code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: A_ , A_ = emb.weight.shape A_ = nn.Linear(UpperCAmelCase__, UpperCAmelCase__, bias=UpperCAmelCase__ ) A_ = emb.weight.data return lin_layer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" ) A_ = Namespace(**checkpoint["""cfg"""]["""model"""] ) A_ = checkpoint["""model"""] remove_ignore_keys_(UpperCAmelCase__ ) A_ = state_dict["""decoder.embed_tokens.weight"""].shape[0] A_ = {key.replace("""decoder""", """model""" ): val for key, val in state_dict.items()} A_ = XGLMConfig( vocab_size=UpperCAmelCase__, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="""gelu""", scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) A_ = XGLMForCausalLM(UpperCAmelCase__ ) A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) print(UpperCAmelCase__ ) A_ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase__ ( ) -> List[Any]: A_ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""", type=UpperCAmelCase__, default=1, help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""", type=UpperCAmelCase__, help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ), ) # rest from the training program parser.add_argument("""training_script_args""", nargs=UpperCAmelCase__ ) return parser.parse_args() def UpperCAmelCase__ ( ) -> List[str]: A_ = parse_args() # Import training_script as a module. A_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) A_ = script_fpath.stem A_ = importlib.import_module(UpperCAmelCase__ ) # Patch sys.argv A_ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") A_ = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) A_ = model.state_dict() def to_tf_var_name(UpperCAmelCase__ ): for patt, repl in iter(UpperCAmelCase__ ): A_ = name.replace(UpperCAmelCase__, UpperCAmelCase__ ) return F'''bert/{name}''' def create_tf_var(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): A_ = tf.dtypes.as_dtype(tensor.dtype ) A_ = tf.get_variable(dtype=UpperCAmelCase__, shape=tensor.shape, name=UpperCAmelCase__, initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: A_ = to_tf_var_name(UpperCAmelCase__ ) A_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): A_ = torch_tensor.T A_ = create_tf_var(tensor=UpperCAmelCase__, name=UpperCAmelCase__, session=UpperCAmelCase__ ) tf.keras.backend.set_value(UpperCAmelCase__, UpperCAmelCase__ ) A_ = session.run(UpperCAmelCase__ ) print(F'''Successfully created {tf_name}: {np.allclose(UpperCAmelCase__, UpperCAmelCase__ )}''' ) A_ = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase__, os.path.join(UpperCAmelCase__, model_name.replace("""-""", """_""" ) + """.ckpt""" ) ) def UpperCAmelCase__ ( UpperCAmelCase__=None ) -> Any: A_ = argparse.ArgumentParser() parser.add_argument("""--model_name""", type=UpperCAmelCase__, required=UpperCAmelCase__, help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""", type=UpperCAmelCase__, default=UpperCAmelCase__, required=UpperCAmelCase__, help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""", type=UpperCAmelCase__, required=UpperCAmelCase__, help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""", type=UpperCAmelCase__, required=UpperCAmelCase__, help="""Directory in which to save tensorflow model""" ) A_ = parser.parse_args(UpperCAmelCase__ ) A_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase__, ckpt_dir=args.tf_cache_dir, model_name=args.model_name ) if __name__ == "__main__": main()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import baseaa def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: return baseaa.baaencode(string.encode("""utf-8""" ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: return baseaa.baadecode(UpperCAmelCase__ ).decode("""utf-8""" ) if __name__ == "__main__": __lowerCamelCase = '''Hello World!''' __lowerCamelCase = baseaa_encode(test) print(encoded) __lowerCamelCase = baseaa_decode(encoded) print(decoded)
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase__ ( ) -> Any: A_ = ArgumentParser("""Accelerate CLI tool""", usage="""accelerate <command> [<args>]""", allow_abbrev=UpperCAmelCase__ ) A_ = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=UpperCAmelCase__ ) env_command_parser(subparsers=UpperCAmelCase__ ) launch_command_parser(subparsers=UpperCAmelCase__ ) tpu_command_parser(subparsers=UpperCAmelCase__ ) test_command_parser(subparsers=UpperCAmelCase__ ) # Let's go A_ = parser.parse_args() if not hasattr(UpperCAmelCase__, """func""" ): parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase__ ) if __name__ == "__main__": main()
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: A_ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) A_ = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""", UpperCAmelCase__ ) if matches: A_ = float(matches[1] ) A_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". A_ = 10_01 A_ = """imagenet-1k-id2label.json""" A_ = """huggingface/label-files""" A_ = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A_ = {int(UpperCAmelCase__ ) + 1: v for k, v in idalabel.items()} A_ = """background""" A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ ( ) -> int: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False ) -> Optional[Any]: A_ = get_mobilenet_va_config(UpperCAmelCase__ ) # Load 🤗 model A_ = MobileNetVaForImageClassification(UpperCAmelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor A_ = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size}, size={"""shortest_edge""": config.image_size + 32}, ) A_ = image_processor(images=prepare_img(), return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": A_ = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": A_ = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: A_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3], UpperCAmelCase__, atol=1e-4 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) A_ = """google/""" + model_name image_processor.push_to_hub(UpperCAmelCase__ ) model.push_to_hub(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: A_ = test_results.split(""" """ ) A_ = 0 A_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A_ = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCAmelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = {} A_ = None A_ = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""", UpperCAmelCase__ ): A_ = True A_ = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): A_ = line A_ = False return failures class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = title A_ = doc_test_results["""time_spent"""].split(""",""" )[0] A_ = doc_test_results["""success"""] A_ = doc_test_results["""failures"""] A_ = self.n_success + self.n_failures # Failures and success of the modeling tests A_ = doc_test_results @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = [self._time_spent] A_ = 0 for time in time_spent: A_ = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase__ ) == 1: A_ = [0, 0, time_parts[0]] A_ , A_ , A_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds A_ , A_ , A_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f'''{int(UpperCamelCase__ )}h{int(UpperCamelCase__ )}m{int(UpperCamelCase__ )}s''' @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = 40 A_ = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase__ , UpperCamelCase__ )} A_ = """""" for category, failures in category_failures.items(): if len(UpperCamelCase__ ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase__ ) @staticmethod def snake_case_ ( ) -> Optional[int]: '''simple docstring''' A_ = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(UpperCamelCase__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase__ , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) A_ = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" A_ = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = """""" for key, value in failures.items(): A_ = value[:200] + """ [Truncated]""" if len(UpperCamelCase__ ) > 250 else value failures_text += f'''*{key}*\n_{value}_\n\n''' A_ = job_name A_ = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: A_ = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case_ ( self ) -> int: '''simple docstring''' if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) A_ = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) A_ = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): A_ = f'''*Num failures* :{len(job_result["failed"] )} \n''' A_ = job_result["""failures"""] A_ = self.get_reply_blocks(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , text=UpperCamelCase__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f'''Results for {job}''' , blocks=UpperCamelCase__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def UpperCAmelCase__ ( ) -> Optional[int]: A_ = os.environ["""GITHUB_RUN_ID"""] A_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' A_ = requests.get(UpperCAmelCase__ ).json() A_ = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(UpperCAmelCase__ ): A_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""", UpperCAmelCase__ ) return {} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = {} if os.path.exists(UpperCAmelCase__ ): A_ = os.listdir(UpperCAmelCase__ ) for file in files: try: with open(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ), encoding="""utf-8""" ) as f: A_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(UpperCAmelCase__, UpperCAmelCase__ )}.''' ) from e return _artifact def UpperCAmelCase__ ( ) -> Optional[Any]: class A__ : def __init__( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = name A_ = [] def __str__( self ) -> Dict: '''simple docstring''' return self.name def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' self.paths.append({"""name""": self.name, """path""": path} ) A_ = {} A_ = filter(os.path.isdir, os.listdir() ) for directory in directories: A_ = directory if artifact_name not in _available_artifacts: A_ = Artifact(UpperCAmelCase__ ) _available_artifacts[artifact_name].add_path(UpperCAmelCase__ ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase = get_job_links() __lowerCamelCase = retrieve_available_artifacts() __lowerCamelCase = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase = github_actions_job_links.get('''run_doctests''') __lowerCamelCase = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] __lowerCamelCase = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = handle_test_results(artifact['''stats''']) __lowerCamelCase = failed __lowerCamelCase = success __lowerCamelCase = time_spent[1:-1] + ''', ''' __lowerCamelCase = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): __lowerCamelCase = line.replace('''FAILED ''', '''''') __lowerCamelCase = line.split()[0].replace('''\n''', '''''') if "::" in line: __lowerCamelCase , __lowerCamelCase = line.split('''::''') else: __lowerCamelCase , __lowerCamelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase = all_failures[test] if test in all_failures else '''N/A''' __lowerCamelCase = failure break __lowerCamelCase = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = """hf-internal-testing/tiny-random-t5""" A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) A_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) A_ = tokenizer("""This is me""" , return_tensors="""pt""" ) A_ = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) A_ = model.generate(**UpperCamelCase__ ) A_ = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) A_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) A_ = model_reloaded.generate(**UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = """hf-internal-testing/tiny-random-t5""" A_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) A_ = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase__ ): model.save_pretrained(UpperCamelCase__ ) A_ = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase__ )
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) A_ = str(bin(UpperCAmelCase__ ) ) binary_number += "0" * shift_amount return binary_number def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) A_ = str(bin(UpperCAmelCase__ ) )[2:] if shift_amount >= len(UpperCAmelCase__ ): return "0b0" A_ = binary_number[: len(UpperCAmelCase__ ) - shift_amount] return "0b" + shifted_binary_number def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: if number >= 0: # Get binary representation of positive number A_ = """0""" + str(bin(UpperCAmelCase__ ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number A_ = len(bin(UpperCAmelCase__ )[3:] ) # Find 2's complement of number A_ = bin(abs(UpperCAmelCase__ ) - (1 << binary_number_length) )[3:] A_ = ( """1""" + """0""" * (binary_number_length - len(UpperCAmelCase__ )) + binary_number ) if shift_amount >= len(UpperCAmelCase__ ): return "0b" + binary_number[0] * len(UpperCAmelCase__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(UpperCAmelCase__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): lowercase = ["pixel_values"] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = IMAGENET_DEFAULT_MEAN , UpperCamelCase__ = IMAGENET_DEFAULT_STD , **UpperCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = size if size is not None else {"""shortest_edge""": 224} A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) A_ = do_resize A_ = size A_ = resample A_ = do_center_crop A_ = crop_size A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A_ = int((256 / 224) * size["""shortest_edge"""] ) A_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A_ = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( UpperCamelCase__ , size=(size_dict["""height"""], size_dict["""width"""]) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' A_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> BatchFeature: '''simple docstring''' A_ = do_resize if do_resize is not None else self.do_resize A_ = resample if resample is not None else self.resample A_ = do_center_crop if do_center_crop is not None else self.do_center_crop A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = size if size is not None else self.size A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A_ = crop_size if crop_size is not None else self.crop_size A_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) A_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: A_ = [self.resize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_center_crop: A_ = [self.center_crop(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_rescale: A_ = [self.rescale(UpperCamelCase__ , UpperCamelCase__ ) for image in images] if do_normalize: A_ = [self.normalize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for image in images] A_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] A_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=100 , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = vocab_size A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def snake_case_ ( self ) -> int: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = FlaxBeitModel(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = FlaxBeitForMaskedImageModeling(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = self.type_sequence_label_size A_ = FlaxBeitForImageClassification(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = FlaxBeitForImageClassification(UpperCamelCase__ ) A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class A__ ( _snake_case , unittest.TestCase ): lowercase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def snake_case_ ( self ) -> None: '''simple docstring''' A_ = FlaxBeitModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) A_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) A_ = model_class(UpperCamelCase__ ) @jax.jit def model_jitted(UpperCamelCase__ , **UpperCamelCase__ ): return model(pixel_values=UpperCamelCase__ , **UpperCamelCase__ ) with self.subTest("""JIT Enabled""" ): A_ = model_jitted(**UpperCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A_ = model_jitted(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for jitted_output, output in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: A_ = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) A_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( ) -> List[str]: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> int: '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos A_ = np.ones((1, 196) , dtype=UpperCamelCase__ ) # forward pass A_ = model(pixel_values=UpperCamelCase__ , bool_masked_pos=UpperCamelCase__ ) A_ = outputs.logits # verify the logits A_ = (1, 196, 8192) self.assertEqual(logits.shape , UpperCamelCase__ ) A_ = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase__ , atol=1e-2 ) ) @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""np""" ) # forward pass A_ = model(**UpperCamelCase__ ) A_ = outputs.logits # verify the logits A_ = (1, 1000) self.assertEqual(logits.shape , UpperCamelCase__ ) A_ = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) A_ = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""np""" ) # forward pass A_ = model(**UpperCamelCase__ ) A_ = outputs.logits # verify the logits A_ = (1, 21841) self.assertEqual(logits.shape , UpperCamelCase__ ) A_ = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) A_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ )
667
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
1
