code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class A__ ( UpperCamelCase_ ): lowercase = """mobilenet_v1""" def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=1.0 , UpperCamelCase__=8 , UpperCamelCase__="relu6" , UpperCamelCase__=True , UpperCamelCase__=0.999 , UpperCamelCase__=0.02 , UpperCamelCase__=0.001 , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) A_ = num_channels A_ = image_size A_ = depth_multiplier A_ = min_depth A_ = hidden_act A_ = tf_padding A_ = classifier_dropout_prob A_ = initializer_range A_ = layer_norm_eps class A__ ( UpperCamelCase_ ): lowercase = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def snake_case_ ( self ) -> float: '''simple docstring''' return 1e-4
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = argparse.ArgumentParser() parser.add_argument( """-m""", """--pretrained_model_name_or_path""", type=__UpperCAmelCase, default=__UpperCAmelCase, required=__UpperCAmelCase, help="""Path to pretrained model or model identifier from huggingface.co/models.""", ) parser.add_argument( """-c""", """--caption""", type=__UpperCAmelCase, default="""robotic cat with wings""", help="""Text used to generate images.""", ) parser.add_argument( """-n""", """--images_num""", type=__UpperCAmelCase, default=4, help="""How much images to generate.""", ) parser.add_argument( """-s""", """--seed""", type=__UpperCAmelCase, default=42, help="""Seed for random process.""", ) parser.add_argument( """-ci""", """--cuda_id""", type=__UpperCAmelCase, default=0, help="""cuda_id.""", ) A_ = parser.parse_args() return args def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: if not len(__UpperCAmelCase ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) A_ , A_ = imgs[0].size A_ = Image.new("""RGB""", size=(cols * w, rows * h) ) A_ , A_ = grid.size for i, img in enumerate(__UpperCAmelCase ): grid.paste(__UpperCAmelCase, box=(i % cols * w, i // cols * h) ) return grid def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__="robotic cat with wings", UpperCAmelCase__=7.5, UpperCAmelCase__=50, UpperCAmelCase__=1, UpperCAmelCase__=42, ) -> Optional[Any]: A_ = torch.Generator(pipeline.device ).manual_seed(__UpperCAmelCase ) A_ = pipeline( __UpperCAmelCase, guidance_scale=__UpperCAmelCase, num_inference_steps=__UpperCAmelCase, generator=__UpperCAmelCase, num_images_per_prompt=__UpperCAmelCase, ).images A_ = int(math.sqrt(__UpperCAmelCase ) ) A_ = image_grid(__UpperCAmelCase, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images __lowerCamelCase = parse_args() # Load models and create wrapper for stable diffusion __lowerCamelCase = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') __lowerCamelCase = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') __lowerCamelCase = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') __lowerCamelCase = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') __lowerCamelCase = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __lowerCamelCase = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): __lowerCamelCase = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: __lowerCamelCase = unet.to(torch.device('''cuda''', args.cuda_id)) __lowerCamelCase = pipeline.to(unet.device) __lowerCamelCase , __lowerCamelCase = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) __lowerCamelCase = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = abs(lowerCAmelCase__ ) A_ = 0 while n > 0: res += n % 10 n //= 10 return res def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ = abs(lowerCAmelCase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: return sum(int(lowerCAmelCase__ ) for c in str(abs(lowerCAmelCase__ ) ) ) def UpperCAmelCase__ ( ) -> int: from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase__, UpperCAmelCase__ ) -> None: A_ = F'''{func.__name__}({value})''' A_ = timeit(F'''__main__.{call}''', setup="""import __main__""" ) print(F'''{call:56} = {func(lowerCAmelCase__ )} -- {timing:.4f} seconds''' ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowerCAmelCase__, lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration __lowerCamelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] __lowerCamelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] __lowerCamelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) __lowerCamelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) __lowerCamelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Any: for tf_name, hf_name in patterns: A_ = k.replace(__A, __A ) return k def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = BigBirdPegasusConfig(**__A ) A_ = BigBirdPegasusForConditionalGeneration(__A ) A_ = torch_model.state_dict() A_ = {} # separating decoder weights A_ = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} A_ = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items(), """tf -> hf conversion""" ): A_ = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue A_ = DECODER_PATTERNS A_ = rename_state_dict_key(__A, __A ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): A_ = v.T A_ = torch.from_numpy(__A ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), """tf -> hf conversion""" ): A_ = [k.endswith(__A ) for ending in KEYS_TO_IGNORE] if any(__A ): continue A_ = REMAINING_PATTERNS A_ = rename_state_dict_key(__A, __A ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): A_ = v.T A_ = torch.from_numpy(__A ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' A_ = mapping["""model.embed_positions.weight"""] A_ = mapping.pop("""model.embed_positions.weight""" ) A_ = torch_model.load_state_dict(__A, strict=__A ) A_ = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = tf.train.list_variables(__A ) A_ = {} A_ = ["""global_step"""] for name, shape in tqdm(__A, desc="""converting tf checkpoint to dict""" ): A_ = any(pat in name for pat in ignore_name ) if skip_key: continue A_ = tf.train.load_variable(__A, __A ) A_ = array return tf_weights def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = get_tf_weights_as_numpy(__A ) A_ = convert_bigbird_pegasus(__A, __A ) torch_model.save_pretrained(__A ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' from math import ceil, sqrt def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00_00 ) -> List[Any]: A_ = 0 for outer_width in range(3, (limit // 4) + 2 ): if outer_width**2 > limit: A_ = max(ceil(sqrt(outer_width**2 - limit ) ), 1 ) else: A_ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCamelCase = None __lowerCamelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCamelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class A__ : lowercase = True lowercase = None # Automatically constructed lowercase = "PIL.Image.Image" lowercase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowercase = field(default="Image" , init=_A , repr=_A ) def __call__( self ) -> Union[str, Any]: '''simple docstring''' return self.pa_type def snake_case_ ( self , UpperCamelCase__ ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(__lowerCamelCase , __lowerCamelCase ): A_ = np.array(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(__lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowerCamelCase ) elif isinstance(__lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowerCamelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> "PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: A_ = {} A_ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(__lowerCamelCase ): A_ = PIL.Image.open(__lowerCamelCase ) else: A_ = path.split("""::""" )[-1] try: A_ = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )["repo_id"] A_ = token_per_repo_id.get(__lowerCamelCase ) except ValueError: A_ = None with xopen(__lowerCamelCase , """rb""" , use_auth_token=__lowerCamelCase ) as f: A_ = BytesIO(f.read() ) A_ = PIL.Image.open(bytes_ ) else: A_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case_ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def snake_case_ ( self , UpperCamelCase__ ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): A_ = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) A_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A_ = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) A_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: A_ = storage.field("""bytes""" ) else: A_ = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: A_ = storage.field("""path""" ) else: A_ = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) A_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): A_ = pa.array( [encode_np_array(np.array(__lowerCamelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) A_ = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) A_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def snake_case_ ( self , UpperCamelCase__ ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(UpperCamelCase__ ): with xopen(__lowerCamelCase , """rb""" ) as f: A_ = f.read() return bytes_ A_ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A_ = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) A_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def UpperCAmelCase__ ( ) -> Optional[int]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() A_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = BytesIO() if image.format in list_image_compression_formats(): A_ = image.format else: A_ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_lowerCamelCase, format=_lowerCamelCase ) return buffer.getvalue() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: if hasattr(_lowerCamelCase, """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowerCamelCase )} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) A_ = array.dtype A_ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER A_ = dtype.kind A_ = dtype.itemsize A_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: A_ = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: A_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: A_ = dtype_byteorder + dtype_kind + str(_lowerCamelCase ) A_ = np.dtype(_lowerCamelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) A_ = PIL.Image.fromarray(array.astype(_lowerCamelCase ) ) return {"path": None, "bytes": image_to_bytes(_lowerCamelCase )} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: A_ = first_non_null_value(_lowerCamelCase ) if isinstance(_lowerCamelCase, _lowerCamelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowerCamelCase, np.ndarray ): A_ = no_op_if_value_is_null(_lowerCamelCase ) return [obj_to_image_dict_func(_lowerCamelCase ) for obj in objs] elif isinstance(_lowerCamelCase, PIL.Image.Image ): A_ = no_op_if_value_is_null(_lowerCamelCase ) return [obj_to_image_dict_func(_lowerCamelCase ) for obj in objs] else: return objs else: return objs
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __lowerCamelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __lowerCamelCase = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } __lowerCamelCase = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } __lowerCamelCase = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class A__ ( _UpperCAmelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ElectraTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__="[UNK]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="[PAD]" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase_ ) != tokenize_chinese_chars ): A_ = getattr(lowerCamelCase_ , normalizer_state.pop("""type""" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**lowerCamelCase_ ) A_ = do_lower_case def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> str: '''simple docstring''' A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' A_ = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowerCamelCase = ['''gpt2'''] __lowerCamelCase = '''gpt2''' if is_tf_available(): class A__ ( tf.Module ): def __init__( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__() A_ = tokenizer A_ = AutoConfig.from_pretrained(__UpperCamelCase ) A_ = TFGPTaLMHeadModel.from_config(__UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.tokenizer(__UpperCamelCase ) A_ = tokenized["""input_ids"""].to_tensor() A_ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) A_ = self.model(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )["""logits"""] return outputs @require_tf @require_keras_nlp class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() A_ = [GPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] A_ = [TFGPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A_ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] A_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def snake_case_ ( self ) -> int: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: A_ = tokenizer([test_inputs] , return_tensors="""tf""" ) A_ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors A_ = python_outputs[key].numpy() A_ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A_ = tf.function(__UpperCamelCase ) for test_inputs in self.test_sentences: A_ = tf.constant(__UpperCamelCase ) A_ = compiled_tokenizer(__UpperCamelCase ) A_ = tf_tokenizer(__UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A_ = ModelToSave(tokenizer=__UpperCamelCase ) A_ = tf.convert_to_tensor([self.test_sentences[0]] ) A_ = model.serving(__UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A_ = Path(__UpperCamelCase ) / """saved.model""" tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={"""serving_default""": model.serving} ) A_ = tf.saved_model.load(__UpperCamelCase ) A_ = loaded_model.signatures["""serving_default"""](__UpperCamelCase )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: A_ = tf.convert_to_tensor([self.test_sentences[0]] ) A_ = tf_tokenizer(__UpperCamelCase ) # Build model with some sample inputs A_ = tf_tokenizer.get_config() A_ = TFGPTaTokenizer.from_config(__UpperCamelCase ) A_ = model_from_config(__UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def snake_case_ ( self ) -> Any: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run A_ = 123123 for max_length in [3, 5, 1024]: A_ = tf.convert_to_tensor([self.test_sentences[0]] ) A_ = tf_tokenizer(__UpperCamelCase , max_length=__UpperCamelCase ) A_ = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __lowerCamelCase = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: for attribute in key.split(""".""" ): A_ = getattr(UpperCAmelCase__, UpperCAmelCase__ ) if weight_type is not None: A_ = getattr(UpperCAmelCase__, UpperCAmelCase__ ).shape else: A_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value elif weight_type == "running_mean": A_ = value elif weight_type == "running_var": A_ = value elif weight_type == "num_batches_tracked": A_ = value elif weight_type == "inv_freq": A_ = value else: A_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, hf_model.config.feat_extract_norm == """group""", ) A_ = True else: for key, mapped_key in MAPPING.items(): A_ = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A_ = True if "*" in mapped_key: A_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] A_ = mapped_key.replace("""*""", UpperCAmelCase__ ) if "pos_bias_u" in name: A_ = None elif "pos_bias_v" in name: A_ = None elif "weight_g" in name: A_ = """weight_g""" elif "weight_v" in name: A_ = """weight_v""" elif "bias" in name: A_ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj A_ = """weight""" elif "running_mean" in name: A_ = """running_mean""" elif "inv_freq" in name: A_ = """inv_freq""" elif "running_var" in name: A_ = """running_var""" elif "num_batches_tracked" in name: A_ = """num_batches_tracked""" else: A_ = None set_recursively(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: A_ = full_name.split("""conv_layers.""" )[-1] A_ = name.split(""".""" ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__=None, UpperCAmelCase__=True ) -> Any: if config_path is not None: A_ = WavaVecaConformerConfig.from_pretrained(UpperCAmelCase__, hidden_act="""swish""" ) else: A_ = WavaVecaConformerConfig() if "rope" in checkpoint_path: A_ = """rotary""" if is_finetuned: if dict_path: A_ = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.eos_index A_ = len(target_dict.symbols ) A_ = os.path.join(UpperCAmelCase__, """vocab.json""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) A_ = target_dict.indices # fairseq has the <pad> and <s> switched A_ = 0 A_ = 1 with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as vocab_handle: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = WavaVecaCTCTokenizer( UpperCAmelCase__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="""|""", do_lower_case=UpperCAmelCase__, ) A_ = True if config.feat_extract_norm == """layer""" else False A_ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_60_00, padding_value=0, do_normalize=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__, ) A_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) A_ = WavaVecaConformerForCTC(UpperCAmelCase__ ) else: A_ = WavaVecaConformerForPreTraining(UpperCAmelCase__ ) if is_finetuned: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: A_ = argparse.Namespace(task="""audio_pretraining""" ) A_ = fairseq.tasks.setup_task(UpperCAmelCase__ ) A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=UpperCAmelCase__ ) A_ = model[0].eval() recursively_load_weights(UpperCAmelCase__, UpperCAmelCase__, not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowerCamelCase = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: return (data["data"], data["target"]) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ = XGBClassifier() classifier.fit(__UpperCamelCase, __UpperCamelCase ) return classifier def UpperCAmelCase__ ( ) -> List[str]: A_ = load_iris() A_ = data_handling(__UpperCamelCase ) A_ = train_test_split( __UpperCamelCase, __UpperCamelCase, test_size=0.25 ) A_ = iris["""target_names"""] # Create an XGBoost Classifier from the training data A_ = xgboost(__UpperCamelCase, __UpperCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, display_labels=__UpperCamelCase, cmap="""Blues""", normalize="""true""", ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class A__ ( _lowercase , _lowercase ): snake_case = '''pixel_values''' snake_case = False snake_case = TimmBackboneConfig def __init__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , """timm""" ) super().__init__(A_ ) A_ = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(A_ , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) A_ = getattr(A_ , """use_pretrained_backbone""" , A_ ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. A_ = config.out_indices if getattr(A_ , """out_indices""" , A_ ) is not None else (-1,) A_ = timm.create_model( config.backbone , pretrained=A_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=A_ , **A_ , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. A_ = self._backbone.return_layers A_ = {layer["""module"""]: str(A_ ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(A_ ) @classmethod def snake_case_ ( cls , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig A_ = kwargs.pop("""config""" , TimmBackboneConfig() ) A_ = kwargs.pop("""use_timm_backbone""" , A_ ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) A_ = kwargs.pop("""num_channels""" , config.num_channels ) A_ = kwargs.pop("""features_only""" , config.features_only ) A_ = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) A_ = kwargs.pop("""out_indices""" , config.out_indices ) A_ = TimmBackboneConfig( backbone=A_ , num_channels=A_ , features_only=A_ , use_pretrained_backbone=A_ , out_indices=A_ , ) return super()._from_config(A_ , **A_ ) def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' A_ = return_dict if return_dict is not None else self.config.use_return_dict A_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone A_ = self._all_layers A_ = self._backbone(A_ , **A_ ) A_ = self._return_layers A_ = tuple(hidden_states[i] for i in self.out_indices ) else: A_ = self._backbone(A_ , **A_ ) A_ = None A_ = tuple(A_ ) A_ = tuple(A_ ) if hidden_states is not None else None if not return_dict: A_ = (feature_maps,) if output_hidden_states: A_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=A_ , hidden_states=A_ , attentions=A_ )
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: def decorator(UpperCAmelCase__ ): A_ = getattr(__SCREAMING_SNAKE_CASE, """handle_key""", [] ) handle += [key] setattr(__SCREAMING_SNAKE_CASE, """handle_key""", __SCREAMING_SNAKE_CASE ) return func return decorator def UpperCAmelCase__ ( *UpperCAmelCase__ ) -> str: def decorator(UpperCAmelCase__ ): A_ = getattr(__SCREAMING_SNAKE_CASE, """handle_key""", [] ) handle += keys setattr(__SCREAMING_SNAKE_CASE, """handle_key""", __SCREAMING_SNAKE_CASE ) return func return decorator class A__ ( lowercase__ ): def __new__( cls , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = super().__new__(cls , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not hasattr(UpperCamelCase__ , """key_handler""" ): setattr(UpperCamelCase__ , """key_handler""" , {} ) setattr(UpperCamelCase__ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): A_ = getattr(UpperCamelCase__ , """handle_key""" , [] ) for key in handled_keys: A_ = value return new_cls @staticmethod def snake_case_ ( cls ) -> List[str]: '''simple docstring''' A_ = get_character() if char != KEYMAP["undefined"]: A_ = ord(UpperCamelCase__ ) A_ = cls.key_handler.get(UpperCamelCase__ ) if handler: A_ = char return handler(cls ) else: return None def UpperCAmelCase__ ( cls ) -> str: return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } A_ = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , x.transpose() ) ) A_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , transpose(UpperCamelCase__ ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , transpose(UpperCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , transpose(UpperCamelCase__ ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , transpose(UpperCamelCase__ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ ) , np.asarray(transpose(UpperCamelCase__ ) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCamelCase__ , axes=(1, 2, 0) ) ) ) ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , np.reshape(UpperCamelCase__ , (4, 3) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , np.reshape(UpperCamelCase__ , (12, 5) ) ) ) @require_torch def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , reshape(UpperCamelCase__ , (4, 3) ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , reshape(UpperCamelCase__ , (12, 5) ).numpy() ) ) @require_tf def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , reshape(UpperCamelCase__ , (4, 3) ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , reshape(UpperCamelCase__ , (12, 5) ).numpy() ) ) @require_flax def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (4, 3) ) , np.asarray(reshape(UpperCamelCase__ , (4, 3) ) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(reshape(UpperCamelCase__ , (12, 5) ) , np.asarray(reshape(UpperCamelCase__ , (12, 5) ) ) ) ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , np.squeeze(UpperCamelCase__ ) ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , np.squeeze(UpperCamelCase__ , axis=2 ) ) ) @require_torch def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = np.random.randn(1 , 3 , 4 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , squeeze(UpperCamelCase__ ).numpy() ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , squeeze(UpperCamelCase__ , axis=2 ).numpy() ) ) @require_tf def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = np.random.randn(1 , 3 , 4 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , squeeze(UpperCamelCase__ ).numpy() ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , squeeze(UpperCamelCase__ , axis=2 ).numpy() ) ) @require_flax def snake_case_ ( self ) -> str: '''simple docstring''' A_ = np.random.randn(1 , 3 , 4 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ ) , np.asarray(squeeze(UpperCamelCase__ ) ) ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(squeeze(UpperCamelCase__ , axis=2 ) , np.asarray(squeeze(UpperCamelCase__ , axis=2 ) ) ) ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , np.expand_dims(UpperCamelCase__ , axis=1 ) ) ) @require_torch def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , expand_dims(UpperCamelCase__ , axis=1 ).numpy() ) ) @require_tf def snake_case_ ( self ) -> int: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = tf.constant(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , expand_dims(UpperCamelCase__ , axis=1 ).numpy() ) ) @require_flax def snake_case_ ( self ) -> str: '''simple docstring''' A_ = np.random.randn(3 , 4 ) A_ = jnp.array(UpperCamelCase__ ) self.assertTrue(np.allclose(expand_dims(UpperCamelCase__ , axis=1 ) , np.asarray(expand_dims(UpperCamelCase__ , axis=1 ) ) ) )
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __lowerCamelCase = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __lowerCamelCase = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names __lowerCamelCase = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __lowerCamelCase = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __lowerCamelCase = """allenai""" def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} A_ = dict((re.sub(r"""@@$""", """""", snake_case_ ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""", """</w>""", snake_case_ ), v) for k, v in d.items() ) A_ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] A_ = d[k] # restore return da def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: # prep assert os.path.exists(snake_case_ ) os.makedirs(snake_case_, exist_ok=snake_case_ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models A_ = basename(snake_case_ ) A_ = dirname(snake_case_ ) A_ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel A_ = cls.hub_models() A_ = {"bpe": "fastbpe", "tokenizer": "moses"} A_ = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) A_ = hub_utils.from_pretrained( snake_case_, snake_case_, snake_case_, archive_map=snake_case_, **snake_case_ ) A_ = vars(chkpt["""args"""]["""model"""] ) A_ = args["source_lang"] A_ = args["target_lang"] A_ = dirname(snake_case_ ) A_ = basename(snake_case_ ) # dicts A_ = os.path.join(snake_case_, F'''dict.{src_lang}.txt''' ) A_ = os.path.join(snake_case_, F'''dict.{tgt_lang}.txt''' ) A_ = Dictionary.load(snake_case_ ) A_ = rewrite_dict_keys(src_dict.indices ) A_ = len(snake_case_ ) A_ = os.path.join(snake_case_, """vocab-src.json""" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(snake_case_, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab A_ = True for k in src_vocab.keys(): if not k.islower(): A_ = False break A_ = Dictionary.load(snake_case_ ) A_ = rewrite_dict_keys(tgt_dict.indices ) A_ = len(snake_case_ ) A_ = os.path.join(snake_case_, """vocab-tgt.json""" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(snake_case_, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # merges_file (bpecodes) A_ = os.path.join(snake_case_, VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" A_ = os.path.join(snake_case_, snake_case_ ) if os.path.exists(snake_case_ ): break with open(snake_case_, encoding="""utf-8""" ) as fin: A_ = fin.read() A_ = re.sub(r""" \d+$""", """""", snake_case_, 0, re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(snake_case_, """w""", encoding="""utf-8""" ) as fout: fout.write(snake_case_ ) # model config A_ = os.path.join(snake_case_, """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args["tokenizer"]}''' A_ = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with A_ = 5 A_ = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: A_ = best_score_hparams[model_dir]["length_penalty"] else: A_ = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(snake_case_, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # tokenizer config A_ = os.path.join(snake_case_, snake_case_ ) A_ = { "langs": [src_lang, tgt_lang], "model_max_length": 10_24, "do_lower_case": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(snake_case_, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # model A_ = chkpt["models"][0] A_ = model.state_dict() # rename keys to start with 'model.' A_ = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys A_ = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(snake_case_, snake_case_ ) A_ = FSMTConfig.from_pretrained(snake_case_ ) A_ = FSMTForConditionalGeneration(snake_case_ ) # check that it loads ok model_new.load_state_dict(snake_case_, strict=snake_case_ ) # save A_ = os.path.join(snake_case_, snake_case_ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(snake_case_, snake_case_ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowerCamelCase = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCAmelCase__ ( UpperCAmelCase__ = 50_00 ) -> Optional[int]: A_ = [(i * (3 * i - 1)) // 2 for i in range(1, _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase, len(_lowerCamelCase ) ): A_ = pentagonal_nums[j] A_ = pentagonal_i + pentagonal_j A_ = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=10 , UpperCamelCase__=3 , UpperCamelCase__=32 * 8 , UpperCamelCase__=32 * 8 , UpperCamelCase__=4 , UpperCamelCase__=64 , ) -> Dict: '''simple docstring''' A_ = parent A_ = batch_size A_ = is_training A_ = use_auxiliary_loss A_ = num_queries A_ = num_channels A_ = min_size A_ = max_size A_ = num_labels A_ = hidden_dim A_ = hidden_dim def snake_case_ ( self ) -> int: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) A_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) A_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() A_ = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() A_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) A_ = self.num_queries A_ = self.num_labels A_ = [1, 1, 1, 1] A_ = self.num_channels A_ = 64 A_ = 128 A_ = self.hidden_dim A_ = self.hidden_dim A_ = self.hidden_dim return config def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = output.encoder_hidden_states A_ = output.pixel_decoder_hidden_states A_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_layers ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): A_ = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() A_ = model(pixel_values=_a , pixel_mask=_a ) A_ = model(_a , output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(UpperCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A_ = model(pixel_values=_a , pixel_mask=_a ) A_ = model(_a ) comm_check_on_output(_a ) A_ = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowercase = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = MaskaFormerModelTester(self ) A_ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def snake_case_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def snake_case_ ( self ) -> int: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def snake_case_ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def snake_case_ ( self ) -> str: '''simple docstring''' pass def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_a ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: A_ = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = (self.model_tester.min_size,) * 2 A_ = { """pixel_values""": torch.randn((2, 3, *size) , device=_a ), """mask_labels""": torch.randn((2, 10, *size) , device=_a ), """class_labels""": torch.zeros(2 , 10 , device=_a ).long(), } A_ = self.model_tester.get_config() A_ = MaskaFormerForUniversalSegmentation(_a ).to(_a ) A_ = model(**_a ) self.assertTrue(outputs.loss is not None ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_a ).to(_a ) A_ = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' if not self.model_tester.is_training: return A_ = self.all_model_classes[1] A_ = self.model_tester.prepare_config_and_inputs() A_ = model_class(_a ) model.to(_a ) model.train() A_ = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.all_model_classes[1] A_ = self.model_tester.prepare_config_and_inputs() A_ = True A_ = True A_ = model_class(_a ).to(_a ) model.train() A_ = model(_a , mask_labels=_a , class_labels=_a ) A_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() A_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __lowerCamelCase = 1e-4 def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def snake_case_ ( self ) -> Any: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def snake_case_ ( self ) -> str: '''simple docstring''' A_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(_a , return_tensors="""pt""" ).to(_a ) A_ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 384, 384) ) with torch.no_grad(): A_ = model(**_a ) A_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) A_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) A_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(_a , return_tensors="""pt""" ).to(_a ) A_ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 384, 384) ) with torch.no_grad(): A_ = model(**_a ) # masks_queries_logits A_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) A_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] A_ = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits A_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) A_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() A_ = self.default_image_processor A_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) A_ = inputs["""pixel_values"""].to(_a ) A_ = [el.to(_a ) for el in inputs["""mask_labels"""]] A_ = [el.to(_a ) for el in inputs["""class_labels"""]] with torch.no_grad(): A_ = model(**_a ) self.assertTrue(outputs.loss is not None )
