[str, Any] =io.BytesIO(r.content )
A : Union[str, Any] =OmegaConf.load(lowercase )
A : str =512
A : Optional[int] ='cuda' if torch.cuda.is_available() else 'cpu'
if checkpoint_path.endswith('safetensors' ):
from safetensors import safe_open
A : int ={}
with safe_open(lowercase, framework='pt', device='cpu' ) as f:
for key in f.keys():
A : str =f.get_tensor(lowercase )
else:
A : Any =torch.load(lowercase, map_location=lowercase )['state_dict']
# Convert the VAE model.
A : Optional[Any] =create_vae_diffusers_config(lowercase, image_size=lowercase )
A : Any =custom_convert_ldm_vae_checkpoint(lowercase, lowercase )
A : Optional[Any] =AutoencoderKL(**lowercase )
vae.load_state_dict(lowercase )
vae.save_pretrained(lowercase )
if __name__ == "__main__":
_lowercase : Optional[int] =argparse.ArgumentParser()
parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''')
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''')
_lowercase : int =parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 661 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Tuple=30 , SCREAMING_SNAKE_CASE__ : int=4_00 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : str=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=1 / 2_55 , SCREAMING_SNAKE_CASE__ : int=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A : Optional[Any] =size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
A : Union[str, Any] =parent
A : Union[str, Any] =batch_size
A : Union[str, Any] =num_channels
A : int =min_resolution
A : List[Any] =max_resolution
A : Dict =do_resize
A : Tuple =size
A : List[str] =do_normalize
A : List[Any] =image_mean
A : Dict =image_std
A : Any =do_rescale
A : List[str] =rescale_factor
A : Optional[Any] =do_pad
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict=False ) -> Dict:
if not batched:
A : Any =image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ):
A , A : Union[str, Any] =image.size
else:
A , A : Tuple =image.shape[1], image.shape[2]
if w < h:
A : Any =int(self.size['shortest_edge'] * h / w )
A : Any =self.size['shortest_edge']
elif w > h:
A : Dict =self.size['shortest_edge']
A : Dict =int(self.size['shortest_edge'] * w / h )
else:
A : List[str] =self.size['shortest_edge']
A : Dict =self.size['shortest_edge']
else:
A : List[Any] =[]
for image in image_inputs:
A , A : int =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A : str =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0]
A : Tuple =max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple:
A : str =ConditionalDetrImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple:
A : Tuple =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_mean' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'image_std' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_normalize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : int =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
A : str =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Union[str, Any]:
# Initialize image_processing
A : Union[str, Any] =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image )
# Test not batched input
A : List[Any] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : List[str] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A , A : Union[str, Any] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray )
# Test not batched input
A : Tuple =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Any =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : Optional[int] =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]:
# Initialize image_processing
A : Optional[Any] =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor )
# Test not batched input
A : Optional[int] =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
A , A : Tuple =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A : Tuple =image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values
A , A : int =self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Union[str, Any]:
# prepare image and target
A : Union[str, Any] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
A : List[Any] =json.loads(f.read() )
A : Any ={'image_id': 3_97_69, 'annotations': target}
# encode them
A : str =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50' )
A : Any =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Optional[Any] =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : List[str] =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Dict =torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : str =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : Dict =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : List[str] =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : Union[str, Any] =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify orig_size
A : List[Any] =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : int =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple:
# prepare image, target and masks_path
A : List[str] =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
A : Optional[int] =json.loads(f.read() )
A : int ={'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
A : Optional[Any] =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
A : List[Any] =ConditionalDetrImageProcessor(format='coco_panoptic' )
A : Union[str, Any] =image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='pt' )
# verify pixel values
A : Dict =torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , SCREAMING_SNAKE_CASE__ )
A : Dict =torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
# verify area
A : Optional[int] =torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , SCREAMING_SNAKE_CASE__ ) )