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = 42 class A__ ( nn.Module ): lowercase = 42 lowercase = (16, 32, 96, 256) lowercase = jnp.floataa def snake_case_ ( self ) -> str: '''simple docstring''' A_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A_ = [] for i in range(len(self.block_out_channels ) - 1 ): A_ = self.block_out_channels[i] A_ = self.block_out_channels[i + 1] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = blocks A_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = self.conv_in(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) for block in self.blocks: A_ = block(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return embedding @flax_register_to_config class A__ ( nn.Module , _snake_case , _snake_case ): lowercase = 32 lowercase = 4 lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase = False lowercase = (320, 640, 1_280, 1_280) lowercase = 2 lowercase = 8 lowercase = None lowercase = 1_280 lowercase = 0.0 lowercase = False lowercase = jnp.floataa lowercase = True lowercase = 0 lowercase = "rgb" lowercase = (16, 32, 96, 256) def snake_case_ ( self , UpperCamelCase__ ) -> FrozenDict: '''simple docstring''' # init input tensors A_ = (1, self.in_channels, self.sample_size, self.sample_size) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ = jnp.ones((1,) , dtype=jnp.intaa ) A_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ = (1, 3, self.sample_size * 8, self.sample_size * 8) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ , A_ = jax.random.split(UpperCamelCase__ ) A_ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.block_out_channels A_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ = self.num_attention_heads or self.attention_head_dim # input A_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) A_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A_ = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (num_attention_heads,) * len(self.down_block_types ) # down A_ = [] A_ = [] A_ = block_out_channels[0] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A_ = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) for _ in range(self.layers_per_block ): A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) if not is_final_block: A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) A_ = down_blocks A_ = controlnet_down_blocks # mid A_ = block_out_channels[-1] A_ = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1.0 , UpperCamelCase__ = True , UpperCamelCase__ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' A_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": A_ = jnp.flip(UpperCamelCase__ , axis=1 ) # 1. time if not isinstance(UpperCamelCase__ , jnp.ndarray ): A_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ = timesteps.astype(dtype=jnp.floataa ) A_ = jnp.expand_dims(UpperCamelCase__ , 0 ) A_ = self.time_proj(UpperCamelCase__ ) A_ = self.time_embedding(UpperCamelCase__ ) # 2. pre-process A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.conv_in(UpperCamelCase__ ) A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.controlnet_cond_embedding(UpperCamelCase__ ) sample += controlnet_cond # 3. down A_ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) # 5. contronet blocks A_ = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ): A_ = controlnet_block(UpperCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) A_ = controlnet_down_block_res_samples A_ = self.controlnet_mid_block(UpperCamelCase__ ) # 6. scaling A_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
667
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> Tuple: A_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: A_ = """""" else: A_ = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = dct.pop(UpperCAmelCase__ ) A_ = val def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = DeiTConfig() # all deit models have fine-tuned heads A_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A_ = 10_00 A_ = """huggingface/label-files""" A_ = """imagenet-1k-id2label.json""" A_ = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A_ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = int(deit_name[-6:-4] ) A_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A_ = 1_92 A_ = 7_68 A_ = 12 A_ = 3 elif deit_name[9:].startswith("""small""" ): A_ = 3_84 A_ = 15_36 A_ = 12 A_ = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 # load original model from timm A_ = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() A_ = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A_ = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A_ = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A_ = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A_ = image_processor(images=prepare_img(), return_tensors="""pt""" ) A_ = encoding["""pixel_values"""] A_ = model(UpperCAmelCase__ ) A_ = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCamelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
1
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = 0 @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase__ ) , 0 ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) # Check that tokenizer_type ≠ model_type A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCamelCase__ , """vocab.txt""" ) ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , tokenizer_type="""bert""" , use_fast=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCamelCase__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCamelCase__ , """merges.txt""" ) ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , tokenizer_type="""gpt2""" , use_fast=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @require_tokenizers def snake_case_ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCamelCase__ , """vocab.txt""" ) ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , tokenizer_type="""bert""" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCamelCase__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCamelCase__ , """merges.txt""" ) ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , tokenizer_type="""gpt2""" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def snake_case_ ( self ) -> List[str]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: A_ = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase__ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def snake_case_ ( self ) -> List[str]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase__ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): A_ = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai A_ = TOKENIZER_MAPPING.values() A_ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase__ ) @require_tokenizers def snake_case_ ( self ) -> List[str]: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , UpperCamelCase__ ) @require_tokenizers def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=UpperCamelCase__ ) A_ = """Hello, world. How are you?""" A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertEqual("""[UNK]""" , tokens[0] ) A_ = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=UpperCamelCase__ ) A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # Check we can load the tokenizer config of an online model. A_ = get_tokenizer_config("""bert-base-cased""" ) A_ = config.pop("""_commit_hash""" , UpperCamelCase__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase__ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. A_ = get_tokenizer_config(UpperCamelCase__ ) self.assertDictEqual(UpperCamelCase__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = get_tokenizer_config(UpperCamelCase__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def snake_case_ ( self ) -> str: '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) A_ = CustomTokenizer.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCamelCase__ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase__ , fast_tokenizer_class=UpperCamelCase__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ , fast_tokenizer_class=UpperCamelCase__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoTokenizer.register(UpperCamelCase__ , fast_tokenizer_class=UpperCamelCase__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: A_ = BertTokenizerFast.from_pretrained(UpperCamelCase__ ) bert_tokenizer.save_pretrained(UpperCamelCase__ ) A_ = CustomTokenizerFast.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def snake_case_ ( self ) -> Any: '''simple docstring''' class A__ ( _snake_case ): lowercase = False class A__ ( _snake_case ): lowercase = NewTokenizer lowercase = False try: AutoConfig.register("""custom""" , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , fast_tokenizer_class=UpperCamelCase__ ) # If remote code is not set, the default is to use local A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCamelCase__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): A_ = AutoTokenizer.from_pretrained("""bert-base""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , revision="""aaaaaa""" ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # Make sure we have cached the tokenizer. A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
667
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
1
'''simple docstring''' import os def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = len(grid[0] ) A_ = len(UpperCAmelCase__ ) A_ = 0 A_ = 0 A_ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(UpperCAmelCase__ ): for j in range(n_rows - 3 ): A_ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] A_ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: A_ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: A_ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) A_ = max( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if max_product > largest: A_ = max_product return largest def UpperCAmelCase__ ( ) -> Tuple: A_ = [] with open(os.path.dirname(UpperCAmelCase__ ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) A_ = [[int(UpperCAmelCase__ ) for i in grid[j]] for j in range(len(UpperCAmelCase__ ) )] return largest_product(UpperCAmelCase__ ) if __name__ == "__main__": print(solution())
667
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
1
'''simple docstring''' class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = name A_ = value A_ = weight def __repr__( self ) -> Dict: '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.value def snake_case_ ( self ) -> Dict: '''simple docstring''' return self.name def snake_case_ ( self ) -> Any: '''simple docstring''' return self.weight def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return self.value / self.weight def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = [] for i in range(len(UpperCAmelCase__ ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: A_ = sorted(UpperCAmelCase__, key=UpperCAmelCase__, reverse=UpperCAmelCase__ ) A_ = [] A_ , A_ = 0.0, 0.0 for i in range(len(UpperCAmelCase__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase__ ( ) -> Optional[int]: pass if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''ConvNextFeatureExtractor'''] __lowerCamelCase = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' import os def UpperCAmelCase__ ( ) -> Tuple: with open(os.path.dirname(UpperCAmelCase__ ) + """/p022_names.txt""" ) as file: A_ = str(file.readlines()[0] ) A_ = names.replace("""\"""", """""" ).split(""",""" ) names.sort() A_ = 0 A_ = 0 for i, name in enumerate(UpperCAmelCase__ ): for letter in name: name_score += ord(UpperCAmelCase__ ) - 64 total_score += (i + 1) * name_score A_ = 0 return total_score if __name__ == "__main__": print(solution())
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' A_ = size if size is not None else {"""height""": 18, """width""": 18} A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_normalize A_ = image_mean A_ = image_std def snake_case_ ( self ) -> List[str]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A__ ( _snake_case , unittest.TestCase ): lowercase = ViTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = EfficientFormerImageProcessorTester(self ) @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # Initialize image_processor A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A_ = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched A_ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def snake_case_ ( self ) -> Any: '''simple docstring''' # Initialize image_processor A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A_ = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched A_ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # Initialize image_processor A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A_ = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched A_ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __lowerCamelCase = logging.get_logger(__name__) class A__ : lowercase = None @experimental def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return _map_with_joblib(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: A_ = num_proc if num_proc <= len(UpperCAmelCase__ ) else len(UpperCAmelCase__ ) A_ = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCAmelCase__ ): A_ = len(UpperCAmelCase__ ) // num_proc A_ = len(UpperCAmelCase__ ) % num_proc A_ = div * index + min(UpperCAmelCase__, UpperCAmelCase__ ) A_ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCAmelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'''Error dividing inputs iterable among processes. ''' F'''Total number of objects {len(UpperCAmelCase__ )}, ''' F'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( F'''Spawning {num_proc} processes for {len(UpperCAmelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) A_ , A_ = None, None if not disable_tqdm: A_ , A_ = (RLock(),), tqdm.set_lock with Pool(UpperCAmelCase__, initargs=UpperCAmelCase__, initializer=UpperCAmelCase__ ) as pool: A_ = pool.map(UpperCAmelCase__, UpperCAmelCase__ ) logger.info(F'''Finished {num_proc} processes''' ) A_ = [obj for proc_res in mapped for obj in proc_res] logger.info(F'''Unpacked {len(UpperCAmelCase__ )} objects''' ) return mapped def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=UpperCAmelCase__ ): return joblib.Parallel()( joblib.delayed(UpperCAmelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: A_ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: A_ = None
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "rwkv" lowercase = {"max_position_embeddings": "context_length"} def __init__( self , UpperCamelCase__=50277 , UpperCamelCase__=1024 , UpperCamelCase__=4096 , UpperCamelCase__=32 , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=1e-5 , UpperCamelCase__=0 , UpperCamelCase__=0 , UpperCamelCase__=6 , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Any: '''simple docstring''' A_ = vocab_size A_ = context_length A_ = hidden_size A_ = num_hidden_layers A_ = attention_hidden_size if attention_hidden_size is not None else hidden_size A_ = intermediate_size if intermediate_size is not None else 4 * hidden_size A_ = layer_norm_epsilon A_ = rescale_every A_ = use_cache A_ = bos_token_id A_ = eos_token_id super().__init__( tie_word_embeddings=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ) -> Any: '''simple docstring''' super().__init__() self.register_modules(transformer=UpperCamelCase__ , vae=UpperCamelCase__ , scheduler=UpperCamelCase__ ) # create a imagenet -> id dictionary for easier use A_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): A_ = int(UpperCamelCase__ ) A_ = dict(sorted(self.labels.items() ) ) def snake_case_ ( self , UpperCamelCase__ ) -> List[int]: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = list(UpperCamelCase__ ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , UpperCamelCase__ , UpperCamelCase__ = 4.0 , UpperCamelCase__ = None , UpperCamelCase__ = 50 , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' A_ = len(UpperCamelCase__ ) A_ = self.transformer.config.sample_size A_ = self.transformer.config.in_channels A_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=UpperCamelCase__ , device=self.device , dtype=self.transformer.dtype , ) A_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents A_ = torch.tensor(UpperCamelCase__ , device=self.device ).reshape(-1 ) A_ = torch.tensor([1000] * batch_size , device=self.device ) A_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: A_ = latent_model_input[: len(UpperCamelCase__ ) // 2] A_ = torch.cat([half, half] , dim=0 ) A_ = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = t if not torch.is_tensor(UpperCamelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) A_ = latent_model_input.device.type == """mps""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = torch.floataa if is_mps else torch.floataa else: A_ = torch.intaa if is_mps else torch.intaa A_ = torch.tensor([timesteps] , dtype=UpperCamelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: A_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output A_ = self.transformer( UpperCamelCase__ , timestep=UpperCamelCase__ , class_labels=UpperCamelCase__ ).sample # perform guidance if guidance_scale > 1: A_ , A_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] A_ , A_ = torch.split(UpperCamelCase__ , len(UpperCamelCase__ ) // 2 , dim=0 ) A_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) A_ = torch.cat([half_eps, half_eps] , dim=0 ) A_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: A_ , A_ = torch.split(UpperCamelCase__ , UpperCamelCase__ , dim=1 ) else: A_ = noise_pred # compute previous image: x_t -> x_t-1 A_ = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample if guidance_scale > 1: A_ , A_ = latent_model_input.chunk(2 , dim=0 ) else: A_ = latent_model_input A_ = 1 / self.vae.config.scaling_factor * latents A_ = self.vae.decode(UpperCamelCase__ ).sample A_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=UpperCamelCase__ )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class A__ ( _snake_case ): lowercase = "open-llama" def __init__( self , UpperCamelCase__=100000 , UpperCamelCase__=4096 , UpperCamelCase__=11008 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=2048 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-6 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> int: '''simple docstring''' A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = intermediate_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = initializer_range A_ = rms_norm_eps A_ = use_cache A_ = kwargs.pop( """use_memorry_efficient_attention""" , UpperCamelCase__ ) A_ = hidden_dropout_prob A_ = attention_dropout_prob A_ = use_stable_embedding A_ = shared_input_output_embedding A_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ , ) def snake_case_ ( self ) -> Dict: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) A_ = self.rope_scaling.get("""type""" , UpperCamelCase__ ) A_ = self.rope_scaling.get("""factor""" , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> str: '''simple docstring''' A_ = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) A_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above A_ = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above A_ = tf_top_k_top_p_filtering(UpperCamelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) A_ = output[output != -float("""inf""" )] A_ = tf.cast( tf.where(tf.not_equal(UpperCamelCase__ , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-1_2 ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @require_tf class A__ ( unittest.TestCase , _snake_case ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): lowercase = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' # TF-only test: tf.saved_model export A_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ = 2 A_ = 2 class A__ ( tf.Module ): def __init__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' super(UpperCamelCase__ , self ).