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=32 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=[10, 20, 30, 40] , UpperCamelCase__=[2, 2, 3, 2] , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=["stage2", "stage3", "stage4"] , UpperCamelCase__=[2, 3, 4] , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = image_size A_ = num_channels A_ = num_stages A_ = hidden_sizes A_ = depths A_ = is_training A_ = use_labels A_ = intermediate_size A_ = hidden_act A_ = num_labels A_ = initializer_range A_ = out_features A_ = out_indices A_ = scope def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> str: '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() A_ = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() A_ = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() A_ = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None A_ = None A_ = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() A_ = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ = config_and_inputs A_ = {"""pixel_values""": pixel_values} return config, inputs_dict def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ = config_and_inputs A_ = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class A__ ( __a , __a , unittest.TestCase ): lowercase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowercase = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = ConvNextVaModelTester(self ) A_ = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ) -> str: '''simple docstring''' return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def snake_case_ ( self ) -> str: '''simple docstring''' pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def snake_case_ ( self ) -> str: '''simple docstring''' pass def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: A_ = self.model_tester.prepare_config_and_inputs_with_labels() A_ = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue A_ = model_class(a_ ) model.to(a_ ) model.train() A_ = self._prepare_for_class(a_ , a_ , return_labels=a_ ) A_ = model(**a_ ).loss loss.backward() def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: A_ = self.model_tester.prepare_config_and_inputs_with_labels() A_ = False A_ = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue A_ = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(a_ , a_ , return_labels=a_ ) A_ = model(**a_ ).loss loss.backward() def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(a_ ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a_ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A_ = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): A_ = model(**self._prepare_for_class(a_ , a_ ) ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(a_ , a_ , a_ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCAmelCase__ ( ) -> List[str]: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Any: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(a_ ) A_ = self.default_image_processor A_ = prepare_img() A_ = preprocessor(images=a_ , return_tensors="""pt""" ).to(a_ ) # forward pass with torch.no_grad(): A_ = model(**a_ ) # verify the logits A_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a_ ) A_ = torch.tensor([0.9996, 0.1966, -0.4386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) )
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets __lowerCamelCase = datasets.logging.get_logger(__name__) __lowerCamelCase = '''\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n''' __lowerCamelCase = '''\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n''' __lowerCamelCase = '''\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False, UpperCAmelCase__=False, UpperCAmelCase__=True, UpperCAmelCase__=False, UpperCAmelCase__="dummy_doc" ) -> Union[str, Any]: A_ = {doc: key_lines} A_ = {doc: sys_lines} A_ = {} A_ = 0 A_ = 0 A_ = 0 A_ = 0 A_ = 0 A_ = 0 A_ , A_ = reader.get_doc_mentions(__snake_case, key_doc_lines[doc], __snake_case ) key_singletons_num += singletons_num if NP_only or min_span: A_ = reader.set_annotated_parse_trees(__snake_case, key_doc_lines[doc], __snake_case, __snake_case ) A_ , A_ = reader.get_doc_mentions(__snake_case, sys_doc_lines[doc], __snake_case ) sys_singletons_num += singletons_num if NP_only or min_span: A_ = reader.set_annotated_parse_trees(__snake_case, key_doc_lines[doc], __snake_case, __snake_case ) if remove_nested: A_ , A_ = reader.remove_nested_coref_mentions(__snake_case, __snake_case ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters A_ , A_ = reader.remove_nested_coref_mentions(__snake_case, __snake_case ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters A_ = reader.get_mention_assignments(__snake_case, __snake_case ) A_ = reader.get_mention_assignments(__snake_case, __snake_case ) A_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( """Number of resulting singleton clusters in the key """ F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' """files, respectively""" ) return doc_coref_infos def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = get_coref_infos(__snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) A_ = {} A_ = 0 A_ = 0 for name, metric in metrics: A_ , A_ , A_ = evaluator.evaluate_documents(__snake_case, __snake_case, beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ), F'''Recall: {recall * 1_00:.2f}''', F''' Precision: {precision * 1_00:.2f}''', F''' F1: {fa * 1_00:.2f}''', ) if conll_subparts_num == 3: A_ = (conll / 3) * 1_00 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({"""conll_score""": conll} ) return output_scores def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: A_ = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: A_ = line.split()[5] if not parse_col == "-": A_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def snake_case_ ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False ) -> Optional[Any]: '''simple docstring''' A_ = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: A_ = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use \'min_span\'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" A_ = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __lowerCamelCase = parser.parse_args() if args.model_type == "roberta": __lowerCamelCase = RobertaForMaskedLM.from_pretrained(args.model_name) __lowerCamelCase = "roberta" elif args.model_type == "gpt2": __lowerCamelCase = GPTaLMHeadModel.from_pretrained(args.model_name) __lowerCamelCase = "transformer" __lowerCamelCase = model.state_dict() __lowerCamelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __lowerCamelCase = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __lowerCamelCase = f"""{prefix}.embeddings.{w}.weight""" __lowerCamelCase = state_dict[param_name] for w in ["weight", "bias"]: __lowerCamelCase = f"""{prefix}.embeddings.LayerNorm.{w}""" __lowerCamelCase = state_dict[param_name] # Transformer Blocks # __lowerCamelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __lowerCamelCase = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] __lowerCamelCase = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __lowerCamelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __lowerCamelCase = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: __lowerCamelCase = state_dict[f"""lm_head.dense.{w}"""] __lowerCamelCase = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __lowerCamelCase = state_dict[f"""{prefix}.ln_f.{w}"""] __lowerCamelCase = state_dict["lm_head.weight"] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCamelCase = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''LayoutLMv2FeatureExtractor'''] __lowerCamelCase = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import re import string import numpy as np import datasets __lowerCamelCase = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' __lowerCamelCase = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' __lowerCamelCase = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def snake_case_ ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , ) -> str: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: A_ = np.array([re.sub(__lowerCAmelCase , """""" , __lowerCAmelCase ) for x in predictions] ) A_ = np.array([re.sub(__lowerCAmelCase , """""" , __lowerCAmelCase ) for x in references] ) else: A_ = np.asarray(__lowerCAmelCase ) A_ = np.asarray(__lowerCAmelCase ) if ignore_case: A_ = np.char.lower(__lowerCAmelCase ) A_ = np.char.lower(__lowerCAmelCase ) if ignore_punctuation: A_ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) A_ = np.char.translate(__lowerCAmelCase , table=__lowerCAmelCase ) A_ = np.char.translate(__lowerCAmelCase , table=__lowerCAmelCase ) if ignore_numbers: A_ = string.digits.maketrans("""""" , """""" , string.digits ) A_ = np.char.translate(__lowerCAmelCase , table=__lowerCAmelCase ) A_ = np.char.translate(__lowerCAmelCase , table=__lowerCAmelCase ) A_ = predictions == references return {"exact_match": np.mean(__lowerCAmelCase ) * 100}
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ , A_ = analyze_text(_snake_case ) A_ = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. A_ = sum(single_char_strings.values() ) # one length string A_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: A_ = single_char_strings[ch] A_ = my_str / all_sum my_fir_sum += prob * math.loga(_snake_case ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string A_ = sum(two_char_strings.values() ) A_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: A_ = cha + cha if sequence in two_char_strings: A_ = two_char_strings[sequence] A_ = int(_snake_case ) / all_sum my_sec_sum += prob * math.loga(_snake_case ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: A_ = Counter() # type: ignore A_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase__ ( ) -> Optional[int]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case_ ( self ) -> int: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> int: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self._test_save_load_local() def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = '''T5Config''' class A__ ( _snake_case ): lowercase = "mt5" lowercase = MTaConfig class A__ ( _snake_case ): lowercase = "mt5" lowercase = MTaConfig class A__ ( _snake_case ): lowercase = "mt5" lowercase = MTaConfig
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A__ ( UpperCAmelCase__ ): lowercase = 42 lowercase = 42 class A__ ( UpperCAmelCase__ , UpperCAmelCase__ ): lowercase = 1 @register_to_config def __init__( self , UpperCamelCase__ = 2000 , UpperCamelCase__ = 0.15 , UpperCamelCase__ = 0.01 , UpperCamelCase__ = 1348.0 , UpperCamelCase__ = 1e-5 , UpperCamelCase__ = 1 , ) -> Optional[Any]: '''simple docstring''' A_ = sigma_max # setable values A_ = None self.set_sigmas(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> str: '''simple docstring''' A_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ = torch.linspace(1 , UpperCamelCase__ , UpperCamelCase__ , device=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> Optional[int]: '''simple docstring''' A_ = sigma_min if sigma_min is not None else self.config.sigma_min A_ = sigma_max if sigma_max is not None else self.config.sigma_max A_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(UpperCamelCase__ , UpperCamelCase__ ) A_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ = torch.exp(torch.linspace(math.log(UpperCamelCase__ ) , math.log(UpperCamelCase__ ) , UpperCamelCase__ ) ) A_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) A_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ = timesteps.to(self.discrete_sigmas.device ) A_ = self.discrete_sigmas[timesteps].to(sample.device ) A_ = self.get_adjacent_sigma(UpperCamelCase__ , UpperCamelCase__ ).to(sample.device ) A_ = torch.zeros_like(UpperCamelCase__ ) A_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ = diffusion.unsqueeze(-1 ) A_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ = randn_tensor( sample.shape , layout=sample.layout , generator=UpperCamelCase__ , device=sample.device , dtype=sample.dtype ) A_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=UpperCamelCase__ , prev_sample_mean=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ = randn_tensor(sample.shape , layout=sample.layout , generator=UpperCamelCase__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ = step_size.unsqueeze(-1 ) A_ = sample + step_size * model_output A_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' A_ = timesteps.to(original_samples.device ) A_ = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(UpperCamelCase__ ) * sigmas[:, None, None, None] ) A_ = noise + original_samples return noisy_samples def __len__( self ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' import math import qiskit def UpperCAmelCase__ ( UpperCAmelCase__ = 1, UpperCAmelCase__ = 1, UpperCAmelCase__ = 1 ) -> int: if ( isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) or isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) or isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(SCREAMING_SNAKE_CASE_ ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE_ ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE_ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers A_ = qiskit.QuantumRegister(4, """qr""" ) A_ = qiskit.ClassicalRegister(2, """cr""" ) # list the entries A_ = [input_a, input_a, carry_in] A_ = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for i in range(0, 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0, 1, 3 ) # ccx = toffoli gate quantum_circuit.cx(0, 1 ) quantum_circuit.ccx(1, 2, 3 ) quantum_circuit.cx(1, 2 ) quantum_circuit.cx(0, 1 ) quantum_circuit.measure([2, 3], SCREAMING_SNAKE_CASE_ ) # measure the last two qbits A_ = qiskit.Aer.get_backend("""aer_simulator""" ) A_ = qiskit.execute(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, shots=10_00 ) return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class A__ ( __snake_case , __snake_case ): lowercase = 'convnextv2' def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="gelu" , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=0.0 , UpperCamelCase__=224 , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(**A_ ) A_ = num_channels A_ = patch_size A_ = num_stages A_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes A_ = [3, 3, 9, 3] if depths is None else depths A_ = hidden_act A_ = initializer_range A_ = layer_norm_eps A_ = drop_path_rate A_ = image_size A_ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] A_ = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = [] if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCAmelCase__ ) ) elif isinstance(UpperCAmelCase__, (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCAmelCase__ ) ) elif isinstance(UpperCAmelCase__, torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = [] for d in reversed(UpperCAmelCase__ ): idx.append(flat_idx % d ) A_ = flat_idx // d return tuple(reversed(UpperCAmelCase__ ) ) @torch.jit.ignore def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = None, ) -> Tuple: def reduce_edge_list(UpperCAmelCase__ ) -> None: A_ = True for i in range(len(UpperCAmelCase__ ) ): A_ = -1 * (i + 1) l[reversed_idx] &= tally A_ = l[reversed_idx] if start_edges is None: A_ = [s == 0 for s in start] reduce_edge_list(UpperCAmelCase__ ) if end_edges is None: A_ = [e == (d - 1) for e, d in zip(UpperCAmelCase__, UpperCAmelCase__ )] reduce_edge_list(UpperCAmelCase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCAmelCase__ ) == 0: return [()] elif len(UpperCAmelCase__ ) == 1: return [(slice(start[0], end[0] + 1 ),)] A_ = [] A_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCAmelCase__, UpperCAmelCase__ ): if s == e: path_list.append(slice(UpperCAmelCase__, s + 1 ) ) else: break A_ = tuple(UpperCAmelCase__ ) A_ = len(UpperCAmelCase__ ) # start == end, and we're done if divergence_idx == len(UpperCAmelCase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ = start[divergence_idx] return tuple( path + (slice(UpperCAmelCase__, sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :], [d - 1 for d in dims[divergence_idx + 1 :]], dims[divergence_idx + 1 :], start_edges=start_edges[divergence_idx + 1 :], end_edges=[True for _ in end_edges[divergence_idx + 1 :]], ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ = end[divergence_idx] return tuple( path + (slice(UpperCAmelCase__, edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]], end[divergence_idx + 1 :], dims[divergence_idx + 1 :], start_edges=[True for _ in start_edges[divergence_idx + 1 :]], end_edges=end_edges[divergence_idx + 1 :], ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) A_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = t.shape[:no_batch_dims] A_ = list(_flat_idx_to_idx(UpperCAmelCase__, UpperCAmelCase__ ) ) # _get_minimal_slice_set is inclusive A_ = list(_flat_idx_to_idx(flat_end - 1, UpperCAmelCase__ ) ) # Get an ordered list of slices to perform A_ = _get_minimal_slice_set( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = False, UpperCAmelCase__ = None, UpperCAmelCase__ = False, ) -> Dict: if not (len(UpperCAmelCase__ ) > 0): raise ValueError("""Must provide at least one input""" ) A_ = [shape[:no_batch_dims] for shape in _fetch_dims(UpperCAmelCase__ )] A_ = tuple([max(UpperCAmelCase__ ) for s in zip(*UpperCAmelCase__ )] ) def _prep_inputs(UpperCAmelCase__ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: A_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) A_ = t.reshape(-1, *t.shape[no_batch_dims:] ) else: A_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t A_ = tensor_tree_map(_prep_inputs, UpperCAmelCase__ ) A_ = None if _out is not None: A_ = tensor_tree_map(lambda UpperCAmelCase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ), _out ) A_ = 1 for d in orig_batch_dims: flat_batch_dim *= d A_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCAmelCase__ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t A_ = 0 A_ = prepped_outputs for _ in range(UpperCAmelCase__ ): # Chunk the input if not low_mem: A_ = _select_chunk else: A_ = partial( _chunk_slice, flat_start=UpperCAmelCase__, flat_end=min(UpperCAmelCase__, i + chunk_size ), no_batch_dims=len(UpperCAmelCase__ ), ) A_ = tensor_tree_map(UpperCAmelCase__, UpperCAmelCase__ ) # Run the layer on the chunk A_ = layer(**UpperCAmelCase__ ) # Allocate space for the output if out is None: A_ = tensor_tree_map(lambda UpperCAmelCase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ), UpperCAmelCase__ ) # Put the chunk in its pre-allocated space if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): def assign(UpperCAmelCase__, UpperCAmelCase__ ) -> None: for k, v in da.