# verify boxes
A : List[Any] =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , SCREAMING_SNAKE_CASE__ )
A : Any =torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) )
# verify image_id
A : List[Any] =torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , SCREAMING_SNAKE_CASE__ ) )
# verify is_crowd
A : Any =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , SCREAMING_SNAKE_CASE__ ) )
# verify class_labels
A : str =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , SCREAMING_SNAKE_CASE__ ) )
# verify masks
A : int =82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , SCREAMING_SNAKE_CASE__ )
# verify orig_size
A : Any =torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , SCREAMING_SNAKE_CASE__ ) )
# verify size
A : str =torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , SCREAMING_SNAKE_CASE__ ) )
| 661 | 1 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
return None
class SCREAMING_SNAKE_CASE_ :
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> Dict:
return None
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
lowercase : List[Any] = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Dict:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(SCREAMING_SNAKE_CASE__ , 'tf' , 12 , **SCREAMING_SNAKE_CASE__ )
@require_torch
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(SCREAMING_SNAKE_CASE__ , 'pt' , 12 , **SCREAMING_SNAKE_CASE__ )
@require_torch
@slow
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]:
from transformers import BertModel
A : Union[str, Any] =['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(SCREAMING_SNAKE_CASE__ ) )
vocab_file.flush()
A : Optional[Any] =BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
A : Any =BertModel(BertConfig(vocab_size=len(SCREAMING_SNAKE_CASE__ ) ) )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
self._test_export(SCREAMING_SNAKE_CASE__ , 'pt' , 12 , SCREAMING_SNAKE_CASE__ )
@require_tf
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
A : Optional[int] =self._test_export(SCREAMING_SNAKE_CASE__ , 'tf' , 12 , **SCREAMING_SNAKE_CASE__ )
A : Dict =quantize(Path(SCREAMING_SNAKE_CASE__ ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE__ ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
A : Optional[Any] =self._test_export(SCREAMING_SNAKE_CASE__ , 'pt' , 12 , **SCREAMING_SNAKE_CASE__ )
A : int =quantize(SCREAMING_SNAKE_CASE__ )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE__ ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any ) -> int:
try:
# Compute path
with TemporaryDirectory() as tempdir:
A : Union[str, Any] =Path(SCREAMING_SNAKE_CASE__ ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
return path
except Exception as e:
self.fail(SCREAMING_SNAKE_CASE__ )
@require_torch
@require_tokenizers
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]:
from transformers import BertModel
A : Union[str, Any] =BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
A : Optional[int] =BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'pt' )
@require_tf
@require_tokenizers
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]:
from transformers import TFBertModel
A : str =TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
A : List[str] =BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'tf' )
def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple:
A : Any =FeatureExtractionPipeline(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
A : int =['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
A , A , A , A : Any =infer_shapes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Assert all variables are present
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , SCREAMING_SNAKE_CASE__ )
self.assertSequenceEqual(variable_names[3:] , SCREAMING_SNAKE_CASE__ )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] , {0: 'batch'} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : Dict =['input_ids', 'attention_mask', 'token_type_ids']
A : Optional[Any] ={'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
A , A : Optional[int] =ensure_valid_input(FuncContiguousArgs() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(SCREAMING_SNAKE_CASE__ ) , set(SCREAMING_SNAKE_CASE__ ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(SCREAMING_SNAKE_CASE__ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
A , A : List[Any] =ensure_valid_input(FuncNonContiguousArgs() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1 )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] , 'input_ids' )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]:
A : str =generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
| 661 |
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
_lowercase : List[Any] =1_6
_lowercase : Union[str, Any] =3_2
def A__ ( lowercase: Accelerator, lowercase: int = 16, lowercase: str = "bert-base-cased" ) -> Optional[int]:
A : List[Any] =AutoTokenizer.from_pretrained(lowercase )
A : Any =load_dataset('glue', 'mrpc' )
def tokenize_function(lowercase: Any ):
# max_length=None => use the model max length (it's actually the default)
A : List[str] =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase, max_length=lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
A : Any =datasets.map(
lowercase, batched=lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=lowercase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A : Dict =tokenized_datasets.rename_column('label', 'labels' )
def collate_fn(lowercase: Optional[int] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase, padding='max_length', max_length=128, return_tensors='pt' )
return tokenizer.pad(lowercase, padding='longest', return_tensors='pt' )