__init__() A_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = self.model.generate( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , max_new_tokens=UpperCamelCase__ , return_dict_in_generate=UpperCamelCase__ , ) return {"sequences": outputs["sequences"]} A_ = [[2, 0], [102, 103]] A_ = [[1, 0], [1, 1]] A_ = DummyModel(model=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={"""serving_default""": dummy_model.serving} ) A_ = tf.saved_model.load(UpperCamelCase__ ).signatures["""serving_default"""] for batch_size in range(1 , len(UpperCamelCase__ ) + 1 ): A_ = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } A_ = serving_func(**UpperCamelCase__ )["""sequences"""] A_ = test_model.generate(**UpperCamelCase__ , max_new_tokens=UpperCamelCase__ ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # TF-only test: tf.saved_model export A_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ = 1 A_ = 2 class A__ ( tf.Module ): def __init__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' super(UpperCamelCase__ , self ).__init__() A_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = self.model.generate( input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ , max_new_tokens=UpperCamelCase__ , return_dict_in_generate=UpperCamelCase__ , ) return {"sequences": outputs["sequences"]} A_ = [[2], [102, 103]] A_ = [[1], [1, 1]] A_ = DummyModel(model=UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase__ , UpperCamelCase__ , signatures={"""serving_default""": dummy_model.serving} ) A_ = tf.saved_model.load(UpperCamelCase__ ).signatures["""serving_default"""] for input_row in range(len(UpperCamelCase__ ) ): A_ = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } A_ = serving_func(**UpperCamelCase__ )["""sequences"""] A_ = test_model.generate(**UpperCamelCase__ , max_new_tokens=UpperCamelCase__ ) tf.debugging.assert_equal(UpperCamelCase__ , UpperCamelCase__ ) @slow @require_tensorflow_text def snake_case_ ( self ) -> List[Any]: '''simple docstring''' # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=UpperCamelCase__ ) class A__ ( tf.keras.layers.Layer ): def __init__( self ) -> Optional[Any]: '''simple docstring''' super().__init__() A_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCamelCase__ , """spiece.model""" ) , """rb""" ).read() ) A_ = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def snake_case_ ( self , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = self.tokenizer.tokenize(UpperCamelCase__ ) A_ , A_ = text.pad_model_inputs( UpperCamelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) A_ = self.model.generate(input_ids=UpperCamelCase__ , attention_mask=UpperCamelCase__ ) return self.tokenizer.detokenize(UpperCamelCase__ ) A_ = CompleteSentenceTransformer() A_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) A_ = complete_model(UpperCamelCase__ ) A_ = tf.keras.Model(UpperCamelCase__ , UpperCamelCase__ ) keras_model.save(UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' # Has PT equivalent: this test relies on random sampling A_ = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } A_ = 14 A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ = """Hello, my dog is cute and""" A_ = tokenizer(UpperCamelCase__ , return_tensors="""tf""" ) A_ = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A_ = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) A_ = model.generate(**UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) A_ = [638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) A_ = model.generate(**UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # Has PT equivalent: ample use of framework-specific code A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ = """Hugging Face is a technology company based in New York and Paris.""" A_ = bart_tokenizer(UpperCamelCase__ , return_tensors="""tf""" ).input_ids A_ = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ = bart_model.generate(UpperCamelCase__ ).numpy() class A__ ( _snake_case ): def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ) -> Any: '''simple docstring''' return super().call(UpperCamelCase__ , **UpperCamelCase__ ) A_ = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A_ = bart_model.generate(UpperCamelCase__ , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(UpperCamelCase__ , UpperCamelCase__ ) ) class A__ ( bart_model.model.encoder.__class__ ): def snake_case_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return super().call(UpperCamelCase__ , **UpperCamelCase__ ) A_ = FakeEncoder(bart_model.config , bart_model.model.shared ) A_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) A_ = bart_model.generate(UpperCamelCase__ ).numpy() with self.assertRaises(UpperCamelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCamelCase__ , foo="""bar""" )
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCAmelCase__ ( UpperCAmelCase__=None ) -> str: A_ = argparse.ArgumentParser(add_help=UpperCAmelCase__, allow_abbrev=UpperCAmelCase__ ) # The main config parser A_ = config_command_parser(UpperCAmelCase__ ) # The subparser to add commands to A_ = config_parser.add_subparsers(title="""subcommands""", dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(UpperCAmelCase__, parents=[parent_parser] ) update_command_parser(UpperCAmelCase__, parents=[parent_parser] ) return config_parser def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = get_config_parser() A_ = config_parser.parse_args() if not hasattr(UpperCAmelCase__, """func""" ): config_parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase__ ) if __name__ == "__main__": main()
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__="None" , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = relative_attention A_ = position_biased_input A_ = pos_att_type A_ = scope def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> int: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.get_config() A_ = 300 return config def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = DebertaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ )[0] A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ )[0] A_ = model(UpperCamelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = DebertaForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = DebertaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.num_labels A_ = DebertaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = DebertaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = DebertaModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = DebertaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def snake_case_ ( self ) -> str: '''simple docstring''' pass @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) A_ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) A_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] # compare the actual values for a slice. A_ = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = None, ) -> List[Any]: if config_name_or_path is None: A_ = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: A_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: A_ = question_encoder_name_or_path A_ = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. A_ = RagConfig.from_pretrained(UpperCAmelCase__ ) A_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) A_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) A_ = gen_config A_ = question_encoder_config A_ = model_class.from_pretrained_question_encoder_generator( UpperCAmelCase__, UpperCAmelCase__, config=UpperCAmelCase__ ) rag_model.save_pretrained(UpperCAmelCase__ ) # Sanity check. model_class.from_pretrained(UpperCAmelCase__ ) # Save tokenizers. A_ = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) A_ = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class A__ ( _snake_case ): lowercase = ["pixel_values"] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = size if size is not None else {"""shortest_edge""": 224} A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ , param_name="""crop_size""" ) A_ = do_resize A_ = size A_ = resample A_ = do_center_crop A_ = crop_size A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ = image_std if image_std is not None else OPENAI_CLIP_STD A_ = do_convert_rgb def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) A_ = get_resize_output_image_size(UpperCamelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase__ ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' A_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Any: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> PIL.Image.Image: '''simple docstring''' A_ = do_resize if do_resize is not None else self.do_resize A_ = size if size is not None else self.size A_ = get_size_dict(UpperCamelCase__ , param_name="""size""" , default_to_square=UpperCamelCase__ ) A_ = resample if resample is not None else self.resample A_ = do_center_crop if do_center_crop is not None else self.do_center_crop A_ = crop_size if crop_size is not None else self.crop_size A_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" , default_to_square=UpperCamelCase__ ) A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ = [convert_to_rgb(UpperCamelCase__ ) for image in images] # All transformations expect numpy arrays. A_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: A_ = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: A_ = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: A_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: A_ = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] A_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] A_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=UpperCamelCase__ , speech_processor=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ = "auto" ) -> Union[str, Any]: '''simple docstring''' if slice_size == "auto": A_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(UpperCamelCase__ ) @torch.no_grad() def __call__( self , UpperCamelCase__ , UpperCamelCase__=16000 , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' A_ = self.speech_processor.feature_extractor( UpperCamelCase__ , return_tensors="""pt""" , sampling_rate=UpperCamelCase__ ).input_features.to(self.device ) A_ = self.speech_model.generate(UpperCamelCase__ , max_length=480000 ) A_ = self.speech_processor.tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , normalize=UpperCamelCase__ )[ 0 ] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = 1 elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = len(UpperCamelCase__ ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase__ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(UpperCamelCase__ )}.''' ) # get prompt text embeddings A_ = self.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) A_ = text_input_ids[:, : self.tokenizer.model_max_length] A_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A_ , A_ , A_ = text_embeddings.shape A_ = text_embeddings.repeat(1 , UpperCamelCase__ , 1 ) A_ = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCamelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A_ = 42 if negative_prompt is None: A_ = [""""""] * batch_size elif type(UpperCamelCase__ ) is not type(UpperCamelCase__ ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase__ )} !=''' f''' {type(UpperCamelCase__ )}.''' ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [negative_prompt] elif batch_size != len(UpperCamelCase__ ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase__ )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: A_ = negative_prompt A_ = text_input_ids.shape[-1] A_ = self.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" , ) A_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A_ = uncond_embeddings.shape[1] A_ = uncond_embeddings.repeat(1 , UpperCamelCase__ , 1 ) A_ = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCamelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A_ = torch.randn(UpperCamelCase__ , generator=UpperCamelCase__ , device="""cpu""" , dtype=UpperCamelCase__ ).to( self.device ) else: A_ = torch.randn(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) A_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCamelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A_ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A_ = {} if accepts_eta: A_ = eta for i, t in enumerate(self.progress_bar(UpperCamelCase__ ) ): # expand the latents if we are doing classifier free guidance A_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) # predict the noise residual A_ = self.unet(UpperCamelCase__ , UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ ).sample # perform guidance if do_classifier_free_guidance: A_ , A_ = noise_pred.chunk(2 ) A_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A_ = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = 1 / 0.18215 * latents A_ = self.vae.decode(UpperCamelCase__ ).sample A_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCamelCase__ , nsfw_content_detected=UpperCamelCase__ )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } A_ = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , x.transpose() ) ) A_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , transpose(UpperCamelCase__ ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , transpose(UpperCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case_ ( self ) -> str: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , transpose(UpperCamelCase__ ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , transpose(UpperCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , np.asarray(transpose(UpperCamelCase__ ) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) ) ) ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , np.reshape(UpperCamelCase__ , (4, 3) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , np.reshape(UpperCamelCase__ , (12, 5) ) ) ) @require_torch def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , reshape(UpperCamelCase__ , (4, 3) ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , reshape(UpperCamelCase__ , (12, 5) ).numpy() ) ) @require_tf def snake_case_ ( self ) -> str: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , reshape(UpperCamelCase__ , (4, 3) ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , reshape(UpperCamelCase__ , (12, 5) ).numpy() ) ) @require_flax def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , np.asarray(reshape(UpperCamelCase__ , (4, 3) ) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , np.asarray(reshape(UpperCamelCase__ , (12, 5) ) ) ) ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , np.squeeze(UpperCamelCase__ ) ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , np.squeeze(UpperCamelCase__ , axis=2 ) ) ) @require_torch def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = np.random.randn(1 , 3 , 4 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , squeeze(UpperCamelCase__ ).numpy() ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , squeeze(UpperCamelCase__ , axis=2 ).numpy() ) ) @require_tf def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = np.random.randn(1 , 3 , 4 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , squeeze(UpperCamelCase__ ).numpy() ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , squeeze(UpperCamelCase__ , axis=2 ).numpy() ) ) @require_flax def snake_case_ ( self ) -> int: '''simple docstring''' A_ = np.random.randn(1 , 3 , 4 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , np.asarray(squeeze(UpperCamelCase__ ) ) ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , np.asarray(squeeze(UpperCamelCase__ , axis=2 ) ) ) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , np.expand_dims(UpperCamelCase__ , axis=1 ) ) ) @require_torch def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , expand_dims(UpperCamelCase__ , axis=1 ).numpy() ) ) @require_tf def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , expand_dims(UpperCamelCase__ , axis=1 ).numpy() ) ) @require_flax def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , np.asarray(expand_dims(UpperCamelCase__ , axis=1 ) ) ) )