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): assign(UpperCAmelCase__, da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: A_ = da[k] assign(UpperCAmelCase__, UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for xa, xa in zip(UpperCAmelCase__, UpperCAmelCase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: A_ = xa elif isinstance(UpperCAmelCase__, torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: A_ = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size A_ = tensor_tree_map(lambda UpperCAmelCase__ : t.view(orig_batch_dims + t.shape[1:] ), UpperCAmelCase__ ) return out class A__ : def __init__( self , UpperCamelCase__ = 512 , ) -> Any: '''simple docstring''' A_ = max_chunk_size A_ = None A_ = None def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size A_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] A_ = [c for c in candidates if c > min_chunk_size] A_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCamelCase__ ) -> bool: try: with torch.no_grad(): fn(*UpperCamelCase__ , chunk_size=UpperCamelCase__ ) return True except RuntimeError: return False A_ = 0 A_ = len(UpperCamelCase__ ) - 1 while i > min_viable_chunk_size_index: A_ = test_chunk_size(candidates[i] ) if not viable: A_ = (min_viable_chunk_size_index + i) // 2 else: A_ = i A_ = (i + len(UpperCamelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> bool: '''simple docstring''' A_ = True for aa, aa in zip(UpperCamelCase__ , UpperCamelCase__ ): assert type(UpperCamelCase__ ) == type(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCamelCase__ , UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [v for _, v in sorted(aa.items() , key=lambda UpperCamelCase__ : x[0] )] A_ = [v for _, v in sorted(aa.items() , key=lambda UpperCamelCase__ : x[0] )] consistent &= self._compare_arg_caches(UpperCamelCase__ , UpperCamelCase__ ) else: consistent &= aa == aa return consistent def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> int: '''simple docstring''' A_ = True A_ = tree_map(lambda UpperCamelCase__ : a.shape if isinstance(UpperCamelCase__ , torch.Tensor ) else a , UpperCamelCase__ , UpperCamelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCamelCase__ ) A_ = self._compare_arg_caches(self.cached_arg_data , UpperCamelCase__ ) else: # Otherwise, we can reuse the precomputed value A_ = False if not consistent: A_ = self._determine_favorable_chunk_size( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) A_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class A__ ( unittest.TestCase ): def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): A_ = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(lowerCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = "sgugger/tiny-distilbert-classification" A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , only_pretrain_model=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , torchscript=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , fpaa=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" A_ = AutoConfig.from_pretrained(lowerCamelCase__ ) # set architectures equal to `None` A_ = None A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ , configs=[config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" A_ = AutoConfig.from_pretrained(lowerCamelCase__ ) A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ , configs=[config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = "sshleifer/tinier_bart" A_ = AutoConfig.from_pretrained(lowerCamelCase__ ) A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ , configs=[config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" A_ = AutoConfig.from_pretrained(lowerCamelCase__ ) A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ , configs=[config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = "sshleifer/tinier_bart" A_ = AutoConfig.from_pretrained(lowerCamelCase__ ) A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ , configs=[config] ) A_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , save_to_csv=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCamelCase__ , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(lowerCamelCase__ , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(lowerCamelCase__ , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(lowerCamelCase__ , """train_time.csv""" ) , env_info_csv_file=os.path.join(lowerCamelCase__ , """env.csv""" ) , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCamelCase__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , """env.csv""" ) ).exists() ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(UpperCamelCase__ ): self.assertTrue(hasattr(lowerCamelCase__ , """sequential""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """cumulative""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """current""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: A_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase__ , inference=lowerCamelCase__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCamelCase__ , """log.txt""" ) , log_print=lowerCamelCase__ , trace_memory_line_by_line=lowerCamelCase__ , multi_process=lowerCamelCase__ , ) A_ = PyTorchBenchmark(lowerCamelCase__ ) A_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCamelCase__ , """log.txt""" ) ).exists() )
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ = 10_00 ) -> Any: return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1 ) ) if __name__ == "__main__": print(solution())
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = [10, 20, 30, 40, 50, 60] A_ = [2, 4, 6, 8, 10, 12] A_ = 100 self.assertEqual(kp.calc_profit(__a , __a , __a ) , 210 ) def snake_case_ ( self ) -> str: '''simple docstring''' self.assertRaisesRegex(__a , """max_weight must greater than zero.""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex(__a , """Weight can not be negative.""" ) def snake_case_ ( self ) -> Dict: '''simple docstring''' self.assertRaisesRegex(__a , """Profit can not be negative.""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex(__a , """max_weight must greater than zero.""" ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' self.assertRaisesRegex( __a , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A_ = """xvjiarui/stable-diffusion-2-inpainting""" A_ , A_ = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) A_ = """Face of a yellow cat, high resolution, sitting on a park bench""" A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = num_samples * [init_image] A_ = num_samples * [mask_image] A_ , A_ , A_ = pipeline.prepare_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # shard inputs and rng A_ = replicate(UpperCAmelCase__ ) A_ = jax.random.split(UpperCAmelCase__ , jax.device_count() ) A_ = shard(UpperCAmelCase__ ) A_ = shard(UpperCAmelCase__ ) A_ = shard(UpperCAmelCase__ ) A_ = pipeline( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ) A_ = output.images.reshape(UpperCAmelCase__ , 512 , 512 , 3 ) A_ = images[0, 253:256, 253:256, -1] A_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) A_ = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A__ ( __a ): snake_case = "xlm-roberta-xl" def __init__( self , UpperCamelCase__=250880 , UpperCamelCase__=2560 , UpperCamelCase__=36 , UpperCamelCase__=32 , UpperCamelCase__=10240 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=514 , UpperCamelCase__=1 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-0_5 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = classifier_dropout class A__ ( __a ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration __lowerCamelCase = '''facebook/wmt19-en-de''' __lowerCamelCase = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model __lowerCamelCase = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) __lowerCamelCase = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test __lowerCamelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __lowerCamelCase = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save __lowerCamelCase = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: # A local function to see if a dot lands in the circle. def is_in_circle(UpperCAmelCase__, UpperCAmelCase__ ) -> bool: A_ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle A_ = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(lowercase__ ) ) # The ratio of the area for circle to square is pi/4. A_ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0.0, UpperCAmelCase__ = 1.0, ) -> Any: return mean( function_to_integrate(uniform(lowercase__, lowercase__ ) ) for _ in range(lowercase__ ) ) * (max_value - min_value) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = 0.0, UpperCAmelCase__ = 1.0 ) -> Any: def identity_function(UpperCAmelCase__ ) -> float: return x A_ = area_under_curve_estimator( lowercase__, lowercase__, lowercase__, lowercase__ ) A_ = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: def function_to_integrate(UpperCAmelCase__ ) -> float: return sqrt(4.0 - x * x ) A_ = area_under_curve_estimator( lowercase__, lowercase__, 0.0, 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__ = 4 ) -> List[Any]: A_ = abs(lowerCAmelCase_ ) or 4 return [[1 + x + y * row_size for x in range(lowerCAmelCase_ )] for y in range(lowerCAmelCase_ )] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return reverse_row(transpose(lowerCAmelCase_ ) ) # OR.. transpose(reverse_column(matrix)) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: return reverse_row(reverse_column(lowerCAmelCase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: return reverse_column(transpose(lowerCAmelCase_ ) ) # OR.. transpose(reverse_row(matrix)) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: A_ = [list(lowerCAmelCase_ ) for x in zip(*lowerCAmelCase_ )] return matrix def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = matrix[::-1] return matrix def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = [x[::-1] for x in matrix] return matrix def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: for i in matrix: print(*lowerCAmelCase_ ) if __name__ == "__main__": __lowerCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 90 counterclockwise:\n''') print_matrix(rotate_aa(matrix)) __lowerCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 180:\n''') print_matrix(rotate_aaa(matrix)) __lowerCamelCase = make_matrix() print('''\norigin:\n''') print_matrix(matrix) print('''\nrotate 270 counterclockwise:\n''') print_matrix(rotate_aaa(matrix))
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __lowerCamelCase = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __lowerCamelCase = 10 __lowerCamelCase = 256 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: if len(SCREAMING_SNAKE_CASE__ ) < MIN_NUM_TOKENS: return None A_ = MinHash(num_perm=SCREAMING_SNAKE_CASE__ ) for token in set(SCREAMING_SNAKE_CASE__ ): min_hash.update(token.encode() ) return min_hash def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE__ ) if len(t.strip() ) > 0} class A__ : def __init__( self , *, UpperCamelCase__ = 0.85 , ) -> Any: '''simple docstring''' A_ = duplication_jaccard_threshold A_ = NUM_PERM A_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) A_ = defaultdict(lowercase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self._index.query(lowercase__ ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(lowercase__ , lowercase__ ) if len(lowercase__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = [] for base, duplicates in self._duplicate_clusters.items(): A_ = [base] + list(lowercase__ ) # reformat the cluster to be a list of dict A_ = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowercase__ ) return duplicate_clusters def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.get_duplicate_clusters() with open(lowercase__ , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = element A_ = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash, ThreadedIterator(SCREAMING_SNAKE_CASE__, max_queue_size=1_00_00 ), chunksize=1_00, ): if data is not None: yield data def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE__ ) ), max_queue_size=1_00 ) ): di.add(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: A_ = get_tokens(SCREAMING_SNAKE_CASE__ ) A_ = get_tokens(SCREAMING_SNAKE_CASE__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __lowerCamelCase = None def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = [] for elementa in cluster: A_ = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: A_ = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: A_ = 1 extremes.append(SCREAMING_SNAKE_CASE__ ) return extremes def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: global _shared_dataset A_ = dataset A_ = [] A_ = partial(_find_cluster_extremes_shared, jaccard_threshold=SCREAMING_SNAKE_CASE__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, ), total=len(SCREAMING_SNAKE_CASE__ ), ): extremes_list.append(SCREAMING_SNAKE_CASE__ ) return extremes_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = 0.85 ) -> List[str]: A_ = make_duplicate_clusters(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) A_ = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} A_ = {} A_ = find_extremes(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) for extremes in extremes_clusters: for element in extremes: A_ = element A_ = duplicate_indices - set(extreme_dict.keys() ) A_ = dataset.filter(lambda UpperCAmelCase__, UpperCAmelCase__ : idx not in remove_indices, with_indices=SCREAMING_SNAKE_CASE__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: A_ = element["""base_index"""] in extreme_dict if element["is_extreme"]: A_ = extreme_dict[element["""base_index"""]]["""copies"""] print(F'''Original dataset size: {len(SCREAMING_SNAKE_CASE__ )}''' ) print(F'''Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE__ )}''' ) print(F'''Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}''' ) print(F'''Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE__ )}''' ) print(F'''Filtered dataset size: {len(SCREAMING_SNAKE_CASE__ )}''' ) return ds_filter, duplicate_clusters