# Instantiate dataloaders.
A : Union[str, Any] =DataLoader(
tokenized_datasets['train'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
A : str =DataLoader(
tokenized_datasets['validation'], shuffle=lowercase, collate_fn=lowercase, batch_size=lowercase )
return train_dataloader, eval_dataloader
def A__ ( lowercase: Dict, lowercase: Optional[int], lowercase: Any, lowercase: str ) -> Tuple:
model.eval()
A : Tuple =0
for step, batch in enumerate(lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A : Tuple =model(**lowercase )
A : Tuple =outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
A , A : Union[str, Any] =accelerator.gather(
(predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowercase ) - 1:
A : List[Any] =predictions[: len(eval_dataloader.dataset ) - samples_seen]
A : Optional[int] =references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowercase, references=lowercase, )
A : Union[str, Any] =metric.compute()
return eval_metric["accuracy"]
def A__ ( lowercase: Union[str, Any], lowercase: Dict ) -> List[str]:
# Initialize accelerator
A : Optional[int] =Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A : int =config['lr']
A : Optional[Any] =int(config['num_epochs'] )
A : Union[str, Any] =int(config['seed'] )
A : List[str] =int(config['batch_size'] )
A : Optional[Any] =args.model_name_or_path
set_seed(lowercase )
A , A : str =get_dataloaders(lowercase, lowercase, lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A : List[str] =AutoModelForSequenceClassification.from_pretrained(lowercase, return_dict=lowercase )
# Instantiate optimizer
A : Any =(
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
A : List[str] =optimizer_cls(params=model.parameters(), lr=lowercase )
if accelerator.state.deepspeed_plugin is not None:
A : Optional[int] =accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
A : Dict =1
A : Union[str, Any] =(len(lowercase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
A : List[Any] =get_linear_schedule_with_warmup(
optimizer=lowercase, num_warmup_steps=0, num_training_steps=lowercase, )
else:
A : List[str] =DummyScheduler(lowercase, total_num_steps=lowercase, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A : Optional[int] =accelerator.prepare(
lowercase, lowercase, lowercase, lowercase, lowercase )
# We need to keep track of how many total steps we have iterated over
A : Tuple =0
# We also need to keep track of the stating epoch so files are named properly
A : List[str] =0
A : Tuple =evaluate.load('glue', 'mrpc' )
A : Optional[int] =num_epochs
if args.partial_train_epoch is not None:
A : Dict =args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
A : List[Any] =args.resume_from_checkpoint.split('epoch_' )[1]
A : List[Any] =''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
A : Union[str, Any] =int(lowercase ) + 1
A : List[str] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
accelerator.print('resumed checkpoint performance:', lowercase )
accelerator.print('resumed checkpoint\'s scheduler\'s lr:', lr_scheduler.get_lr()[0] )
accelerator.print('resumed optimizers\'s lr:', optimizer.param_groups[0]['lr'] )
with open(os.path.join(args.output_dir, F'state_{starting_epoch-1}.json' ), 'r' ) as f:
A : Union[str, Any] =json.load(lowercase )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
A : str ={}
for epoch in range(lowercase, lowercase ):
model.train()
for step, batch in enumerate(lowercase ):
A : Tuple =model(**lowercase )
A : List[Any] =outputs.loss
A : Any =loss / gradient_accumulation_steps
accelerator.backward(lowercase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
A : Union[str, Any] =F'epoch_{epoch}'
A : Optional[Any] =os.path.join(args.output_dir, lowercase )
accelerator.save_state(lowercase )
A : Optional[Any] =evaluation_loop(lowercase, lowercase, lowercase, lowercase )
A : Dict =accuracy
A : Optional[Any] =lr_scheduler.get_lr()[0]
A : Any =optimizer.param_groups[0]['lr']
A : str =epoch
A : Dict =overall_step
accelerator.print(F'epoch {epoch}:', lowercase )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F'state_{epoch}.json' ), 'w' ) as f:
json.dump(lowercase, lowercase )
def A__ ( ) -> Optional[int]:
A : Optional[int] =argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' )
parser.add_argument(
'--model_name_or_path', type=lowercase, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=lowercase, )
parser.add_argument(
'--output_dir', type=lowercase, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', )
parser.add_argument(
'--resume_from_checkpoint', type=lowercase, default=lowercase, help='If the training should continue from a checkpoint folder.', )
parser.add_argument(
'--partial_train_epoch', type=lowercase, default=lowercase, help='If passed, the training will stop after this number of epochs.', )
parser.add_argument(
'--num_epochs', type=lowercase, default=2, help='Number of train epochs.', )
A : str =parser.parse_args()
A : Optional[int] ={'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(lowercase, lowercase )
if __name__ == "__main__":
main()
| 661 | 1 |
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
lowercase : Dict = GPTSanJapaneseTokenizer
lowercase : str = False