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __lowerCamelCase = logging.get_logger(__name__) class A__ ( enum.Enum ): lowercase = 0 lowercase = 1 @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): lowercase = "generated" def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def snake_case_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' A_ = {} if truncation is not None: A_ = truncation A_ = generate_kwargs A_ = {} if return_tensors is not None and return_type is None: A_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: A_ = return_type if clean_up_tokenization_spaces is not None: A_ = clean_up_tokenization_spaces if stop_sequence is not None: A_ = self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) A_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' return True def snake_case_ ( self , *UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , UpperCamelCase__ ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) A_ = ([prefix + arg for arg in args[0]],) A_ = True elif isinstance(args[0] , UpperCamelCase__ ): A_ = (prefix + args[0],) A_ = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) A_ = self.tokenizer(*UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' A_ = super().__call__(*UpperCamelCase__ , **UpperCamelCase__ ) if ( isinstance(args[0] , UpperCamelCase__ ) and all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for el in args[0] ) and all(len(UpperCamelCase__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self._parse_and_tokenize(UpperCamelCase__ , truncation=UpperCamelCase__ , **UpperCamelCase__ ) return inputs def snake_case_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' if self.framework == "pt": A_ , A_ = model_inputs["""input_ids"""].shape elif self.framework == "tf": A_ , A_ = tf.shape(model_inputs["""input_ids"""] ).numpy() A_ = generate_kwargs.get("""min_length""" , self.model.config.min_length ) A_ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(UpperCamelCase__ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) A_ = self.model.generate(**UpperCamelCase__ , **UpperCamelCase__ ) A_ = output_ids.shape[0] if self.framework == "pt": A_ = output_ids.reshape(UpperCamelCase__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": A_ = tf.reshape(UpperCamelCase__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=ReturnType.TEXT , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: A_ = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: A_ = { f'''{self.return_name}_text''': self.tokenizer.decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) } records.append(UpperCamelCase__ ) return records @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): lowercase = "summary" def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return super().__call__(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' """a summarization task, where outputs shorter than the input are typically wanted, you might """ f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): lowercase = "translation" def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def snake_case_ ( self , *UpperCamelCase__ , UpperCamelCase__=TruncationStrategy.DO_NOT_TRUNCATE , UpperCamelCase__=None , UpperCamelCase__=None ) -> int: '''simple docstring''' if getattr(self.tokenizer , """_build_translation_inputs""" , UpperCamelCase__ ): return self.tokenizer._build_translation_inputs( *UpperCamelCase__ , return_tensors=self.framework , truncation=UpperCamelCase__ , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__ ) else: return super()._parse_and_tokenize(*UpperCamelCase__ , truncation=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Any: '''simple docstring''' A_ , A_ , A_ = super()._sanitize_parameters(**UpperCamelCase__ ) if src_lang is not None: A_ = src_lang if tgt_lang is not None: A_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. A_ = kwargs.get("""task""" , self.task ) A_ = task.split("""_""" ) if task and len(UpperCamelCase__ ) == 4: # translation, XX, to YY A_ = items[1] A_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return super().__call__(*UpperCamelCase__ , **UpperCamelCase__ )
667
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class A__ ( unittest.TestCase ): @require_torch def snake_case_ ( self ) -> int: '''simple docstring''' A_ = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A_ = load_dataset("""ashraq/esc50""" ) A_ = dataset["""train"""]["""audio"""][-1]["""array"""] A_ = audio_classifier(UpperCamelCase__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass @slow @require_torch def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A_ = load_dataset("""ashraq/esc50""" ) A_ = dataset["""train"""]["""audio"""][-1]["""array"""] A_ = audio_classifier(UpperCamelCase__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A_ = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A_ = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass
667
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: return getitem, k def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: return setitem, k, v def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: return delitem, k def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, *UpperCAmelCase__ ) -> Dict: try: return fun(UpperCAmelCase__, *UpperCAmelCase__ ), None except Exception as e: return None, e __lowerCamelCase = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) __lowerCamelCase = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] __lowerCamelCase = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] __lowerCamelCase = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] __lowerCamelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __lowerCamelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""", ( pytest.param(_add_items, id="""add items""" ), pytest.param(_overwrite_items, id="""overwrite items""" ), pytest.param(_delete_items, id="""delete items""" ), pytest.param(_access_absent_items, id="""access absent items""" ), pytest.param(_add_with_resize_up, id="""add with resize up""" ), pytest.param(_add_with_resize_down, id="""add with resize down""" ), ), ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: A_ = HashMap(initial_block_size=4 ) A_ = {} for _, (fun, *args) in enumerate(UpperCAmelCase__ ): A_ , A_ = _run_operation(UpperCAmelCase__, UpperCAmelCase__, *UpperCAmelCase__ ) A_ , A_ = _run_operation(UpperCAmelCase__, UpperCAmelCase__, *UpperCAmelCase__ ) assert my_res == py_res assert str(UpperCAmelCase__ ) == str(UpperCAmelCase__ ) assert set(UpperCAmelCase__ ) == set(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) assert set(my.items() ) == set(py.items() ) def UpperCAmelCase__ ( ) -> Tuple: def is_public(UpperCAmelCase__ ) -> bool: return not name.startswith("""_""" ) A_ = {name for name in dir({} ) if is_public(UpperCAmelCase__ )} A_ = {name for name in dir(HashMap() ) if is_public(UpperCAmelCase__ )} assert dict_public_names > hash_public_names
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __lowerCamelCase = '''__DUMMY_TRANSFORMERS_USER__''' __lowerCamelCase = '''Dummy User''' __lowerCamelCase = '''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''' __lowerCamelCase = '''https://hub-ci.huggingface.co''' __lowerCamelCase = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' __lowerCamelCase = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' __lowerCamelCase = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""", UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""", UpperCAmelCase__ ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""", UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""", UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: HfFolder.save_token(UpperCAmelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( ) -> Union[str, Any]: return HfApi(endpoint=UpperCAmelCase__ ) @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ = HfFolder.get_token() HfFolder.save_token(UpperCAmelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: def _cleanup_repo(UpperCAmelCase__ ): hf_api.delete_repo(UpperCAmelCase__, token=UpperCAmelCase__, repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: @contextmanager def _temporary_repo(UpperCAmelCase__ ): try: yield repo_id finally: cleanup_repo(UpperCAmelCase__ ) return _temporary_repo @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = F'''repo_txt_data-{int(time.time() * 10e3 )}''' A_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase__, token=UpperCAmelCase__, repo_type="""dataset""", private=UpperCAmelCase__ ) hf_api.upload_file( token=UpperCAmelCase__, path_or_fileobj=str(UpperCAmelCase__ ), path_in_repo="""data/text_data.txt""", repo_id=UpperCAmelCase__, repo_type="""dataset""", ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase__, token=UpperCAmelCase__, repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = F'''repo_zipped_txt_data-{int(time.time() * 10e3 )}''' A_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase__, token=UpperCAmelCase__, repo_type="""dataset""", private=UpperCAmelCase__ ) hf_api.upload_file( token=UpperCAmelCase__, path_or_fileobj=str(UpperCAmelCase__ ), path_in_repo="""data.zip""", repo_id=UpperCAmelCase__, repo_type="""dataset""", ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase__, token=UpperCAmelCase__, repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: A_ = F'''repo_zipped_img_data-{int(time.time() * 10e3 )}''' A_ = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCAmelCase__, token=UpperCAmelCase__, repo_type="""dataset""", private=UpperCAmelCase__ ) hf_api.upload_file( token=UpperCAmelCase__, path_or_fileobj=str(UpperCAmelCase__ ), path_in_repo="""data.zip""", repo_id=UpperCAmelCase__, repo_type="""dataset""", ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase__, token=UpperCAmelCase__, repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: return hf_private_dataset_repo_zipped_img_data_
667
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: # Return True if there is node that has not iterated. A_ = [False] * len(UpperCAmelCase__ ) A_ = [] queue.append(UpperCAmelCase__ ) A_ = True while queue: A_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase__ ) A_ = True A_ = u return visited[t] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: # This array is filled by BFS and to store path A_ = [-1] * (len(UpperCAmelCase__ )) A_ = 0 while bfs(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): A_ = float("""Inf""" ) A_ = sink while s != source: # Find the minimum value in select path A_ = min(UpperCAmelCase__, graph[parent[s]][s] ) A_ = parent[s] max_flow += path_flow A_ = sink while v != source: A_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow A_ = parent[v] return max_flow __lowerCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __lowerCamelCase , __lowerCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
667
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] __lowerCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" ) return sd def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=rename_keys_prefix ) -> Optional[int]: A_ = OrderedDict() A_ = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A_ = key for name_pair in rename_keys_prefix: A_ = new_key.replace(name_pair[0], name_pair[1] ) A_ = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A_ = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: A_ = """pretraining""" if "vcr" in checkpoint_path: A_ = {"""visual_embedding_dim""": 5_12} elif "vqa_advanced" in checkpoint_path: A_ = {"""visual_embedding_dim""": 20_48} elif "vqa" in checkpoint_path: A_ = {"""visual_embedding_dim""": 20_48} elif "nlvr" in checkpoint_path: A_ = {"""visual_embedding_dim""": 10_24} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: A_ = {"""visual_embedding_dim""": 5_12} A_ = """multichoice""" elif "vqa_advanced" in checkpoint_path: A_ = {"""visual_embedding_dim""": 20_48} A_ = """vqa_advanced""" elif "vqa" in checkpoint_path: A_ = {"""visual_embedding_dim""": 20_48, """num_labels""": 31_29} A_ = """vqa""" elif "nlvr" in checkpoint_path: A_ = { """visual_embedding_dim""": 10_24, """num_labels""": 2, } A_ = """nlvr""" A_ = VisualBertConfig(**UpperCAmelCase__ ) # Load State Dict A_ = load_state_dict(UpperCAmelCase__ ) A_ = get_new_dict(UpperCAmelCase__, UpperCAmelCase__ ) if model_type == "pretraining": A_ = VisualBertForPreTraining(UpperCAmelCase__ ) elif model_type == "vqa": A_ = VisualBertForQuestionAnswering(UpperCAmelCase__ ) elif model_type == "nlvr": A_ = VisualBertForVisualReasoning(UpperCAmelCase__ ) elif model_type == "multichoice": A_ = VisualBertForMultipleChoice(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) # Save Checkpoints Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') __lowerCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
667
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
1
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCamelCase = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __lowerCamelCase = json.load(f) @require_torch class A__ ( unittest.TestCase ): def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return FSMTTokenizer.from_pretrained(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = FSMTForConditionalGeneration.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality A_ = f'''facebook/wmt19-{pair}''' A_ = self.get_tokenizer(UpperCamelCase__ ) A_ = self.get_model(UpperCamelCase__ ) A_ = bleu_data[pair]["""src"""] A_ = bleu_data[pair]["""tgt"""] A_ = tokenizer(UpperCamelCase__ , return_tensors="""pt""" , truncation=UpperCamelCase__ , padding="""longest""" ).to(UpperCamelCase__ ) A_ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) A_ = tokenizer.batch_decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) A_ = calculate_bleu(UpperCamelCase__ , UpperCamelCase__ ) print(UpperCamelCase__ ) self.assertGreaterEqual(scores["""bleu"""] , UpperCamelCase__ )
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class A__ ( _snake_case ): lowercase = "pix2struct_text_model" lowercase = ["past_key_values"] lowercase = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , UpperCamelCase__=50244 , UpperCamelCase__=768 , UpperCamelCase__=64 , UpperCamelCase__=2048 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=32 , UpperCamelCase__=128 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-6 , UpperCamelCase__=1.0 , UpperCamelCase__="gelu_new" , UpperCamelCase__=0 , UpperCamelCase__=False , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' A_ = vocab_size A_ = hidden_size A_ = d_kv A_ = d_ff A_ = num_layers A_ = num_heads A_ = relative_attention_num_buckets A_ = relative_attention_max_distance A_ = dropout_rate A_ = layer_norm_epsilon A_ = initializer_factor A_ = use_cache A_ = eos_token_id A_ = decoder_start_token_id # for backwards compatibility A_ = dense_act_fn super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , is_decoder=UpperCamelCase__ , **UpperCamelCase__ , ) @classmethod def snake_case_ ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) A_ , A_ = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": A_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class A__ ( _snake_case ): lowercase = "pix2struct_vision_model" def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=768 , UpperCamelCase__=2048 , UpperCamelCase__=64 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__="gelu_new" , UpperCamelCase__=1e-6 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-1_0 , UpperCamelCase__=1.0 , UpperCamelCase__=4096 , UpperCamelCase__=32 , UpperCamelCase__=128 , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = hidden_size A_ = patch_embed_hidden_size A_ = d_ff A_ = dropout_rate A_ = num_hidden_layers A_ = num_attention_heads A_ = initializer_range A_ = initializer_factor A_ = attention_dropout A_ = layer_norm_eps A_ = dense_act_fn A_ = seq_len A_ = relative_attention_num_buckets A_ = relative_attention_max_distance A_ = d_kv @classmethod def snake_case_ ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) A_ , A_ = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": A_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class A__ ( _snake_case ): lowercase = "pix2struct" lowercase = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=1.0 , UpperCamelCase__=0.02 , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(tie_word_embeddings=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) if text_config is None: A_ = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: A_ = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) A_ = PixaStructTextConfig(**UpperCamelCase__ ) A_ = PixaStructVisionConfig(**UpperCamelCase__ ) A_ = self.text_config.decoder_start_token_id A_ = self.text_config.pad_token_id A_ = self.text_config.eos_token_id A_ = initializer_factor A_ = initializer_range A_ = self.initializer_range A_ = self.initializer_range A_ = is_vqa @classmethod def snake_case_ ( cls , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = copy.deepcopy(self.__dict__ ) A_ = self.text_config.to_dict() A_ = self.vision_config.to_dict() A_ = self.__class__.model_type return output