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = "first_exhausted", ) -> Optional[int]: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(a_ ): if not isinstance(a_, (Dataset, IterableDataset) ): if isinstance(a_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' """is an empty dataset dictionary.""" ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(a_ )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(a_ ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_ ).__name__}.''' ) if i == 0: A_ = ( (Dataset, IterableDataset) if isinstance(a_, a_ ) else (IterableDataset, Dataset) ) elif not isinstance(a_, a_ ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( a_, a_, a_, info=a_, split=a_, stopping_strategy=a_ ) else: return _interleave_iterable_datasets( a_, a_, a_, info=a_, split=a_, stopping_strategy=a_ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = 0, ) -> List[Any]: if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(a_ ): if not isinstance(a_, (Dataset, IterableDataset) ): if isinstance(a_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' """is an empty dataset dictionary.""" ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(a_ )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(a_ ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_ ).__name__}.''' ) if i == 0: A_ = ( (Dataset, IterableDataset) if isinstance(a_, a_ ) else (IterableDataset, Dataset) ) elif not isinstance(a_, a_ ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(a_, info=a_, split=a_, axis=a_ ) else: return _concatenate_iterable_datasets(a_, info=a_, split=a_, axis=a_ )
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class A__ ( _snake_case ): lowercase = "speech_to_text" lowercase = ["past_key_values"] lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase__=10000 , UpperCamelCase__=12 , UpperCamelCase__=2048 , UpperCamelCase__=4 , UpperCamelCase__=6 , UpperCamelCase__=2048 , UpperCamelCase__=4 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=6000 , UpperCamelCase__=1024 , UpperCamelCase__=2 , UpperCamelCase__=(5, 5) , UpperCamelCase__=1024 , UpperCamelCase__=80 , UpperCamelCase__=1 , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' A_ = vocab_size A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = max_source_positions A_ = max_target_positions A_ = num_conv_layers A_ = list(UpperCamelCase__ ) A_ = conv_channels A_ = input_feat_per_channel A_ = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , **UpperCamelCase__ , )
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __lowerCamelCase = None __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowerCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } __lowerCamelCase = { '''camembert-base''': 512, } __lowerCamelCase = '''▁''' class A__ ( _UpperCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = CamembertTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<s>NOTUSED", "</s>NOTUSED"] , **UpperCamelCase__ , ) -> str: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , **__a , ) A_ = vocab_file A_ = False if not self.vocab_file else True def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ = [self.cls_token_id] A_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' from manim import * class A__ ( UpperCAmelCase_ ): def snake_case_ ( self ) -> str: '''simple docstring''' A_ = Rectangle(height=0.5 , width=0.5 ) A_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) A_ = [mem.copy() for i in range(6 )] A_ = [mem.copy() for i in range(6 )] A_ = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) A_ = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) A_ = VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) A_ = Text("""CPU""" , font_size=24 ) A_ = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) A_ = [mem.copy() for i in range(1 )] A_ = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) A_ = Text("""GPU""" , font_size=24 ) A_ = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) gpu.align_to(_snake_case , _snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(_snake_case ) A_ = [mem.copy() for i in range(6 )] A_ = VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) A_ = Text("""Model""" , font_size=24 ) A_ = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) , ) A_ = MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) A_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case , run_time=2.5 ) , Write(_snake_case ) , Write(_snake_case ) ) self.add(_snake_case ) A_ = [] A_ = [] A_ = [] for i, rect in enumerate(_snake_case ): A_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_snake_case , opacity=0.7 ) cpu_target.move_to(_snake_case ) cpu_target.generate_target() A_ = 0.46 / 4 A_ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_snake_case , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_snake_case , buff=0.0 ) cpu_targs.append(_snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_snake_case ) ) second_animations.append(MoveToTarget(_snake_case , run_time=1.5 ) ) self.play(*_snake_case ) self.play(*_snake_case ) self.wait()
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: A_ = current_set.copy() for row_index, row in enumerate(UpperCAmelCase__ ): A_ = row[0] for column_index, column in enumerate(UpperCAmelCase__ ): if magnitude == 0: A_ = column continue A_ = column / magnitude # Subtract to cancel term A_ = current_set[0] A_ = [first_row] A_ = current_set[1::] for row in current_set: A_ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCAmelCase__ ) continue for column_index in range(len(UpperCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: A_ = final_set[0] A_ = [] A_ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) A_ = simplify(UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, UpperCAmelCase__ ) A_ = resultant return final_set def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: if len(UpperCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) A_ = len(UpperCAmelCase__ ) + 1 if any(len(UpperCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(UpperCAmelCase__, (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(UpperCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] A_ = equations.copy() if any(0 in row for row in data_set ): A_ = data_set.copy() A_ = [] for row_index, row in enumerate(UpperCAmelCase__ ): if 0 not in row: A_ = data_set.pop(UpperCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0, UpperCAmelCase__ ) A_ = data_set.copy() A_ = simplify(UpperCAmelCase__ ) A_ = simplified[::-1] A_ = [] for row in simplified: A_ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue A_ = row.copy()[: len(UpperCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCAmelCase__ ) == 0: solutions.append(0 ) continue A_ = temp_row[1::] A_ = temp_row[::-1] for column_index, column in enumerate(UpperCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(UpperCAmelCase__ ) A_ = [] for item in solutions: final.append(float(round(UpperCAmelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( UpperCamelCase__ ): lowercase = ["image_processor", "tokenizer"] lowercase = "AutoImageProcessor" lowercase = "AutoTokenizer" def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' super().__init__(_a , _a ) A_ = self.image_processor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(_a , return_tensors=_a , **_a ) if images is not None: A_ = self.image_processor(_a , return_tensors=_a , **_a ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*_a , **_a ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*_a , **_a ) @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __lowerCamelCase = object() # For specifying empty leaf dict `{}` __lowerCamelCase = object() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(__UpperCamelCase ) - len(__UpperCamelCase ) + 1 ): A_ = [x.match(__UpperCamelCase ) for x, y in zip(__UpperCamelCase, ks[i:] )] if matches and all(__UpperCamelCase ): return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: def replace(UpperCAmelCase__, UpperCAmelCase__ ): for rule, replacement in rules: if _match(__UpperCamelCase, __UpperCamelCase ): return replacement return val return replace def UpperCAmelCase__ ( ) -> Dict: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""", __UpperCamelCase )), (("transformer", "wte", "embedding"), P("""mp""", __UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__UpperCamelCase, """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""", __UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__UpperCamelCase, """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""", __UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = _get_partition_rules() A_ = _replacement_rules(__UpperCamelCase ) A_ = {k: _unmatched for k in flatten_dict(__UpperCamelCase )} A_ = {k: replace(__UpperCamelCase, __UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__UpperCamelCase ) )
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowercase = MobileBertTokenizer lowercase = MobileBertTokenizerFast lowercase = True lowercase = True lowercase = filter_non_english lowercase = "google/mobilebert-uncased" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() A_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) A_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = """UNwant\u00E9d,running""" A_ = """unwanted, running""" return input_text, output_text def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.tokenizer_class(self.vocab_file ) A_ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_lowerCamelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [9, 6, 7, 12, 10, 11] ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' if not self.test_rust_tokenizer: return A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = """UNwant\u00E9d,running""" A_ = tokenizer.tokenize(_lowerCamelCase ) A_ = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ = self.get_rust_tokenizer() A_ = tokenizer.encode(_lowerCamelCase ) A_ = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # With lower casing A_ = self.get_tokenizer(do_lower_case=_lowerCamelCase ) A_ = self.get_rust_tokenizer(do_lower_case=_lowerCamelCase ) A_ = """UNwant\u00E9d,running""" A_ = tokenizer.tokenize(_lowerCamelCase ) A_ = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ = self.get_rust_tokenizer() A_ = tokenizer.encode(_lowerCamelCase ) A_ = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = BasicTokenizer(do_lower_case=_lowerCamelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] A_ = {} for i, token in enumerate(_lowerCamelCase ): A_ = i A_ = WordpieceTokenizer(vocab=_lowerCamelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def snake_case_ ( self ) -> Dict: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCamelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCamelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) A_ = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase ) A_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase ) A_ = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) A_ = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' A_ = tokenizer_r.encode_plus( _lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase , ) A_ = tokenizer_r.do_lower_case if hasattr(_lowerCamelCase , """do_lower_case""" ) else False A_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = ["""的""", """人""", """有"""] A_ = """""".join(_lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = True A_ = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) A_ = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) A_ = False A_ = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) A_ = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) A_ = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) A_ = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". A_ = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_lowerCamelCase ) ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ) -> Tuple: '''simple docstring''' A_ = start A_ = end A_ = val A_ = (start + end) // 2 A_ = left A_ = right def __repr__( self ) -> int: '''simple docstring''' return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = collection A_ = function if self.collection: A_ = self._build_tree(0 , len(UpperCamelCase__ ) - 1 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' self._update_tree(self.root , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self._query_range(self.root , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if start == end: return SegmentTreeNode(UpperCamelCase__ , UpperCamelCase__ , self.collection[start] ) A_ = (start + end) // 2 A_ = self._build_tree(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._build_tree(mid + 1 , UpperCamelCase__ ) return SegmentTreeNode(UpperCamelCase__ , UpperCamelCase__ , self.fn(left.val , right.val ) , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if node.start == i and node.end == i: A_ = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase__ , UpperCamelCase__ ) else: self._update_tree(node.right , UpperCamelCase__ , UpperCamelCase__ ) A_ = self.fn(node.left.val , node.right.val ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase__ , UpperCamelCase__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase__ , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase__ ) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' if self.root is not None: A_ = Queue() queue.put(self.root ) while not queue.empty(): A_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class A__ ( __lowercase ): lowercase = 'gpt_neox' def __init__( self , UpperCamelCase__=50432 , UpperCamelCase__=6144 , UpperCamelCase__=44 , UpperCamelCase__=64 , UpperCamelCase__=24576 , UpperCamelCase__="gelu" , UpperCamelCase__=0.25 , UpperCamelCase__=10000 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=2048 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-5 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(bos_token_id=__A , eos_token_id=__A , **__A ) A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = rotary_pct A_ = rotary_emb_base A_ = attention_dropout A_ = hidden_dropout A_ = classifier_dropout A_ = initializer_range A_ = layer_norm_eps A_ = use_cache A_ = tie_word_embeddings A_ = use_parallel_residual A_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def snake_case_ ( self ) -> int: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __A ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) A_ = self.rope_scaling.get("""type""" , __A ) A_ = self.rope_scaling.get("""factor""" , __A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__A , __A ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: for i in range(len(UpperCamelCase__ ) - 1, 0, -1 ): A_ = False for j in range(UpperCamelCase__, 0, -1 ): if unsorted[j] < unsorted[j - 1]: A_ , A_ = unsorted[j - 1], unsorted[j] A_ = True for j in range(UpperCamelCase__ ): if unsorted[j] > unsorted[j + 1]: A_ , A_ = unsorted[j + 1], unsorted[j] A_ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase = [int(item) for item in user_input.split(''',''')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __lowerCamelCase = logging.getLogger(__name__) @dataclass(frozen=__UpperCAmelCase ) class A__ : lowercase = 42 lowercase = 42 lowercase = None lowercase = None lowercase = None @dataclass(frozen=__UpperCAmelCase ) class A__ : lowercase = 42 lowercase = None lowercase = None lowercase = None lowercase = None if is_torch_available(): import torch from torch.utils.data import Dataset class A__ ( __UpperCAmelCase ): lowercase = 42 def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__=False , UpperCamelCase__ = False , ) -> List[Any]: '''simple docstring''' A_ = hans_processors[task]() A_ = os.path.join( __SCREAMING_SNAKE_CASE , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , ) , ) A_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ , A_ = label_list[2], label_list[1] A_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ = cached_features_file + """.lock""" with FileLock(__SCREAMING_SNAKE_CASE ): if os.path.exists(__SCREAMING_SNAKE_CASE ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) A_ = torch.load(__SCREAMING_SNAKE_CASE ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) A_ = ( processor.get_dev_examples(__SCREAMING_SNAKE_CASE ) if evaluate else processor.get_train_examples(__SCREAMING_SNAKE_CASE ) ) logger.info("""Training examples: %s""" , len(__SCREAMING_SNAKE_CASE ) ) A_ = hans_convert_examples_to_features(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) logger.info("""Saving features into cached file %s""" , __SCREAMING_SNAKE_CASE ) torch.save(self.features , __SCREAMING_SNAKE_CASE ) def __len__( self ) -> str: '''simple docstring''' return len(self.features ) def __getitem__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' return self.features[i] def snake_case_ ( self ) -> int: '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class A__ : lowercase = 42 def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 128 , UpperCamelCase__=False , UpperCamelCase__ = False , ) -> List[Any]: '''simple docstring''' A_ = hans_processors[task]() A_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ , A_ = label_list[2], label_list[1] A_ = label_list A_ = processor.get_dev_examples(__SCREAMING_SNAKE_CASE ) if evaluate else processor.get_train_examples(__SCREAMING_SNAKE_CASE ) A_ = hans_convert_examples_to_features(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 10000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(__SCREAMING_SNAKE_CASE )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A_ = tf.data.Dataset.from_generator( __SCREAMING_SNAKE_CASE , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.dataset def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.features ) def __getitem__( self , UpperCamelCase__ ) -> str: '''simple docstring''' return self.features[i] def snake_case_ ( self ) -> List[str]: '''simple docstring''' return self.label_list class A__ ( __UpperCAmelCase ): def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__SCREAMING_SNAKE_CASE , """heuristics_train_set.txt""" ) ) , """train""" ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__SCREAMING_SNAKE_CASE , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' return ["contradiction", "entailment", "neutral"] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = [] for i, line in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: continue A_ = """%s-%s""" % (set_type, line[0]) A_ = line[5] A_ = line[6] A_ = line[7][2:] if line[7].startswith("""ex""" ) else line[7] A_ = line[0] examples.append(InputExample(guid=__SCREAMING_SNAKE_CASE , text_a=__SCREAMING_SNAKE_CASE , text_b=__SCREAMING_SNAKE_CASE , label=__SCREAMING_SNAKE_CASE , pairID=__SCREAMING_SNAKE_CASE ) ) return examples def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> str: A_ = {label: i for i, label in enumerate(_UpperCAmelCase )} A_ = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ), desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d""" % (ex_index) ) A_ = tokenizer( example.text_a, example.text_b, add_special_tokens=_UpperCAmelCase, max_length=_UpperCAmelCase, padding="""max_length""", truncation=_UpperCAmelCase, return_overflowing_tokens=_UpperCAmelCase, ) A_ = label_map[example.label] if example.label in label_map else 0 A_ = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase, label=_UpperCAmelCase, pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features __lowerCamelCase = { '''hans''': 3, } __lowerCamelCase = { '''hans''': HansProcessor, }
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {'''vocab_file''': '''spiece.model'''} __lowerCamelCase = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } __lowerCamelCase = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class A__ ( UpperCamelCase_ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = [] def __init__( self , UpperCamelCase__ , UpperCamelCase__="<unk>" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<pad>" , UpperCamelCase__="[SEP]" , UpperCamelCase__="[MASK]" , UpperCamelCase__="[CLS]" , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: '''simple docstring''' A_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token A_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token A_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token A_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token A_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token A_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token A_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , sep_token=__a , mask_token=__a , cls_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) A_ = vocab_file A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return self.sp_model.get_piece_size() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: '''simple docstring''' A_ = self.__dict__.copy() A_ = None return state def __setstate__( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ = {} A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__a , out_type=__a ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.sp_model.piece_to_id(__a ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = self.sp_model.IdToPiece(__a ) return token def snake_case_ ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = [] A_ = '' A_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token A_ = True A_ = [] else: current_sub_tokens.append(__a ) A_ = False out_string += self.sp_model.decode(__a ) return out_string.strip() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> str: '''simple docstring''' A_ = kwargs.pop("""use_source_tokenizer""" , __a ) A_ = self.convert_ids_to_tokens(__a , skip_special_tokens=__a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ = [] A_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__a ) ) A_ = [] sub_texts.append(__a ) else: current_sub_text.append(__a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: A_ = re.sub(R""" (\[(MASK|SEP)\])""" , R"""\1""" , """ """.join(__a ) ) else: A_ = ''.join(__a ) A_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ = self.clean_up_tokenization(__a ) return clean_text else: return text def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: A_ = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ = [self.cls_token_id] A_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=64 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> str: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = embedding_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = MegatronBertModel(config=__A ) model.to(__A ) model.eval() A_ = model(__A , attention_mask=__A , token_type_ids=__A ) A_ = model(__A , token_type_ids=__A ) A_ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = MegatronBertForMaskedLM(config=__A ) model.to(__A ) model.eval() A_ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = MegatronBertForCausalLM(config=__A ) model.to(__A ) model.eval() A_ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = MegatronBertForNextSentencePrediction(config=__A ) model.to(__A ) model.eval() A_ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = MegatronBertForPreTraining(config=__A ) model.to(__A ) model.eval() A_ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = MegatronBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() A_ = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = MegatronBertForSequenceClassification(__A ) model.to(__A ) model.eval() A_ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = MegatronBertForTokenClassification(config=__A ) model.to(__A ) model.eval() A_ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self.num_choices A_ = MegatronBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True # test_resize_embeddings = False lowercase = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def snake_case_ ( self ) -> str: '''simple docstring''' A_ = MegatronBertModelTester(self ) A_ = ConfigTester(self , config_class=__A , hidden_size=37 ) def snake_case_ ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__A ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__A ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__A ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__A ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__A ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__A ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__A ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__A ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: return torch.tensor( _lowercase, dtype=torch.long, device=_lowercase, ) __lowerCamelCase = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow @unittest.skip("""Model is not available.""" ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: A_ = os.path.join(os.environ["""MYDIR"""] , __A ) A_ = MegatronBertModel.from_pretrained(__A ) model.to(__A ) model.half() A_ = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): A_ = model(__A )[0] A_ = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __A ) A_ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): A_ = output[0, ii, jj] A_ = expected[3 * ii + jj] A_ = """ii={} jj={} a={} b={}""".format(__A , __A , __A , __A ) self.assertTrue(math.isclose(__A , __A , rel_tol=__A , abs_tol=__A ) , msg=__A )
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ = {} A_ = job["""started_at"""] A_ = job["""completed_at"""] A_ = date_parser.parse(lowercase_ ) A_ = date_parser.parse(lowercase_ ) A_ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) A_ = start A_ = end A_ = duration_in_min return job_info def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=None ) -> Tuple: A_ = None if token is not None: A_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''} A_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' A_ = requests.get(lowercase_, headers=lowercase_ ).json() A_ = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(lowercase_ ) for job in result["""jobs"""]} ) A_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(lowercase_ ): A_ = requests.get(url + F'''&page={i + 2}''', headers=lowercase_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(lowercase_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = get_job_time(args.workflow_run_id) __lowerCamelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __lowerCamelCase = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from math import factorial __lowerCamelCase = {str(digit): factorial(digit) for digit in range(10)} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: if not isinstance(_lowerCamelCase, _lowerCamelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCamelCase ) ) def UpperCAmelCase__ ( UpperCAmelCase__ = 60, UpperCAmelCase__ = 1_00_00_00 ) -> List[str]: if not isinstance(_lowerCamelCase, _lowerCamelCase ) or not isinstance(_lowerCamelCase, _lowerCamelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length A_ = 0 # the cached sizes of the previous chains A_ = {} for start_chain_element in range(1, _lowerCamelCase ): # The temporary set will contain the elements of the chain A_ = set() A_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. A_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCamelCase ) chain_set_length += 1 A_ = digit_factorial_sum(_lowerCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] A_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution()}""")
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' import argparse import os import re import packaging.version __lowerCamelCase = """examples/""" __lowerCamelCase = { """examples""": (re.compile(r'''^check_min_version\(\"[^\"]+\"\)\s*$''', re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r'''^__version__\s+=\s+\"([^\"]+)\"\s*$''', re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r'''^(\s*)version\s*=\s*\"[^\"]+\",''', re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(r'''^(\s*)release\s*=\s*\"[^\"]+\"$''', re.MULTILINE), """release = \"VERSION\"\n"""), } __lowerCamelCase = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } __lowerCamelCase = """README.md""" def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A_ = f.read() A_ , A_ = REPLACE_PATTERNS[pattern] A_ = replace.replace("""VERSION""", UpperCAmelCase__ ) A_ = re_pattern.sub(UpperCAmelCase__, UpperCAmelCase__ ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.write(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: for folder, directories, fnames in os.walk(UpperCAmelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ), UpperCAmelCase__, pattern="""examples""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> Optional[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if not patch: update_version_in_examples(UpperCAmelCase__ ) def UpperCAmelCase__ ( ) -> List[Any]: A_ = """🤗 Transformers currently provides the following architectures""" A_ = """1. Want to contribute a new model?""" with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A_ = f.readlines() # Find the start of the list. A_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): A_ = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""", """https://huggingface.co/docs/diffusers/model_doc""", ) index += 1 with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) def UpperCAmelCase__ ( ) -> List[str]: with open(REPLACE_FILES["""init"""], """r""" ) as f: A_ = f.read() A_ = REPLACE_PATTERNS["""init"""][0].search(UpperCAmelCase__ ).groups()[0] return packaging.version.parse(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__=False ) -> Tuple: A_ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: A_ = default_version.base_version elif patch: A_ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: A_ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. A_ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(UpperCAmelCase__ ) == 0: A_ = default_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCAmelCase__, patch=UpperCAmelCase__ ) def UpperCAmelCase__ ( ) -> Tuple: A_ = get_version() A_ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' A_ = current_version.base_version # Check with the user we got that right. A_ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(UpperCAmelCase__ ) == 0: A_ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCAmelCase__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __lowerCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import re import string import numpy as np import datasets __lowerCamelCase = '''\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n''' __lowerCamelCase = '''\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n''' __lowerCamelCase = '''\n''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , ) -> Any: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: A_ = np.array([re.sub(lowercase__ , """""" , lowercase__ ) for x in predictions] ) A_ = np.array([re.sub(lowercase__ , """""" , lowercase__ ) for x in references] ) else: A_ = np.asarray(lowercase__ ) A_ = np.asarray(lowercase__ ) if ignore_case: A_ = np.char.lower(lowercase__ ) A_ = np.char.lower(lowercase__ ) if ignore_punctuation: A_ = string.punctuation.maketrans("""""" , """""" , string.punctuation ) A_ = np.char.translate(lowercase__ , table=lowercase__ ) A_ = np.char.translate(lowercase__ , table=lowercase__ ) if ignore_numbers: A_ = string.digits.maketrans("""""" , """""" , string.digits ) A_ = np.char.translate(lowercase__ , table=lowercase__ ) A_ = np.char.translate(lowercase__ , table=lowercase__ ) A_ = predictions == references return {"exact_match": np.mean(lowercase__ ) * 100}
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __lowerCamelCase = '''Create a default config file for Accelerate with only a few flags set.''' def UpperCAmelCase__ ( UpperCAmelCase__="no", UpperCAmelCase__ = default_json_config_file, UpperCAmelCase__ = False ) -> str: A_ = Path(SCREAMING_SNAKE_CASE_ ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_, exist_ok=SCREAMING_SNAKE_CASE_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False A_ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) A_ = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): A_ = torch.cuda.device_count() A_ = num_gpus A_ = False if num_gpus > 1: A_ = 'MULTI_GPU' else: A_ = 'NO' elif is_xpu_available() and use_xpu: A_ = torch.xpu.device_count() A_ = num_xpus A_ = False if num_xpus > 1: A_ = 'MULTI_XPU' else: A_ = 'NO' elif is_npu_available(): A_ = torch.npu.device_count() A_ = num_npus A_ = False if num_npus > 1: A_ = 'MULTI_NPU' else: A_ = 'NO' else: A_ = 0 A_ = True A_ = 1 A_ = 'NO' A_ = ClusterConfig(**SCREAMING_SNAKE_CASE_ ) config.to_json_file(SCREAMING_SNAKE_CASE_ ) return path def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = parser.add_parser("""default""", parents=SCREAMING_SNAKE_CASE_, help=SCREAMING_SNAKE_CASE_, formatter_class=SCREAMING_SNAKE_CASE_ ) parser.add_argument( """--config_file""", default=SCREAMING_SNAKE_CASE_, help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ), dest="""save_location""", ) parser.add_argument( """--mixed_precision""", choices=["""no""", """fp16""", """bf16"""], type=SCREAMING_SNAKE_CASE_, help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""", default="""no""", ) parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = write_basic_config(args.mixed_precision, args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def UpperCAmelCase__ ( ) -> Any: A_ = 9, 14 # noqa: F841 A_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A_ = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) A_ = mst(__lowercase ) A_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: A_ = tuple(answer[:2] ) A_ = tuple(edge[::-1] ) assert edge in result or reverse in result