lowercase : Optional[int] = {"do_clean_text": False, "add_prefix_space": False}
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Tuple:
super().setUp()
# fmt: off
A : Dict =['ใใ', 'ใใใซ', 'ใซใกใฏ', 'ใฐใใฏ', 'ไธ็,ใบ็', 'ใ', 'ใ', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>']
# fmt: on
A : Union[str, Any] ={'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # ๐
A : Optional[int] ={'unk_token': '<unk>'}
A : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
A : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
with open(self.emoji_file , 'w' ) as emoji_writer:
emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE__ ) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]:
A : Dict ='ใใใซใกใฏใไธ็ใ \nใใใฐใใฏใใบ็ใ๐'
A : Union[str, Any] ='ใใใซใกใฏใไธ็ใ \nใใใฐใใฏใไธ็ใ๐'
return input_text, output_text
def SCREAMING_SNAKE_CASE_ ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
A , A : Optional[int] =self.get_input_output_texts(SCREAMING_SNAKE_CASE__ )
A : Union[str, Any] =tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ )
A : Any =tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
return text, ids
def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]:
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str:
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Tuple:
pass # TODO add if relevant
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict:
A : int =self.get_tokenizer()
# Testing tokenization
A : str ='ใใใซใกใฏใไธ็ใใใใใฐใใฏใใบ็ใ'
A : Any =['ใใ', 'ใซใกใฏ', 'ใ', 'ไธ็', 'ใ', '<SP>', 'ใใ', 'ใฐใใฏ', 'ใ', 'ใบ็', 'ใ']
A : Any =tokenizer.tokenize(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Testing conversion to ids without special tokens
A : Any =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
A : Union[str, Any] =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Testing conversion to ids with special tokens
A : Optional[int] =tokens + [tokenizer.unk_token]
A : int =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
A : int =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> str:
A : int =self.get_tokenizer()
# Testing tokenization
A : Any ='ใใใซใกใฏใ<|bagoftoken|>ไธ็ใใใใฐใใฏใ<|bagoftoken|>ใบ็ใ'
A : Optional[Any] ='ใใใซใกใฏใใใใไธ็ใใใใฐใใฏใใใใไธ็ใ'
A : Optional[Any] =tokenizer.encode(SCREAMING_SNAKE_CASE__ )
A : int =tokenizer.decode(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int:
A : Union[str, Any] =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
A : List[str] ='ใใใซใกใฏใไธ็ใ'
A : List[Any] ='ใใใฐใใฏใใบ็ใ๐'
A : Dict ='ใใใซใกใฏใไธ็ใใใใฐใใฏใไธ็ใ๐'
A : List[Any] =tokenizer.encode(prefix_text + input_text )
A : Optional[int] =tokenizer.encode('' , prefix_text=prefix_text + input_text )
A : List[str] =tokenizer.encode(SCREAMING_SNAKE_CASE__ , prefix_text=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.decode(SCREAMING_SNAKE_CASE__ )
A : Tuple =tokenizer.decode(SCREAMING_SNAKE_CASE__ )
A : List[Any] =tokenizer.decode(SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]:
A : str =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
# Testing tokenization
A : int ='ใใใซใกใฏใไธ็ใ'
A : Optional[int] ='ใใใฐใใฏใใบ็ใ๐'
A : str =len(tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) - 2
A : Optional[int] =len(tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) - 2
A : Union[str, Any] =[1] + [0] * (len_prefix + len_text + 1)
A : str =[1] * (len_prefix + len_text + 1) + [0]
A : str =[1] + [1] * (len_prefix) + [0] * (len_text + 1)
A : Union[str, Any] =tokenizer(prefix_text + input_text ).token_type_ids
A : Tuple =tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids
A : str =tokenizer(SCREAMING_SNAKE_CASE__ , prefix_text=SCREAMING_SNAKE_CASE__ ).token_type_ids
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Optional[Any]:
A : Tuple =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
A : int =tokenizer.encode('ใใณใใฏ' )
A : int =tokenizer.encode('' , prefix_text='ใใณใใฏ' )
A : int =tokenizer.encode('ใใฏ' , prefix_text='ใใณ' )
self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE__ ) , tokenizer.decode(SCREAMING_SNAKE_CASE__ ) )
self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE__ ) , tokenizer.decode(SCREAMING_SNAKE_CASE__ ) )
self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertNotEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Tuple:
A : str =self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' )
A : str =[['ๆญฆ็ฐไฟก็', 'ใฏใ'], ['็น็ฐไฟก้ท', 'ใฎ้
ไธใฎใ']]
A : Optional[int] =tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ )
A : str =tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ )
# fmt: off
A : Dict =[[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]]
A : int =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
A : int =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE__ )
self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int:
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict:
# tokenizer has no padding token
pass
| 661 |
def A__ ( lowercase: int ) -> int:
if not isinstance(lowercase, lowercase ) or number < 0:
raise ValueError('Input must be a non-negative integer' )
A : Any =0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 661 | 1 |
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def A__ ( lowercase: List[Any] ) -> Dict:
return x + 2
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]:
A : Union[str, Any] ='x = 3'
A : Tuple ={}
A : List[str] =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
assert result == 3
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3} )
A : Any ='x = y'
A : int ={'y': 5}
A : int =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 5, 'y': 5} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]:
A : Any ='y = add_two(x)'
A : List[Any] ={'x': 3}
A : Tuple =evaluate(SCREAMING_SNAKE_CASE__ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE__ )
assert result == 5
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'y': 5} )
# Won't work without the tool
with CaptureStdout() as out:
A : Dict =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
assert result is None
assert "tried to execute add_two" in out.out
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict:
A : int ='x = 3'
A : int ={}
A : Optional[Any] =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
assert result == 3
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any:
A : Tuple ='test_dict = {\'x\': x, \'y\': add_two(x)}'
A : Union[str, Any] ={'x': 3}
A : int =evaluate(SCREAMING_SNAKE_CASE__ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE__ )
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'y': 5} )
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]:
A : str ='x = 3\ny = 5'
A : int ={}
A : Union[str, Any] =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'y': 5} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]:
A : Dict ='text = f\'This is x: {x}.\''
A : Optional[int] ={'x': 3}
A : Tuple =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'text': 'This is x: 3.'} )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]:
A : Union[str, Any] ='if x <= 3:\n y = 2\nelse:\n y = 5'
A : Optional[int] ={'x': 3}
A : Optional[int] =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'y': 2} )
A : Union[str, Any] ={'x': 8}
A : str =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 8, 'y': 5} )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict:
A : Tuple ='test_list = [x, add_two(x)]'
A : Union[str, Any] ={'x': 3}
A : Tuple =evaluate(SCREAMING_SNAKE_CASE__ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , [3, 5] )
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'test_list': [3, 5]} )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> str:
A : Optional[Any] ='y = x'
A : List[str] ={'x': 3}
A : Any =evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ )
assert result == 3
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'y': 3} )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]:
A : Optional[Any] ='test_list = [x, add_two(x)]\ntest_list[1]'
A : Any ={'x': 3}
A : List[Any] =evaluate(SCREAMING_SNAKE_CASE__ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE__ )
assert result == 5
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'test_list': [3, 5]} )
A : Any ='test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'
A : Optional[int] ={'x': 3}
A : Any =evaluate(SCREAMING_SNAKE_CASE__ , {'add_two': add_two} , state=SCREAMING_SNAKE_CASE__ )
assert result == 5
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any:
A : Union[str, Any] ='x = 0\nfor i in range(3):\n x = i'
A : Dict ={}
A : Union[str, Any] =evaluate(SCREAMING_SNAKE_CASE__ , {'range': range} , state=SCREAMING_SNAKE_CASE__ )
assert result == 2
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'x': 2, 'i': 2} )
| 661 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def A__ ( *lowercase: Tuple, lowercase: Optional[Union[Dict, Any]] = None, lowercase: Dict=True, lowercase: Any=2 ) -> List[Any]:
from .. import __version__
A : Optional[Any] =take_from
A : Union[str, Any] =()
if not isinstance(args[0], lowercase ):
A : List[str] =(args,)
for attribute, version_name, message in args:
if version.parse(version.parse(lowercase ).base_version ) >= version.parse(lowercase ):
raise ValueError(
F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''
F' version {__version__} is >= {version_name}' )
A : Tuple =None
if isinstance(lowercase, lowercase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(lowercase ),)
A : Union[str, Any] =F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.'
elif hasattr(lowercase, lowercase ):
values += (getattr(lowercase, lowercase ),)
A : Optional[Any] =F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'
elif deprecated_kwargs is None:
A : List[Any] =F'`{attribute}` is deprecated and will be removed in version {version_name}.'
if warning is not None:
A : List[Any] =warning + ' ' if standard_warn else ''
warnings.warn(warning + message, lowercase, stacklevel=lowercase )
if isinstance(lowercase, lowercase ) and len(lowercase ) > 0:
A : Any =inspect.getouterframes(inspect.currentframe() )[1]
A : int =call_frame.filename
A : int =call_frame.lineno
A : Optional[int] =call_frame.function
A , A : int =next(iter(deprecated_kwargs.items() ) )
raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' )
if len(lowercase ) == 0:
return
elif len(lowercase ) == 1:
return values[0]
return values
| 661 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.