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list[str]: if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) A_ = number_of_bytes // partitions A_ = [] for i in range(UpperCAmelCase__ ): A_ = i * bytes_per_partition + 1 A_ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A__ : def __init__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = str(id_ ) A_ = None A_ = None A_ = [] A_ = {} # {vertex:distance} def __lt__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' return self.key < other.key def __repr__( self ) -> str: '''simple docstring''' return self.id def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' self.neighbors.append(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = weight def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], UpperCAmelCase__ ) graph[b - 1].add_edge(graph[a - 1], UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list: A_ = [] for u in graph: A_ = math.inf A_ = None A_ = 0 A_ = graph[:] while q: A_ = min(UpperCAmelCase__ ) q.remove(UpperCAmelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): A_ = u A_ = u.edges[v.id] for i in range(1, len(UpperCAmelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Iterator[tuple]: for u in graph: A_ = math.inf A_ = None A_ = 0 A_ = list(UpperCAmelCase__ ) hq.heapify(UpperCAmelCase__ ) while h: A_ = hq.heappop(UpperCAmelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): A_ = u A_ = u.edges[v.id] hq.heapify(UpperCAmelCase__ ) for i in range(1, len(UpperCAmelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase__ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: A_ = [] A_ = 2 A_ = int(math.sqrt(UpperCAmelCase__ ) ) # Size of every segment A_ = [True] * (end + 1) A_ = [] while start <= end: if temp[start] is True: in_prime.append(UpperCAmelCase__ ) for i in range(start * start, end + 1, UpperCAmelCase__ ): A_ = False start += 1 prime += in_prime A_ = end + 1 A_ = min(2 * end, UpperCAmelCase__ ) while low <= n: A_ = [True] * (high - low + 1) for each in in_prime: A_ = math.floor(low / each ) * each if t < low: t += each for j in range(UpperCAmelCase__, high + 1, UpperCAmelCase__ ): A_ = False for j in range(len(UpperCAmelCase__ ) ): if temp[j] is True: prime.append(j + low ) A_ = high + 1 A_ = min(high + end, UpperCAmelCase__ ) return prime print(sieve(10**6))
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) A_ = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCAmelCase__ ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) A_ = """wi_0""" in tax_model["""target"""]["""encoder"""]["""layers_0"""]["""mlp"""] if config.model_type == "t5": A_ = """SelfAttention""" if config.model_type == "longt5" and config.encoder_attention_type == "local": A_ = """LocalSelfAttention""" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A_ = """TransientGlobalSelfAttention""" else: raise ValueError( """Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`""" """ attribute with a value from ['local', 'transient-global].""" ) # Encoder for layer_index in range(config.num_layers ): A_ = F'''layers_{str(UpperCAmelCase__ )}''' # Self-Attention A_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""key"""]["""kernel"""] A_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""out"""]["""kernel"""] A_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""query"""]["""kernel"""] A_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""value"""]["""kernel"""] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A_ = tax_model["""target"""]["""encoder"""][layer_name]["""attention"""]["""T5LayerNorm_0"""]["""scale"""] # Layer Normalization A_ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_attention_layer_norm"""]["""scale"""] if split_mlp_wi: A_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] A_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: A_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] A_ = tax_model["""target"""]["""encoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization A_ = tax_model["""target"""]["""encoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning A_ = flax_model.params["""encoder"""]["""block"""][str(UpperCAmelCase__ )]["""layer"""] A_ = tax_attention_key A_ = tax_attention_out A_ = tax_attention_query A_ = tax_attention_value A_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A_ = tax_global_layer_norm if split_mlp_wi: A_ = tax_mlp_wi_a A_ = tax_mlp_wi_a else: A_ = tax_mlp_wi A_ = tax_mlp_wo A_ = tax_mlp_layer_norm A_ = flax_model_encoder_layer_block # Only for layer 0: A_ = tax_model["""target"""]["""encoder"""]["""relpos_bias"""]["""rel_embedding"""].T A_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A_ = tax_model["""target"""]["""encoder"""]["""side_relpos_bias"""]["""rel_embedding"""].T A_ = tax_encoder_global_rel_embedding # Assigning A_ = tax_model["""target"""]["""encoder"""]["""encoder_norm"""]["""scale"""] A_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A_ = F'''layers_{str(UpperCAmelCase__ )}''' # Self-Attention A_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""key"""]["""kernel"""] A_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""out"""]["""kernel"""] A_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""query"""]["""kernel"""] A_ = tax_model["""target"""]["""decoder"""][layer_name]["""self_attention"""]["""value"""]["""kernel"""] # Layer Normalization A_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_self_attention_layer_norm"""][ """scale""" ] # Encoder-Decoder-Attention A_ = tax_model["""target"""]["""decoder"""][layer_name]["""encoder_decoder_attention"""] A_ = tax_enc_dec_attention_module["""key"""]["""kernel"""] A_ = tax_enc_dec_attention_module["""out"""]["""kernel"""] A_ = tax_enc_dec_attention_module["""query"""]["""kernel"""] A_ = tax_enc_dec_attention_module["""value"""]["""kernel"""] # Layer Normalization A_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_cross_attention_layer_norm"""]["""scale"""] # MLP if split_mlp_wi: A_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_0"""]["""kernel"""] A_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi_1"""]["""kernel"""] else: A_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wi"""]["""kernel"""] A_ = tax_model["""target"""]["""decoder"""][layer_name]["""mlp"""]["""wo"""]["""kernel"""] # Layer Normalization A_ = tax_model["""target"""]["""decoder"""][layer_name]["""pre_mlp_layer_norm"""]["""scale"""] # Assigning A_ = flax_model.params["""decoder"""]["""block"""][str(UpperCAmelCase__ )]["""layer"""] A_ = tax_attention_key A_ = tax_attention_out A_ = tax_attention_query A_ = tax_attention_value A_ = tax_pre_attention_layer_norm A_ = tax_enc_dec_attention_key A_ = tax_enc_dec_attention_out A_ = tax_enc_dec_attention_query A_ = tax_enc_dec_attention_value A_ = tax_cross_layer_norm if split_mlp_wi: A_ = tax_mlp_wi_a A_ = tax_mlp_wi_a else: A_ = tax_mlp_wi A_ = tax_mlp_wo A_ = txa_mlp_layer_norm A_ = flax_model_decoder_layer_block # Decoder Normalization A_ = tax_model["""target"""]["""decoder"""]["""decoder_norm"""]["""scale"""] A_ = txa_decoder_norm # Only for layer 0: A_ = tax_model["""target"""]["""decoder"""]["""relpos_bias"""]["""rel_embedding"""].T A_ = tax_decoder_rel_embedding # Token Embeddings A_ = tax_model["""target"""]["""token_embedder"""]["""embedding"""] A_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A_ = tax_model["""target"""]["""decoder"""]["""logits_dense"""]["""kernel"""] flax_model.save_pretrained(UpperCAmelCase__ ) print("""T5X Model was sucessfully converted!""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) __lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase__, n - 1, UpperCAmelCase__ ) * a) % mod else: A_ = binary_exponentiation(UpperCAmelCase__, n / 2, UpperCAmelCase__ ) return (b * b) % mod # a prime number __lowerCamelCase = 701 __lowerCamelCase = 10_0000_0000 __lowerCamelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' from __future__ import annotations import math class A__ : def __init__( self , UpperCamelCase__ ) -> None: '''simple docstring''' A_ = size # approximate the overall size of segment tree with given value A_ = [0 for i in range(0 , 4 * size )] # create array to store lazy update A_ = [0 for i in range(0 , 4 * size )] A_ = [0 for i in range(0 , 4 * size )] # flag for lazy update def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' return idx * 2 def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' return idx * 2 + 1 def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: '''simple docstring''' if left_element == right_element: A_ = a[left_element - 1] else: A_ = (left_element + right_element) // 2 self.build(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.build(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ ) A_ = max( self.segment_tree[self.left(UpperCamelCase__ )] , self.segment_tree[self.right(UpperCamelCase__ )] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: '''simple docstring''' if self.flag[idx] is True: A_ = self.lazy[idx] A_ = False if left_element != right_element: A_ = self.lazy[idx] A_ = self.lazy[idx] A_ = True A_ = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: A_ = val if left_element != right_element: A_ = val A_ = val A_ = True A_ = True return True A_ = (left_element + right_element) // 2 self.update(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.update(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = max( self.segment_tree[self.left(UpperCamelCase__ )] , self.segment_tree[self.right(UpperCamelCase__ )] ) return True def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int | float: '''simple docstring''' if self.flag[idx] is True: A_ = self.lazy[idx] A_ = False if left_element != right_element: A_ = self.lazy[idx] A_ = self.lazy[idx] A_ = True A_ = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] A_ = (left_element + right_element) // 2 A_ = self.query(self.left(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = self.query(self.right(UpperCamelCase__ ) , mid + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return max(UpperCamelCase__ , UpperCamelCase__ ) def __str__( self ) -> str: '''simple docstring''' return str([self.query(1 , 1 , self.size , UpperCamelCase__ , UpperCamelCase__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": __lowerCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __lowerCamelCase = 15 __lowerCamelCase = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None, ) -> Optional[Any]: A_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) A_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) A_ = format_type def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None ) -> int: A_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): A_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: __lowerCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: __lowerCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: __lowerCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def UpperCAmelCase__ ( UpperCAmelCase__, **UpperCAmelCase__ ) -> Formatter: A_ = get_format_type_from_alias(UpperCAmelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=True ) -> Any: model.train() A_ = model(UpperCAmelCase__ ) A_ = F.mse_loss(UpperCAmelCase__, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> List[Any]: set_seed(42 ) A_ = RegressionModel() A_ = deepcopy(UpperCAmelCase__ ) A_ = RegressionDataset(length=80 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) model.to(accelerator.device ) if sched: A_ = AdamW(params=model.parameters(), lr=1e-3 ) A_ = AdamW(params=ddp_model.parameters(), lr=1e-3 ) A_ = LambdaLR(UpperCAmelCase__, lr_lambda=lambda UpperCAmelCase__ : epoch**0.65 ) A_ = LambdaLR(UpperCAmelCase__, lr_lambda=lambda UpperCAmelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: A_ , A_ , A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # Test when on a single CPU or GPU that the context manager does nothing A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) # Use a single batch A_ , A_ = next(iter(UpperCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: # Sync grads step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: # Test on distributed setup that context manager behaves properly A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) # Use a single batch A_ , A_ = next(iter(UpperCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: # Sync grads step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] def UpperCAmelCase__ ( UpperCAmelCase__=False, UpperCAmelCase__=False ) -> int: A_ = Accelerator( split_batches=UpperCAmelCase__, dispatch_batches=UpperCAmelCase__, gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) for iteration, batch in enumerate(UpperCAmelCase__ ): A_ , A_ = batch.values() # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCAmelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] GradientState._reset_state() def UpperCAmelCase__ ( UpperCAmelCase__=False, UpperCAmelCase__=False ) -> str: A_ = Accelerator( split_batches=UpperCAmelCase__, dispatch_batches=UpperCAmelCase__, gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ , A_ , A_ , A_ , A_ , A_ , A_ = get_training_setup(UpperCAmelCase__, UpperCAmelCase__ ) for iteration, batch in enumerate(UpperCAmelCase__ ): A_ , A_ = batch.values() # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCAmelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' A_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCAmelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def UpperCAmelCase__ ( ) -> Any: A_ = Accelerator() A_ = RegressionDataset(length=80 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) A_ = RegressionDataset(length=96 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCAmelCase__ ) if iteration < len(UpperCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCAmelCase__ ) if batch_num < len(UpperCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCAmelCase__ ( ) -> Dict: A_ = Accelerator() A_ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCAmelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCAmelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """, F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''', ) test_gradient_accumulation(UpperCAmelCase__, UpperCAmelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""", """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """, """`split_batches=False`, `dispatch_batches=False`**""", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """, F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''', ) test_gradient_accumulation_with_opt_and_scheduler(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) A_ = in_proj_weight[ : encoder_config.hidden_size, : ] A_ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: A_ = dct.pop(UpperCAmelCase__ ) A_ = val def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: if "handwritten" in checkpoint_url: A_ = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: A_ = ViTConfig(image_size=3_84, qkv_bias=UpperCAmelCase__ ) A_ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 A_ = 10_24 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ = False A_ = """relu""" A_ = 10_24 A_ = True A_ = False A_ = False # load HuggingFace model A_ = ViTModel(UpperCAmelCase__, add_pooling_layer=UpperCAmelCase__ ) A_ = TrOCRForCausalLM(UpperCAmelCase__ ) A_ = VisionEncoderDecoderModel(encoder=UpperCAmelCase__, decoder=UpperCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys A_ = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""", check_hash=UpperCAmelCase__ )["""model"""] A_ = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ = state_dict.pop(UpperCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: A_ = val else: A_ = val # load state dict model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image A_ = ViTImageProcessor(size=encoder_config.image_size ) A_ = RobertaTokenizer.from_pretrained("""roberta-large""" ) A_ = TrOCRProcessor(UpperCAmelCase__, UpperCAmelCase__ ) A_ = processor(images=prepare_img(UpperCAmelCase__ ), return_tensors="""pt""" ).pixel_values # verify logits A_ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ = model(pixel_values=UpperCAmelCase__, decoder_input_ids=UpperCAmelCase__ ) A_ = outputs.logits A_ = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: A_ = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: A_ = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: A_ = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: A_ = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], UpperCAmelCase__, atol=1e-3 ), "First elements of logits not as expected" Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: if "model" in orig_key: A_ = orig_key.replace("""model.""", """""" ) if "norm1" in orig_key: A_ = orig_key.replace("""norm1""", """attention.output.LayerNorm""" ) if "norm2" in orig_key: A_ = orig_key.replace("""norm2""", """output.LayerNorm""" ) if "norm" in orig_key: A_ = orig_key.replace("""norm""", """LayerNorm""" ) if "transformer" in orig_key: A_ = orig_key.split(""".""" )[0].split("""_""" )[-1] A_ = orig_key.replace(F'''transformer_{layer_num}''', F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: A_ = orig_key.replace("""mha.attn""", """attention.self""" ) if "mha" in orig_key: A_ = orig_key.replace("""mha""", """attention""" ) if "W_q" in orig_key: A_ = orig_key.replace("""W_q""", """self.query""" ) if "W_k" in orig_key: A_ = orig_key.replace("""W_k""", """self.key""" ) if "W_v" in orig_key: A_ = orig_key.replace("""W_v""", """self.value""" ) if "ff1" in orig_key: A_ = orig_key.replace("""ff1""", """intermediate.dense""" ) if "ff2" in orig_key: A_ = orig_key.replace("""ff2""", """output.dense""" ) if "ff" in orig_key: A_ = orig_key.replace("""ff""", """output.dense""" ) if "mlm_class" in orig_key: A_ = orig_key.replace("""mlm.mlm_class""", """cls.predictions.decoder""" ) if "mlm" in orig_key: A_ = orig_key.replace("""mlm""", """cls.predictions.transform""" ) if "cls" not in orig_key: A_ = """yoso.""" + orig_key return orig_key def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: for key in orig_state_dict.copy().keys(): A_ = orig_state_dict.pop(UpperCAmelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: A_ = val A_ = orig_state_dict["""cls.predictions.decoder.bias"""] A_ = torch.arange(UpperCAmelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""model_state_dict"""] A_ = YosoConfig.from_json_file(UpperCAmelCase__ ) A_ = YosoForMaskedLM(UpperCAmelCase__ ) A_ = convert_checkpoint_helper(config.max_position_embeddings, UpperCAmelCase__ ) print(model.load_state_dict(UpperCAmelCase__ ) ) model.eval() model.save_pretrained(UpperCAmelCase__ ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCamelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