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' from __future__ import annotations from collections import deque class A__ : def __init__( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(_A ) self.set_fail_transitions() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = 0 for character in keyword: A_ = self.find_next_state(_A , _A ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) A_ = len(self.adlist ) - 1 else: A_ = next_state self.adlist[current_state]["output"].append(_A ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = deque() for node in self.adlist[0]["next_states"]: q.append(_A ) A_ = 0 while q: A_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_A ) A_ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(_A , self.adlist[child]["""value"""] ) is None and state != 0 ): A_ = self.adlist[state]["""fail_state"""] A_ = self.find_next_state( _A , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: A_ = 0 A_ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = {} # returns a dict with keywords and list of its occurrences A_ = 0 for i in range(len(_A ) ): while ( self.find_next_state(_A , string[i] ) is None and current_state != 0 ): A_ = self.adlist[current_state]["""fail_state"""] A_ = self.find_next_state(_A , string[i] ) if next_state is None: A_ = 0 else: A_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: A_ = [] result[key].append(i - len(_A ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=100 , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , ) -> Optional[int]: '''simple docstring''' A_ = parent A_ = vocab_size A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = FlaxBeitModel(config=snake_case__ ) A_ = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = FlaxBeitForMaskedImageModeling(config=snake_case__ ) A_ = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.type_sequence_label_size A_ = FlaxBeitForImageClassification(config=snake_case__ ) A_ = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = FlaxBeitForImageClassification(snake_case__ ) A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(snake_case__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class A__ ( __a , unittest.TestCase ): lowercase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = FlaxBeitModelTester(self ) A_ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(snake_case__ ) A_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = self._prepare_for_class(snake_case__ , snake_case__ ) A_ = model_class(snake_case__ ) @jax.jit def model_jitted(UpperCamelCase__ , **UpperCamelCase__ ): return model(pixel_values=snake_case__ , **snake_case__ ) with self.subTest("""JIT Enabled""" ): A_ = model_jitted(**snake_case__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A_ = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: A_ = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) A_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( ) -> Dict: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Tuple: '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=snake_case__ , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos A_ = np.ones((1, 196) , dtype=snake_case__ ) # forward pass A_ = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) A_ = outputs.logits # verify the logits A_ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case__ ) A_ = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def snake_case_ ( self ) -> str: '''simple docstring''' A_ = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=snake_case__ , return_tensors="""np""" ) # forward pass A_ = model(**snake_case__ ) A_ = outputs.logits # verify the logits A_ = (1, 1000) self.assertEqual(logits.shape , snake_case__ ) A_ = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) A_ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def snake_case_ ( self ) -> int: '''simple docstring''' A_ = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=snake_case__ , return_tensors="""np""" ) # forward pass A_ = model(**snake_case__ ) A_ = outputs.logits # verify the logits A_ = (1, 21841) self.assertEqual(logits.shape , snake_case__ ) A_ = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) A_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ )
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return {}, {}, {} def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = load_image(UpperCamelCase__ ) A_ = image.size A_ = self.image_processor(images=UpperCamelCase__ , return_tensors=self.framework ) return model_inputs def snake_case_ ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = self.model(**UpperCamelCase__ ) return model_outputs def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = model_outputs.predicted_depth A_ = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=UpperCamelCase__ ) A_ = prediction.squeeze().cpu().numpy() A_ = (output * 255 / np.max(UpperCamelCase__ )).astype("""uint8""" ) A_ = Image.fromarray(UpperCamelCase__ ) A_ = {} A_ = predicted_depth A_ = depth return output_dict
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: # Construct model if gpta_config_file == "": A_ = GPTaConfig() else: A_ = GPTaConfig.from_json_file(_A ) A_ = GPTaModel(_A ) # Load weights from numpy load_tf_weights_in_gpta(_A, _A, _A ) # Save pytorch-model A_ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A_ = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict(), _A ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_A, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) __lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __lowerCamelCase = logging.get_logger(__name__) @dataclass class A__ : lowercase = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) lowercase = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowercase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowercase = field( default=_A , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.task_name.lower() class A__ ( _A ): lowercase = "train" lowercase = "dev" lowercase = "test" class A__ ( _A ): lowercase = 42 lowercase = 42 lowercase = 42 def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = Split.train , UpperCamelCase__ = None , ) -> Any: '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , UpperCamelCase__ , ) A_ = args A_ = glue_processors[args.task_name]() A_ = glue_output_modes[args.task_name] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): try: A_ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file A_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) A_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) A_ , A_ = label_list[2], label_list[1] A_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A_ = cached_features_file + """.lock""" with FileLock(UpperCamelCase__ ): if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: A_ = time.time() A_ = torch.load(UpperCamelCase__ ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: A_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: A_ = self.processor.get_test_examples(args.data_dir ) else: A_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: A_ = examples[:limit_length] A_ = glue_convert_examples_to_features( UpperCamelCase__ , UpperCamelCase__ , max_length=args.max_seq_length , label_list=UpperCamelCase__ , output_mode=self.output_mode , ) A_ = time.time() torch.save(self.features , UpperCamelCase__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> str: '''simple docstring''' return len(self.features ) def __getitem__( self , UpperCamelCase__ ) -> InputFeatures: '''simple docstring''' return self.features[i] def snake_case_ ( self ) -> List[str]: '''simple docstring''' return self.label_list
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> int: '''simple docstring''' A_ = 10 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = [1, 2, 3, 4] A_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_A , self.block_size , 0 ) , _A ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_A , self.block_size , 0 ) , _A ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_A , self.block_size , 0 ) , _A ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' A_ = process_story(_A ) self.assertEqual(_A , [] ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = '' A_ = process_story(_A ) self.assertEqual(_A , [] ) self.assertEqual(_A , [] ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) A_ = process_story(_A ) A_ = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(_A , _A ) A_ = ['It was the best of times.'] self.assertEqual(_A , _A ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = torch.tensor([1, 2, 3, 4] ) A_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_A , 0 ).numpy() , expected.numpy() ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_A , 23 ).numpy() , expected.numpy() ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_A , 1 ).numpy() , expected.numpy() ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = 101 A_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A_ = compute_token_type_ids(_A , _A ) np.testing.assert_array_equal(_A , _A )
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = k_size // 2 A_ , A_ = mgrid[0 - center : k_size - center, 0 - center : k_size - center] A_ = 1 / (2 * pi * sigma) * exp(-(square(__snake_case ) + square(__snake_case )) / (2 * square(__snake_case )) ) return g def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ , A_ = image.shape[0], image.shape[1] # dst image height and width A_ = height - k_size + 1 A_ = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows A_ = zeros((dst_height * dst_width, k_size * k_size) ) A_ = 0 for i, j in product(range(__snake_case ), range(__snake_case ) ): A_ = ravel(image[i : i + k_size, j : j + k_size] ) A_ = window row += 1 # turn the kernel into shape(k*k, 1) A_ = gen_gaussian_kernel(__snake_case, __snake_case ) A_ = ravel(__snake_case ) # reshape and get the dst image A_ = dot(__snake_case, __snake_case ).reshape(__snake_case, __snake_case ).astype(__snake_case ) return dst if __name__ == "__main__": # read original image __lowerCamelCase = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __lowerCamelCase = gaussian_filter(gray, 3, sigma=1) __lowerCamelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import string def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: for key in range(len(string.ascii_uppercase ) ): A_ = """""" for symbol in message: if symbol in string.ascii_uppercase: A_ = string.ascii_uppercase.find(lowerCamelCase_ ) A_ = num - key if num < 0: A_ = num + len(string.ascii_uppercase ) A_ = translated + string.ascii_uppercase[num] else: A_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def UpperCAmelCase__ ( ) -> Tuple: A_ = input("""Encrypted message: """ ) A_ = message.upper() decrypt(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: for i in range(len(A__ ) - 1, 0, -1 ): A_ = False for j in range(A__, 0, -1 ): if unsorted[j] < unsorted[j - 1]: A_ , A_ = unsorted[j - 1], unsorted[j] A_ = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: A_ , A_ = unsorted[j + 1], unsorted[j] A_ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase = [int(item) for item in user_input.split(''',''')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ = 10 ) -> Tuple: if not isinstance(lowerCamelCase__, lowerCamelCase__ ) or n < 0: raise ValueError("""Invalid input""" ) A_ = 10**n A_ = 2_84_33 * (pow(2, 7_83_04_57, lowerCamelCase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__ ( _snake_case ): lowercase = "vit_msn" def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-0_6 , UpperCamelCase__=224 , UpperCamelCase__=16 , UpperCamelCase__=3 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(**lowercase_ ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = image_size A_ = patch_size A_ = num_channels A_ = qkv_bias
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' import heapq def UpperCAmelCase__ ( UpperCAmelCase__ ) -> set[int]: A_ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(snake_case__, [-1 * len(snake_case__ ), (key, value)] ) # chosen_vertices = set of chosen vertices A_ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A_ = heapq.heappop(snake_case__ )[1][0] chosen_vertices.add(snake_case__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A_ = elem[1][1].index(snake_case__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(snake_case__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 A_ = 1 A_ = 1 while repunit: A_ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00_00 ) -> int: A_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(UpperCAmelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import os def UpperCAmelCase__ ( UpperCAmelCase__ = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(UpperCAmelCase__ ), UpperCAmelCase__ ) ) as input_file: A_ = [ [int(UpperCAmelCase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] A_ = len(UpperCAmelCase__ ) A_ = len(matrix[0] ) A_ = [[-1 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): A_ = matrix[i][0] for j in range(1, UpperCAmelCase__ ): for i in range(UpperCAmelCase__ ): A_ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, UpperCAmelCase__ ): A_ = min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): A_ = min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( __lowerCamelCase ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**SCREAMING_SNAKE_CASE_ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE_ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) A_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE_ ) A_ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A_ = new_scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A_ = new_scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Tuple: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE_ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE_ ) A_ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A_ = new_scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A_ = new_scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE_ ) A_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample return sample def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , SCREAMING_SNAKE_CASE_ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE_ , """set_timesteps""" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE_ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample A_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> str: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ , time_step=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE_ , time_step=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_mean.item() - 2540529 ) < 10