667
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCamelCase = '''<<<<<<< This should probably be modified because it mentions: ''' __lowerCamelCase = '''======= >>>>>>> ''' __lowerCamelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] __lowerCamelCase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: return ConvertCommand(args.tfds_path, args.datasets_directory ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> str: '''simple docstring''' A_ = get_logger("""datasets-cli/converting""" ) A_ = tfds_path A_ = datasets_directory def snake_case_ ( self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): A_ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): A_ = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) A_ = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) A_ = [] A_ = [] A_ = {} if os.path.isdir(self._tfds_path ): A_ = os.listdir(UpperCamelCase__ ) else: A_ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) A_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) A_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if not os.path.isfile(UpperCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [] A_ = False A_ = False A_ = [] for line in lines: A_ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: A_ = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here A_ = """""" continue elif "from absl import logging" in out_line: A_ = """from datasets import logging\n""" elif "getLogger" in out_line: A_ = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): A_ = True A_ = list(filter(lambda UpperCamelCase__ : e in out_line , UpperCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase__ ) + """\n""" ) out_lines.append(UpperCamelCase__ ) out_lines.append(UpperCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: A_ = re.sub(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: A_ = re.match(R"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , UpperCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) A_ = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: A_ = True out_lines.append(UpperCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset A_ = f_name.replace(""".py""" , """""" ) A_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) A_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase__ ) if needs_manual_update: with_manual_update.append(UpperCamelCase__ ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.writelines(UpperCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: A_ = os.path.basename(UpperCamelCase__ ) A_ = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(UpperCamelCase__ , UpperCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
667
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
1
'''simple docstring''' class A__ : def __init__( self ) -> Union[str, Any]: '''simple docstring''' A_ = """""" A_ = """""" A_ = [] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: A_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: A_ = self.__min_dist_top_down_dp(UpperCamelCase__ , n - 1 ) A_ = self.__min_dist_top_down_dp(m - 1 , UpperCamelCase__ ) A_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) A_ = 1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = worda A_ = worda A_ = [[-1 for _ in range(len(UpperCamelCase__ ) )] for _ in range(len(UpperCamelCase__ ) )] return self.__min_dist_top_down_dp(len(UpperCamelCase__ ) - 1 , len(UpperCamelCase__ ) - 1 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = worda A_ = worda A_ = len(UpperCamelCase__ ) A_ = len(UpperCamelCase__ ) A_ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty A_ = j elif j == 0: # second string is empty A_ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal A_ = self.dp[i - 1][j - 1] else: A_ = self.dp[i][j - 1] A_ = self.dp[i - 1][j] A_ = self.dp[i - 1][j - 1] A_ = 1 + min(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": __lowerCamelCase = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() __lowerCamelCase = input('''Enter the first string: ''').strip() __lowerCamelCase = input('''Enter the second string: ''').strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
667
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
1
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase__ ( UpperCAmelCase__=32, UpperCAmelCase__=10, UpperCAmelCase__=1_00, UpperCAmelCase__=10_26, UpperCAmelCase__=True, UpperCAmelCase__="data/tokenized_stories_train_wikitext103.jbl", UpperCAmelCase__="igf_context_pairs.jbl", ) -> List[str]: set_seed(3 ) # generate train_data and objective_set A_ , A_ = generate_datasets( UpperCAmelCase__, UpperCAmelCase__, number=UpperCAmelCase__, min_len=10_26, trim=UpperCAmelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? A_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model A_ = load_gpta("""gpt2""" ).to(UpperCAmelCase__ ) print("""computing perplexity on objective set""" ) A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ).item() print("""perplexity on objective set:""", UpperCAmelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=15, UpperCAmelCase__=1_28, UpperCAmelCase__=1_00, UpperCAmelCase__="igf_model.pt", ) -> List[Any]: set_seed(42 ) # Load pre-trained model A_ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model A_ = SecondaryLearner(UpperCAmelCase__ ) # Train secondary learner A_ = train_secondary_learner( UpperCAmelCase__, UpperCAmelCase__, max_epochs=UpperCAmelCase__, batch_size=UpperCAmelCase__, eval_freq=1_00, igf_model_path=UpperCAmelCase__, ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=32, UpperCAmelCase__=10_00, UpperCAmelCase__=16, UpperCAmelCase__=1.0, UpperCAmelCase__=recopy_gpta, UpperCAmelCase__=None, UpperCAmelCase__=10, UpperCAmelCase__="gpt2_finetuned.pt", ) -> Optional[Any]: A_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) A_ = RandomSampler(UpperCAmelCase__ ) A_ = DataLoader(UpperCAmelCase__, sampler=UpperCAmelCase__ ) A_ = max_steps // (len(UpperCAmelCase__ )) + 1 A_ = 0 A_ = torch.zeros((1, context_len), dtype=torch.long, device=UpperCAmelCase__ ) A_ , A_ , A_ = recopy_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase__ ) secondary_learner.eval() A_ = [] A_ = 0 A_ = [] A_ = [] # Compute the performance of the transformer model at the beginning A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) test_perps.append(UpperCAmelCase__ ) print("""Test perplexity, step""", UpperCAmelCase__, """:""", UpperCAmelCase__ ) for epoch in range(int(UpperCAmelCase__ ) ): for step, example in enumerate(UpperCAmelCase__ ): torch.cuda.empty_cache() A_ = random.randint(0, example.size(2 ) - context_len - 1 ) A_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() A_ = model(UpperCAmelCase__, labels=UpperCAmelCase__ ) A_ = True if secondary_learner is not None: A_ = secondary_learner.forward( torch.tensor(UpperCAmelCase__, dtype=torch.long, device=UpperCAmelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: A_ = -1 if predicted_q < threshold: A_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) A_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() A_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) test_perps.append(UpperCAmelCase__ ) print("""Test perplexity, step""", UpperCAmelCase__, """:""", UpperCAmelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict(), UpperCAmelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""The input data dir. Should contain data files for WikiText.""", ) parser.add_argument( """--model_name_or_path""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""Path to pretrained model or model identifier from huggingface.co/models""", ) parser.add_argument( """--data_file""", type=UpperCAmelCase__, default=UpperCAmelCase__, help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ), ) parser.add_argument( """--igf_data_file""", type=UpperCAmelCase__, default=UpperCAmelCase__, help="""A jbl file containing the context and information gain pairs to train secondary learner.""", ) parser.add_argument( """--output_dir""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""The output directory where the final fine-tuned model is stored.""", ) parser.add_argument( """--tokenizer_name""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument("""--seed""", type=UpperCAmelCase__, default=UpperCAmelCase__, help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""", default=32, type=UpperCAmelCase__, help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ), ) parser.add_argument( """--size_objective_set""", default=1_00, type=UpperCAmelCase__, help="""number of articles that are long enough to be used as our objective set""", ) parser.add_argument( """--eval_freq""", default=1_00, type=UpperCAmelCase__, help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""", default=10_00, type=UpperCAmelCase__, help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""", default=1_28, type=UpperCAmelCase__, help="""batch size of training data for secondary learner""", ) parser.add_argument( """--batch_size""", default=16, type=UpperCAmelCase__, help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""", default=10, type=UpperCAmelCase__, help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ), ) parser.add_argument( """--number""", default=1_00, type=UpperCAmelCase__, help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""", default=10_26, type=UpperCAmelCase__, help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""", default=15, type=UpperCAmelCase__, help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""", default=1.0, type=UpperCAmelCase__, help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ), ) parser.add_argument("""--finetuned_model_name""", default="""gpt2_finetuned.pt""", type=UpperCAmelCase__, help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""Reset the model to the original pretrained GPT-2 weights after each iteration""", ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32, max_steps=10, size_objective_set=1_00, min_len=10_26, trim=UpperCAmelCase__, data_file="""data/tokenized_stories_train_wikitext103.jbl""", igf_data_file="""igf_context_pairs.jbl""", ) # Load train data for secondary learner A_ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner A_ = training_secondary_learner( UpperCAmelCase__, secondary_learner_max_epochs=15, secondary_learner_batch_size=1_28, eval_freq=1_00, igf_model_path="""igf_model.pt""", ) # load pretrained gpt2 model A_ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model A_ , A_ = generate_datasets( context_len=32, file="""data/tokenized_stories_train_wikitext103.jbl""", number=1_00, min_len=10_26, trim=UpperCAmelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, context_len=32, max_steps=10_00, batch_size=16, threshold=1.0, recopy_model=UpperCAmelCase__, secondary_learner=UpperCAmelCase__, eval_interval=10, finetuned_model_name="""gpt2_finetuned.pt""", ) if __name__ == "__main__": main()
667
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class A__ ( _snake_case ): lowercase = ["image_processor", "feature_extractor"] lowercase = "TvltImageProcessor" lowercase = "TvltFeatureExtractor" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(image_processor=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) A_ = image_processor A_ = feature_extractor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , *UpperCamelCase__ , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) A_ = None if images is not None: A_ = self.image_processor(UpperCamelCase__ , mask_pixel=UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if images_mixed is not None: A_ = self.image_processor(UpperCamelCase__ , is_mixed=UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if audio is not None: A_ = self.feature_extractor( UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , mask_audio=UpperCamelCase__ , **UpperCamelCase__ ) A_ = {} if audio is not None: output_dict.update(UpperCamelCase__ ) if images is not None: output_dict.update(UpperCamelCase__ ) if images_mixed_dict is not None: output_dict.update(UpperCamelCase__ ) return output_dict @property def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.image_processor.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
'''simple docstring''' from math import factorial, radians def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = 18, UpperCAmelCase__ = 10 ) -> float: A_ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians A_ = radians(UpperCAmelCase__ ) A_ = angle_in_radians A_ = 3 A_ = -1 for _ in range(UpperCAmelCase__ ): result += (b * (angle_in_radians**a)) / factorial(UpperCAmelCase__ ) A_ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(UpperCAmelCase__, UpperCAmelCase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class A__ ( _snake_case ): lowercase = "philschmid/bart-large-cnn-samsum" lowercase = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) lowercase = "summarizer" lowercase = AutoTokenizer lowercase = AutoModelForSeqaSeqLM lowercase = ["text"] lowercase = ["text"] def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' return self.pre_processor(UpperCamelCase__ , return_tensors="""pt""" , truncation=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.model.generate(**UpperCamelCase__ )[0] def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.pre_processor.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import math import random def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __lowerCamelCase = 0.02 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: A_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(UpperCAmelCase__ ): # Forward propagation A_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? A_ = (expected / 1_00) - layer_a # Error delta A_ = layer_1_error * sigmoid_function(UpperCAmelCase__, UpperCAmelCase__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = int(input('''Expected value: ''')) __lowerCamelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( _snake_case , unittest.TestCase ): lowercase = LongformerTokenizer lowercase = True lowercase = LongformerTokenizerFast lowercase = True def snake_case_ ( self ) -> int: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A_ = {"""unk_token""": """<unk>"""} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = """lower newer""" A_ = """lower newer""" return input_text, output_text def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ = """lower newer""" A_ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] A_ = tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokens + [tokenizer.unk_token] A_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=UpperCamelCase__ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" ) A_ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.encode( """sequence builders""" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) A_ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.get_tokenizer() A_ = """Encode this sequence.""" A_ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments A_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) A_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) A_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) A_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens A_ = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space A_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) A_ = """Encode <mask> sequence""" A_ = """Encode <mask>sequence""" A_ = tokenizer.encode(UpperCamelCase__ ) A_ = encoded.index(UpperCamelCase__ ) A_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokenizer.encode(UpperCamelCase__ ) A_ = encoded.index(UpperCamelCase__ ) A_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A_ = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A_ = """A, <mask> AllenNLP sentence.""" A_ = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) A_ = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) A_ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) A_ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) A_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , UpperCamelCase__ ) self.assertEqual(post_processor_state["""add_prefix_space"""] , UpperCamelCase__ ) self.assertEqual(post_processor_state["""trim_offsets"""] , UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` A_ = f'''{text_of_1_token} {text_of_1_token}''' A_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) A_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) A_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) A_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) A_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) A_ = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) A_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) A_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) A_ = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A__ ( _snake_case , unittest.TestCase ): lowercase = CTRLTokenizer lowercase = False lowercase = False def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] A_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A_ = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] A_ = {"""unk_token""": """<unk>"""} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = """adapt react readapt apt""" A_ = """adapt react readapt apt""" return input_text, output_text def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ = """adapt react readapt apt""" A_ = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokens + [tokenizer.unk_token] A_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __lowerCamelCase = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class A__ ( unittest.TestCase ): @classmethod def snake_case_ ( cls ) -> Union[str, Any]: '''simple docstring''' A_ = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def snake_case_ ( cls ) -> Tuple: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(UpperCamelCase__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase__ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCamelCase__ , repo_id="""test-model-flax""" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase__ , 1e-3 , msg=f'''{key} not identical''' ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(UpperCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase__ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCamelCase__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase__ , 1e-3 , msg=f'''{key} not identical''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: A_ = False return models_are_equal @require_flax class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> int: '''simple docstring''' A_ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A_ = FlaxBertModel(UpperCamelCase__ ) A_ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) with self.assertRaises(UpperCamelCase__ ): A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.assertTrue(check_models_equal(UpperCamelCase__ , UpperCamelCase__ ) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A_ = FlaxBertModel(UpperCamelCase__ ) A_ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , max_shard_size="""10KB""" ) with self.assertRaises(UpperCamelCase__ ): A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.assertTrue(check_models_equal(UpperCamelCase__ , UpperCamelCase__ ) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = """bert""" A_ = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(UpperCamelCase__ ): A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = """bert""" A_ = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(UpperCamelCase__ ): A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ )
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class A__ ( _snake_case ): lowercase = "data2vec-vision" def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=224 , UpperCamelCase__=16 , UpperCamelCase__=3 , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=True , UpperCamelCase__=[3, 5, 7, 11] , UpperCamelCase__=[1, 2, 3, 6] , UpperCamelCase__=True , UpperCamelCase__=0.4 , UpperCamelCase__=256 , UpperCamelCase__=1 , UpperCamelCase__=False , UpperCamelCase__=255 , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = image_size A_ = patch_size A_ = num_channels A_ = use_mask_token A_ = use_absolute_position_embeddings A_ = use_relative_position_bias A_ = use_shared_relative_position_bias A_ = layer_scale_init_value A_ = drop_path_rate A_ = use_mean_pooling # decode head attributes (semantic segmentation) A_ = out_indices A_ = pool_scales # auxiliary head attributes (semantic segmentation) A_ = use_auxiliary_head A_ = auxiliary_loss_weight A_ = auxiliary_channels A_ = auxiliary_num_convs A_ = auxiliary_concat_input A_ = semantic_loss_ignore_index class A__ ( _snake_case ): lowercase = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case_ ( self ) -> float: '''simple docstring''' return 1e-4
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' import itertools import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = 2 while True: if is_prime(UpperCAmelCase__ ): yield num num += 1 def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_01 ) -> int: return next(itertools.islice(prime_generator(), nth - 1, UpperCAmelCase__ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( _snake_case , unittest.TestCase ): lowercase = ProphetNetTokenizer lowercase = False def snake_case_ ( self ) -> List[str]: '''simple docstring''' super().setUp() A_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = """UNwant\u00E9d,running""" A_ = """unwanted, running""" return input_text, output_text def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.tokenizer_class(self.vocab_file ) A_ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCamelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [9, 6, 7, 12, 10, 11] ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=UpperCamelCase__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] A_ = {} for i, token in enumerate(UpperCamelCase__ ): A_ = i A_ = WordpieceTokenizer(vocab=UpperCamelCase__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) A_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] A_ = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] A_ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A_ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def snake_case_ ( self ) -> str: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def snake_case_ ( self ) -> Dict: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def snake_case_ ( self ) -> str: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) A_ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCamelCase = 16 __lowerCamelCase = 32 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = 16 ) -> Optional[int]: A_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A_ = load_dataset("""glue""", """mrpc""" ) def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) A_ = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=UpperCAmelCase__, max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ = datasets.map( UpperCAmelCase__, batched=UpperCAmelCase__, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ = tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. A_ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ = 16 elif accelerator.mixed_precision != "no": A_ = 8 else: A_ = None return tokenizer.pad( UpperCAmelCase__, padding="""longest""", max_length=UpperCAmelCase__, pad_to_multiple_of=UpperCAmelCase__, return_tensors="""pt""", ) # Instantiate dataloaders. A_ = DataLoader( tokenized_datasets["""train"""], shuffle=UpperCAmelCase__, collate_fn=UpperCAmelCase__, batch_size=UpperCAmelCase__ ) A_ = DataLoader( tokenized_datasets["""validation"""], shuffle=UpperCAmelCase__, collate_fn=UpperCAmelCase__, batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCamelCase = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", UpperCAmelCase__ ) == "1": A_ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: A_ = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="""all""", project_dir=args.project_dir ) else: A_ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ = config["""lr"""] A_ = int(config["""num_epochs"""] ) A_ = int(config["""seed"""] ) A_ = int(config["""batch_size"""] ) set_seed(UpperCAmelCase__ ) A_ , A_ = get_dataloaders(UpperCAmelCase__, UpperCAmelCase__ ) A_ = evaluate.load("""glue""", """mrpc""" ) # If the batch size is too big we use gradient accumulation A_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A_ = batch_size // MAX_GPU_BATCH_SIZE A_ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=UpperCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ = model.to(accelerator.device ) # Instantiate optimizer A_ = AdamW(params=model.parameters(), lr=UpperCAmelCase__ ) # Instantiate scheduler A_ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__, num_warmup_steps=1_00, num_training_steps=(len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ , A_ , A_ , A_ , A_ = accelerator.prepare( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: A_ = os.path.split(UpperCAmelCase__ )[-1].split(""".""" )[0] accelerator.init_trackers(UpperCAmelCase__, UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: A_ = 0 for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A_ = model(**UpperCAmelCase__ ) A_ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() A_ = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): A_ = model(**UpperCAmelCase__ ) A_ = outputs.logits.argmax(dim=-1 ) A_ , A_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase__, references=UpperCAmelCase__, ) A_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', UpperCAmelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(UpperCAmelCase__ ), """epoch""": epoch, }, step=UpperCAmelCase__, ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCAmelCase__ ( ) -> Dict: A_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=UpperCAmelCase__, default=UpperCAmelCase__, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""", action="""store_true""", help="""Whether to load in all available experiment trackers from the environment and use them for logging.""", ) parser.add_argument( """--project_dir""", type=UpperCAmelCase__, default="""logs""", help="""Location on where to store experiment tracking logs` and relevent project information""", ) A_ = parser.parse_args() A_ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCAmelCase__, UpperCAmelCase__ ) if __name__ == "__main__": main()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: if not sentence: return "" A_ = dict(zip(UpperCAmelCase__, UpperCAmelCase__ ) ) return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
667
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
1
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""", set() ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: class A__ : def __init__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = metric_id class A__ : lowercase = [MetricMock(_snake_case ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def snake_case_ ( self ) -> str: '''simple docstring''' return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""", HfhMock() ) @pytest.mark.parametrize( """func, args""", [(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: if "tmp_path" in args: A_ = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(UpperCAmelCase__, match="""https://huggingface.co/docs/evaluate""" ): func(*UpperCAmelCase__ )
667
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from collections.abc import Generator def UpperCAmelCase__ ( ) -> Generator[int, None, None]: A_ , A_ = 0, 1 while True: A_ , A_ = b, a + b yield b def UpperCAmelCase__ ( UpperCAmelCase__ = 10_00 ) -> int: A_ = 1 A_ = fibonacci_generator() while len(str(next(UpperCAmelCase__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class A__ ( _snake_case ): lowercase = "ibert" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=False , UpperCamelCase__="none" , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = quant_mode A_ = force_dequant class A__ ( _snake_case ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
667
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
1
'''simple docstring''' def UpperCAmelCase__ ( ) -> str: for n in range(1, 1_00_00_00 ): yield n * (n + 1) // 2 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCAmelCase__ ( ) -> Any: return next(i for i in triangle_number_generator() if count_divisors(UpperCAmelCase__ ) > 5_00 ) if __name__ == "__main__": print(solution())
667
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class A__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowercase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def UpperCAmelCase__ ( ) -> Optional[Any]: if os.name == "nt": A_ = CursorInfo() A_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__, ctypes.byref(UpperCAmelCase__ ) ) A_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__, ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def UpperCAmelCase__ ( ) -> Tuple: if os.name == "nt": A_ = CursorInfo() A_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__, ctypes.byref(UpperCAmelCase__ ) ) A_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__, ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def UpperCAmelCase__ ( ) -> List[Any]: try: hide_cursor() yield finally: show_cursor()
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' from typing import Any class A__ : def __init__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = data A_ = None class A__ : def __init__( self ) -> Optional[Any]: '''simple docstring''' A_ = None def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.head while temp is not None: print(temp.data , end=""" """ ) A_ = temp.next print() def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = Node(UpperCamelCase__ ) A_ = self.head A_ = new_node def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' if node_data_a == node_data_a: return else: A_ = self.head while node_a is not None and node_a.data != node_data_a: A_ = node_a.next A_ = self.head while node_a is not None and node_a.data != node_data_a: A_ = node_a.next if node_a is None or node_a is None: return A_ , A_ = node_a.data, node_a.data if __name__ == "__main__": __lowerCamelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> set[str]: A_ , A_ = set(UpperCAmelCase__ ), [start] while stack: A_ = stack.pop() explored.add(UpperCAmelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase__ ) return explored __lowerCamelCase = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = ViTMSNModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.type_sequence_label_size A_ = ViTMSNForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = ViTMSNForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowercase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ViTMSNModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMSNModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def snake_case_ ( self ) -> int: '''simple docstring''' torch.manual_seed(2 ) A_ = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(UpperCamelCase__ ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A_ = model(**UpperCamelCase__ ) # verify the logits A_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A_ = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=50 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=None , ) -> Tuple: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = use_labels A_ = scope def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = self.get_config() return config, input_ids, input_mask, token_labels def snake_case_ ( self ) -> str: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def snake_case_ ( self ) -> str: '''simple docstring''' ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.prepare_config_and_inputs() A_ = True A_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> int: '''simple docstring''' A_ = BertGenerationEncoder(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' A_ = True A_ = BertGenerationEncoder(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = True A_ = True A_ = BertGenerationDecoder(config=UpperCamelCase__ ).to(UpperCamelCase__ ).eval() # first forward pass A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) A_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = torch.cat([input_mask, next_mask] , dim=-1 ) A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, -3:, random_slice_idx].detach() A_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , ) -> int: '''simple docstring''' A_ = BertGenerationDecoder(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ , A_ , A_ , A_ = self.prepare_config_and_inputs() A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = BertGenerationEncoderTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs() A_ = """bert""" self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() A_ = None self.model_tester.create_and_check_model_as_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> int: '''simple docstring''' A_ = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) A_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A_ = model(UpperCamelCase__ )[0] A_ = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , UpperCamelCase__ ) A_ = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> str: '''simple docstring''' A_ = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) A_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A_ = model(UpperCamelCase__ )[0] A_ = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , UpperCamelCase__ ) A_ = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: for attribute in key.split(""".""" ): A_ = getattr(UpperCAmelCase__, UpperCAmelCase__ ) if weight_type is not None: A_ = getattr(UpperCAmelCase__, UpperCAmelCase__ ).shape else: A_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value else: A_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, hf_model.config.feat_extract_norm == """group""", ) A_ = True else: for key, mapped_key in MAPPING.items(): A_ = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): A_ = True if "*" in mapped_key: A_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] A_ = mapped_key.replace("""*""", UpperCAmelCase__ ) if "weight_g" in name: A_ = """weight_g""" elif "weight_v" in name: A_ = """weight_v""" elif "weight" in name: A_ = """weight""" elif "bias" in name: A_ = """bias""" else: A_ = None set_recursively(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = full_name.split("""conv_layers.""" )[-1] A_ = name.split(""".""" ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__=None, UpperCAmelCase__=True ) -> List[Any]: if config_path is not None: A_ = HubertConfig.from_pretrained(UpperCAmelCase__ ) else: A_ = HubertConfig() if is_finetuned: if dict_path: A_ = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.eos_index A_ = len(target_dict.symbols ) A_ = os.path.join(UpperCAmelCase__, """vocab.json""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices, UpperCAmelCase__ ) A_ = WavaVecaCTCTokenizer( UpperCAmelCase__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="""|""", do_lower_case=UpperCAmelCase__, ) A_ = True if config.feat_extract_norm == """layer""" else False A_ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_60_00, padding_value=0, do_normalize=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__, ) A_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) A_ = HubertForCTC(UpperCAmelCase__ ) else: A_ = HubertModel(UpperCAmelCase__ ) if is_finetuned: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ = model[0].eval() recursively_load_weights(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowerCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( _snake_case , unittest.TestCase ): lowercase = DebertaTokenizer lowercase = True lowercase = DebertaTokenizerFast def snake_case_ ( self ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] A_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A_ = {"""unk_token""": """[UNK]"""} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) def snake_case_ ( self , **UpperCamelCase__ ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = """lower newer""" A_ = """lower newer""" return input_text, output_text def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.get_tokenizer() A_ = """lower newer""" A_ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokens + [tokenizer.unk_token] A_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.get_tokenizer() A_ = tokenizer("""Hello""" , """World""" ) A_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , UpperCamelCase__ ) @slow def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) A_ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.encode( """sequence builders""" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) A_ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A_ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) A_ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] A_ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) A_ = [tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for seq in encoding["""input_ids"""]] # fmt: off A_ = { """input_ids""": [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A_ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , UpperCamelCase__ ) for expected, decoded in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) A_ = {} def snake_case_ ( self , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' A_ = super().add_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' """ `placeholder_token` that is not already in the tokenizer.""" ) def snake_case_ ( self , UpperCamelCase__ , *UpperCamelCase__ , UpperCamelCase__=1 , **UpperCamelCase__ ) -> int: '''simple docstring''' A_ = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) else: A_ = [] for i in range(UpperCamelCase__ ): A_ = placeholder_token + f'''_{i}''' self.try_adding_tokens(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) output.append(UpperCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) A_ = output def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=1.0 ) -> Union[str, Any]: '''simple docstring''' if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [] for i in range(len(UpperCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A_ = self.token_map[placeholder_token] A_ = tokens[: 1 + int(len(UpperCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: A_ = copy.copy(UpperCamelCase__ ) random.shuffle(UpperCamelCase__ ) A_ = text.replace(UpperCamelCase__ , """ """.join(UpperCamelCase__ ) ) return text def __call__( self , UpperCamelCase__ , *UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=1.0 , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ , *UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=1.0 , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase__ , vector_shuffle=UpperCamelCase__ , prop_tokens_to_load=UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ , )
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' from sklearn.metrics import recall_score import datasets __lowerCamelCase = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __lowerCamelCase = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __lowerCamelCase = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__="binary" , UpperCamelCase__=None , UpperCamelCase__="warn" , ) -> Optional[int]: '''simple docstring''' A_ = recall_score( UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ , pos_label=UpperCamelCase__ , average=UpperCamelCase__ , sample_weight=UpperCamelCase__ , zero_division=UpperCamelCase__ , ) return {"recall": float(UpperCamelCase__ ) if score.size == 1 else score}
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class A__ ( _snake_case ): lowercase = "xlm-roberta" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = classifier_dropout class A__ ( _snake_case ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) A_ = eval_examples A_ = post_process_function def snake_case_ ( self , UpperCamelCase__ = None , UpperCamelCase__=None , UpperCamelCase__ = None , UpperCamelCase__ = "eval" , **UpperCamelCase__ , ) -> Dict[str, float]: '''simple docstring''' A_ = gen_kwargs.copy() A_ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) A_ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) A_ = gen_kwargs A_ = self.eval_dataset if eval_dataset is None else eval_dataset A_ = self.get_eval_dataloader(UpperCamelCase__ ) A_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A_ = self.compute_metrics A_ = None A_ = time.time() A_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A_ = eval_loop( UpperCamelCase__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , ) finally: A_ = compute_metrics A_ = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A_ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): A_ = metrics.pop(UpperCamelCase__ ) metrics.update(output.metrics ) else: A_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ ) return metrics def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__ = "test" , **UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = gen_kwargs.copy() A_ = self.get_test_dataloader(UpperCamelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. A_ = self.compute_metrics A_ = None A_ = time.time() A_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A_ = eval_loop( UpperCamelCase__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , ) finally: A_ = compute_metrics A_ = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A_ = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , """predict""" ) A_ = self.compute_metrics(UpperCamelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): A_ = metrics.pop(UpperCamelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None ) -> str: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' A_ = nn.Parameter(UpperCAmelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' A_ = nn.Parameter(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: # set torch weights for 1-to-1 comparison A_ = np.asarray(weights[0] ) A_ = np.asarray(weights[1] ) A_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key, torch.tensor(UpperCAmelCase__ ).transpose(1, 2 ).contiguous().view(-1, UpperCAmelCase__ ), ) set_param( torch_layer.self_attention.value, torch.tensor(UpperCAmelCase__ ).transpose(1, 2 ).contiguous().view(-1, UpperCAmelCase__ ), ) set_param( torch_layer.output.dense, torch.tensor(UpperCAmelCase__ ).view(-1, UpperCAmelCase__ ).contiguous().transpose(0, 1 ), ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # set torch weights for 1-to-1 comparison A_ = np.asarray(weights[0] ) A_ = np.asarray(weights[1] ) A_ = np.asarray(weights[2] ) A_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query, torch.tensor(UpperCAmelCase__ ).transpose(1, 2 ).contiguous().view(-1, UpperCAmelCase__ ), ) set_param( torch_layer.self_attention.key, torch.tensor(UpperCAmelCase__ ).transpose(1, 2 ).contiguous().view(-1, UpperCAmelCase__ ), ) set_param( torch_layer.self_attention.value, torch.tensor(UpperCAmelCase__ ).transpose(1, 2 ).contiguous().view(-1, UpperCAmelCase__ ), ) set_param( torch_layer.output.dense, torch.tensor(UpperCAmelCase__ ).view(-1, UpperCAmelCase__ ).contiguous().transpose(0, 1 ), ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # layernorm 1 A_ = weights[0][0][0] A_ = np.asarray(layer_norm_a[0] ) A_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm, torch.tensor(UpperCAmelCase__ ), torch.tensor(UpperCAmelCase__ ), ) # lsh weights + output A_ = weights[0][1] if len(UpperCAmelCase__ ) < 4: set_layer_weights_in_torch_lsh(UpperCAmelCase__, torch_block.attention, UpperCAmelCase__ ) else: set_layer_weights_in_torch_local(UpperCAmelCase__, torch_block.attention, UpperCAmelCase__ ) # intermediate weighs A_ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCAmelCase__ ) == 4: A_ = intermediate_weights[2] # layernorm 2 A_ = np.asarray(intermediate_weights[0][0] ) A_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm, torch.tensor(UpperCAmelCase__ ), torch.tensor(UpperCAmelCase__ ), ) # intermediate dense A_ = np.asarray(intermediate_weights[1][0] ) A_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense, torch.tensor(UpperCAmelCase__ ).transpose(0, 1 ).contiguous(), torch.tensor(UpperCAmelCase__ ), ) # intermediate out A_ = np.asarray(intermediate_weights[4][0] ) A_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense, torch.tensor(UpperCAmelCase__ ).transpose(0, 1 ).contiguous(), torch.tensor(UpperCAmelCase__ ), ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: # reformer model A_ = torch_model.reformer # word embeds A_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(UpperCAmelCase__ ), ) if isinstance(weights[3], UpperCAmelCase__ ): A_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): A_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' A_ = nn.Parameter(torch.tensor(UpperCAmelCase__ ) ) A_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCAmelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): A_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # output layer norm A_ = np.asarray(weights[7][0] ) A_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(UpperCAmelCase__ ), torch.tensor(UpperCAmelCase__ ), ) # output embeddings A_ = np.asarray(weights[9][0] ) A_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder, torch.tensor(UpperCAmelCase__ ).transpose(0, 1 ).contiguous(), torch.tensor(UpperCAmelCase__ ), ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: # Initialise PyTorch model A_ = ReformerConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) A_ = ReformerModelWithLMHead(UpperCAmelCase__ ) with open(UpperCAmelCase__, """rb""" ) as f: A_ = pickle.load(UpperCAmelCase__ )["""weights"""] set_model_weights_in_torch(UpperCAmelCase__, UpperCAmelCase__, config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCamelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (EulerDiscreteScheduler,) lowercase = 10 def snake_case_ ( self , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**UpperCamelCase__ ) return config def snake_case_ ( self ) -> str: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma A_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(prediction_type="""v_prediction""" ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma A_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ , use_karras_sigmas=UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: # vision encoder if "img_encoder.pos_embed" in name: A_ = name.replace("""img_encoder.pos_embed""", """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: A_ = name.replace("""img_encoder.patch_embed.proj""", """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: A_ = name.replace("""img_encoder.patch_embed.norm""", """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: A_ = name.replace("""img_encoder.layers""", """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: A_ = name.replace("""blocks""", """layers""" ) if "attn" in name and "pre_assign" not in name: A_ = name.replace("""attn""", """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: A_ = name.replace("""proj""", """out_proj""" ) if "pre_assign_attn.attn.proj" in name: A_ = name.replace("""pre_assign_attn.attn.proj""", """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: A_ = name.replace("""norm1""", """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: A_ = name.replace("""norm2""", """layer_norm2""" ) if "img_encoder.norm" in name: A_ = name.replace("""img_encoder.norm""", """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: A_ = name.replace("""text_encoder.token_embedding""", """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: A_ = name.replace("""text_encoder.positional_embedding""", """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: A_ = name.replace("""text_encoder.transformer.resblocks.""", """text_model.encoder.layers.""" ) if "ln_1" in name: A_ = name.replace("""ln_1""", """layer_norm1""" ) if "ln_2" in name: A_ = name.replace("""ln_2""", """layer_norm2""" ) if "c_fc" in name: A_ = name.replace("""c_fc""", """fc1""" ) if "c_proj" in name: A_ = name.replace("""c_proj""", """fc2""" ) if "text_encoder" in name: A_ = name.replace("""text_encoder""", """text_model""" ) if "ln_final" in name: A_ = name.replace("""ln_final""", """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: A_ = name.replace("""img_projector.linear_hidden.""", """visual_projection.""" ) if "img_projector.linear_out." in name: A_ = name.replace("""img_projector.linear_out.""", """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: A_ = name.replace("""text_projector.linear_hidden""", """text_projection""" ) if "text_projector.linear_out" in name: A_ = name.replace("""text_projector.linear_out""", """text_projection.3""" ) return name def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Any: for key in orig_state_dict.copy().keys(): A_ = orig_state_dict.pop(UpperCAmelCase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ = key.split(""".""" ) A_ , A_ = int(key_split[2] ), int(key_split[4] ) A_ = config.vision_config.hidden_size if "weight" in key: A_ = val[:dim, :] A_ = val[dim : dim * 2, :] A_ = val[-dim:, :] else: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors A_ = key.split(""".""" ) A_ = int(key_split[3] ) A_ = config.text_config.hidden_size if "weight" in key: A_ = val[:dim, :] A_ = val[ dim : dim * 2, : ] A_ = val[-dim:, :] else: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] else: A_ = rename_key(UpperCAmelCase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): A_ = val.squeeze_() else: A_ = val return orig_state_dict def UpperCAmelCase__ ( ) -> str: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__="groupvit-gcc-yfcc", UpperCAmelCase__=False ) -> Any: A_ = GroupViTConfig() A_ = GroupViTModel(UpperCAmelCase__ ).eval() A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""model"""] A_ = convert_state_dict(UpperCAmelCase__, UpperCAmelCase__ ) A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(UpperCAmelCase__ ) == 0) # verify result A_ = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) A_ = prepare_img() A_ = processor(text=["""a photo of a cat""", """a photo of a dog"""], images=UpperCAmelCase__, padding=UpperCAmelCase__, return_tensors="""pt""" ) with torch.no_grad(): A_ = model(**UpperCAmelCase__ ) if model_name == "groupvit-gcc-yfcc": A_ = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": A_ = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image, UpperCAmelCase__, atol=1e-3 ) processor.save_pretrained(UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) print("""Successfully saved processor and model to""", UpperCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(UpperCAmelCase__, organization="""nielsr""" ) model.push_to_hub(UpperCAmelCase__, organization="""nielsr""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) __lowerCamelCase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1