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ = 10_00 ) -> List[str]: A_ = 3 A_ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowerCamelCase = TypeVar('''T''') def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return (position - 1) // 2 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return (2 * position) + 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return (2 * position) + 2 class A__ ( Generic[T] ): def __init__( self ) -> str: '''simple docstring''' A_ = [] A_ = {} A_ = 0 def __len__( self ) -> int: '''simple docstring''' return self.elements def __repr__( self ) -> List[Any]: '''simple docstring''' return str(self.heap ) def snake_case_ ( self ) -> Dict: '''simple docstring''' return self.elements == 0 def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' self.heap.append((elem, weight) ) A_ = self.elements self.elements += 1 self._bubble_up(UpperCAmelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) A_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: A_ = self.heap[0] self._bubble_down(UpperCAmelCase__ ) return elem def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = self.position_map[elem] A_ = (elem, weight) if position > 0: A_ = get_parent_position(UpperCAmelCase__ ) A_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCAmelCase__ ) else: self._bubble_down(UpperCAmelCase__ ) else: self._bubble_down(UpperCAmelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self.position_map[elem] if curr_pos == 0: return None A_ = get_parent_position(UpperCAmelCase__ ) A_ = self.heap[curr_pos] A_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCAmelCase__ , UpperCAmelCase__ ) return self._bubble_up(UpperCAmelCase__ ) return None def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.position_map[elem] A_ = self.heap[curr_pos] A_ = get_child_left_position(UpperCAmelCase__ ) A_ = get_child_right_position(UpperCAmelCase__ ) if child_left_position < self.elements and child_right_position < self.elements: A_ = self.heap[child_left_position] A_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCAmelCase__ , UpperCAmelCase__ ) return self._bubble_down(UpperCAmelCase__ ) if child_left_position < self.elements: A_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCAmelCase__ , UpperCAmelCase__ ) return self._bubble_down(UpperCAmelCase__ ) else: return None if child_right_position < self.elements: A_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCAmelCase__ , UpperCAmelCase__ ) return self._bubble_down(UpperCAmelCase__ ) return None def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.heap[nodea_pos][0] A_ = self.heap[nodea_pos][0] A_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) A_ = nodea_pos A_ = nodea_pos class A__ ( Generic[T] ): def __init__( self ) -> List[str]: '''simple docstring''' A_ = {} A_ = 0 def __repr__( self ) -> int: '''simple docstring''' return str(self.connections ) def __len__( self ) -> List[str]: '''simple docstring''' return self.nodes def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' # Add a node in the graph if it is not in the graph if node not in self.connections: A_ = {} self.nodes += 1 def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' self.add_node(UpperCAmelCase__ ) self.add_node(UpperCAmelCase__ ) A_ = weight A_ = weight def UpperCAmelCase__ ( UpperCAmelCase__, ) -> tuple[dict[T, int], dict[T, T | None]]: A_ = {node: maxsize for node in graph.connections} A_ = {node: None for node in graph.connections} A_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(UpperCAmelCase__, UpperCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization A_ = priority_queue.extract_min() A_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCAmelCase__, dist[neighbour] ) A_ = node # running prim's algorithm while not priority_queue.is_empty(): A_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCAmelCase__, dist[neighbour] ) A_ = node return dist, parent
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = '''▁''' __lowerCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __lowerCamelCase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } __lowerCamelCase = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off __lowerCamelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class A__ ( __UpperCAmelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["input_ids", "attention_mask"] lowercase = [] lowercase = [] def __init__( self , UpperCamelCase__ , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenizer_file=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) A_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A_ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ = 1 A_ = len(self.sp_model ) A_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowerCamelCase ) } A_ = {v: k for k, v in self.lang_code_to_id.items()} A_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A_ = src_lang if src_lang is not None else """en_XX""" A_ = self.lang_code_to_id[self._src_lang] A_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> List[Any]: '''simple docstring''' A_ = self.__dict__.copy() A_ = None A_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ = {} A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return self._src_lang @src_lang.setter def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> Optional[Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) A_ = [1] * len(self.prefix_tokens ) A_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Optional[Any]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Dict: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A_ = src_lang A_ = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) A_ = self.convert_tokens_to_ids(_lowerCamelCase ) A_ = tgt_lang_id return inputs def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = """""".join(_lowerCamelCase ).replace(_lowerCamelCase , """ """ ).strip() return out_string def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Optional[int]: '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , """wb""" ) as fi: A_ = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = "en_XX" , UpperCamelCase__ = None , UpperCamelCase__ = "ro_RO" , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' A_ = src_lang A_ = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = self.lang_code_to_id[src_lang] A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = self.lang_code_to_id[lang] A_ = [] A_ = [self.eos_token_id, self.cur_lang_code]
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class A__ ( lowerCamelCase__ ): lowercase = "wavlm" def __init__( self , UpperCamelCase__=32 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-5 , UpperCamelCase__="group" , UpperCamelCase__="gelu" , UpperCamelCase__=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase__=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase__=False , UpperCamelCase__=128 , UpperCamelCase__=16 , UpperCamelCase__=320 , UpperCamelCase__=800 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0.05 , UpperCamelCase__=10 , UpperCamelCase__=2 , UpperCamelCase__=0.0 , UpperCamelCase__=10 , UpperCamelCase__=320 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , UpperCamelCase__=100 , UpperCamelCase__=256 , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__="mean" , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=256 , UpperCamelCase__=(512, 512, 512, 512, 1500) , UpperCamelCase__=(5, 3, 3, 1, 1) , UpperCamelCase__=(1, 2, 3, 1, 1) , UpperCamelCase__=512 , UpperCamelCase__=80 , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=3 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) A_ = hidden_size A_ = feat_extract_norm A_ = feat_extract_activation A_ = list(__lowerCamelCase ) A_ = list(__lowerCamelCase ) A_ = list(__lowerCamelCase ) A_ = conv_bias A_ = num_buckets A_ = max_bucket_distance A_ = num_conv_pos_embeddings A_ = num_conv_pos_embedding_groups A_ = len(self.conv_dim ) A_ = num_hidden_layers A_ = intermediate_size A_ = hidden_act A_ = num_attention_heads A_ = hidden_dropout A_ = attention_dropout A_ = activation_dropout A_ = feat_proj_dropout A_ = final_dropout A_ = layerdrop A_ = layer_norm_eps A_ = initializer_range A_ = num_ctc_classes A_ = vocab_size A_ = do_stable_layer_norm A_ = use_weighted_layer_sum A_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ = apply_spec_augment A_ = mask_time_prob A_ = mask_time_length A_ = mask_time_min_masks A_ = mask_feature_prob A_ = mask_feature_length # parameters for pretraining with codevector quantized representations A_ = num_codevectors_per_group A_ = num_codevector_groups A_ = contrastive_logits_temperature A_ = num_negatives A_ = codevector_dim A_ = proj_codevector_dim A_ = diversity_loss_weight # ctc loss A_ = ctc_loss_reduction A_ = ctc_zero_infinity # adapter A_ = add_adapter A_ = adapter_kernel_size A_ = adapter_stride A_ = num_adapter_layers A_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A_ = list(__lowerCamelCase ) A_ = list(__lowerCamelCase ) A_ = list(__lowerCamelCase ) A_ = xvector_output_dim @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
import os def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = os.path.dirname(os.path.realpath(UpperCamelCase__ ) ) A_ = os.path.join(UpperCamelCase__, """triangle.txt""" ) with open(UpperCamelCase__ ) as f: A_ = f.readlines() A_ = [] for line in triangle: A_ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(UpperCamelCase__ ) ) a.append(UpperCamelCase__ ) for i in range(1, len(UpperCamelCase__ ) ): for j in range(len(a[i] ) ): A_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 A_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(UpperCamelCase__, UpperCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ = 60_08_51_47_51_43 ) -> Optional[int]: try: A_ = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) A_ = 2 A_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A_ = i while n % i == 0: A_ = n // i i += 1 return int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""{solution() = }""")
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( _UpperCAmelCase , unittest.TestCase ): lowercase = FunnelTokenizer lowercase = FunnelTokenizerFast lowercase = True lowercase = True def snake_case_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() A_ = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **A_ ) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = """UNwant\u00E9d,running""" A_ = """unwanted, running""" return input_text, output_text def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.tokenizer_class(self.vocab_file ) A_ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [7, 4, 5, 10, 8, 9] ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: A_ = tokenizer("""UNwant\u00E9d,running""" ) A_ = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) A_ = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import argparse from collections import defaultdict def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: A_ = F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowerCamelCase, """r""" ) as f: A_ = f.readlines() A_ = F'''class {class_name}(''' A_ = F'''{4 * " "}def {test_name}(''' A_ = F'''{8 * " "}{correct_line.split()[0]}''' A_ = F'''{16 * " "}{correct_line.split()[0]}''' A_ = False A_ = False A_ = False A_ = False A_ = 0 A_ = 0 A_ = [] for line in lines: if line.startswith(_lowerCamelCase ): A_ = True elif in_class and line.startswith(_lowerCamelCase ): A_ = True elif in_class and in_func and (line.startswith(_lowerCamelCase ) or line.startswith(_lowerCamelCase )): A_ = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A_ = True if in_class and in_func and in_line: if ")" not in line: continue else: A_ = True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * " "}{correct_line}''' ) A_ = False else: new_lines.append(_lowerCamelCase ) with open(_lowerCamelCase, """w""" ) as f: for line in new_lines: f.write(_lowerCamelCase ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=None ) -> Tuple: if fail is not None: with open(_lowerCamelCase, """r""" ) as f: A_ = {l.strip() for l in f.readlines()} else: A_ = None with open(_lowerCamelCase, """r""" ) as f: A_ = f.readlines() A_ = defaultdict(_lowerCamelCase ) for line in correct_lines: A_ = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) __lowerCamelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: if divisor % 5 == 0 or divisor % 2 == 0: return 0 A_ = 1 A_ = 1 while repunit: A_ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00_00 ) -> int: A_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_SCREAMING_SNAKE_CASE ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' from math import factorial class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = real if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [1] * rank else: A_ = rank def __repr__( self ) -> str: '''simple docstring''' return ( f'''{self.real}+''' f'''{"+".join(str(UpperCamelCase__ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , UpperCamelCase__ ) def __add__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return Dual(self.real + other , self.duals ) A_ = self.duals.copy() A_ = other.duals.copy() if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): o_dual.extend([1] * (len(UpperCamelCase__ ) - len(UpperCamelCase__ )) ) elif len(UpperCamelCase__ ) < len(UpperCamelCase__ ): s_dual.extend([1] * (len(UpperCamelCase__ ) - len(UpperCamelCase__ )) ) A_ = [] for i in range(len(UpperCamelCase__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , UpperCamelCase__ ) lowercase = __add__ def __sub__( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self + other * -1 def __mul__( self , UpperCamelCase__ ) -> int: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , UpperCamelCase__ ) A_ = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , UpperCamelCase__ ) lowercase = __mul__ def __truediv__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , UpperCamelCase__ ) raise ValueError def __floordiv__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , UpperCamelCase__ ) raise ValueError def __pow__( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if n < 0 or isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self A_ = self for _ in range(n - 1 ): x *= self return x def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: if not callable(UpperCAmelCase__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(UpperCAmelCase__, (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""differentiate() requires an int as input for order""" ) A_ = Dual(UpperCAmelCase__, 1 ) A_ = func(UpperCAmelCase__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=4 , ) -> Any: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_attention_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_choices def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_attention_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ = config_and_inputs A_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ = config_and_inputs A_ = True A_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A__ ( __A , unittest.TestCase ): lowercase = True lowercase = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = FlaxBertModelTester(self ) @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. A_ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) A_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ )
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCAmelCase__ ( UpperCAmelCase__ = True, *UpperCAmelCase__, **UpperCAmelCase__ ) -> Optional[Any]: if not is_tqdm_available(): raise ImportError("""Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) A_ = False if main_process_only: A_ = PartialState().local_process_index == 0 return _tqdm(*UpperCAmelCase__, **UpperCAmelCase__, disable=UpperCAmelCase__ )
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowerCamelCase = (720, 1280) # Height, Width __lowerCamelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowerCamelCase = 1 / 100 __lowerCamelCase = '''''' __lowerCamelCase = '''''' __lowerCamelCase = '''''' __lowerCamelCase = 250 def UpperCAmelCase__ ( ) -> int: A_ , A_ = get_dataset(UpperCAmelCase__, UpperCAmelCase__ ) for index in range(UpperCAmelCase__ ): A_ = random.sample(range(len(UpperCAmelCase__ ) ), 4 ) A_ , A_ , A_ = update_image_and_anno( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, filter_scale=UpperCAmelCase__, ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A_ = random_chars(32 ) A_ = path.split(os.sep )[-1].rsplit(""".""", 1 )[0] A_ = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''', UpperCAmelCase__, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) A_ = [] for anno in new_annos: A_ = anno[3] - anno[1] A_ = anno[4] - anno[2] A_ = anno[1] + width / 2 A_ = anno[2] + height / 2 A_ = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(UpperCAmelCase__ ) with open(F'''{file_root}.txt''', """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = [] A_ = [] for label_file in glob.glob(os.path.join(UpperCAmelCase__, """*.txt""" ) ): A_ = label_file.split(os.sep )[-1].rsplit(""".""", 1 )[0] with open(UpperCAmelCase__ ) as in_file: A_ = in_file.readlines() A_ = os.path.join(UpperCAmelCase__, F'''{label_name}.jpg''' ) A_ = [] for obj_list in obj_lists: A_ = obj_list.rstrip("""\n""" ).split(""" """ ) A_ = float(obj[1] ) - float(obj[3] ) / 2 A_ = float(obj[2] ) - float(obj[4] ) / 2 A_ = float(obj[1] ) + float(obj[3] ) / 2 A_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCAmelCase__ ) labels.append(UpperCAmelCase__ ) return img_paths, labels def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0.0, ) -> Tuple: A_ = np.zeros([output_size[0], output_size[1], 3], dtype=np.uinta ) A_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A_ = int(scale_x * output_size[1] ) A_ = int(scale_y * output_size[0] ) A_ = [] A_ = [] for i, index in enumerate(UpperCAmelCase__ ): A_ = all_img_list[index] path_list.append(UpperCAmelCase__ ) A_ = all_annos[index] A_ = cva.imread(UpperCAmelCase__ ) if i == 0: # top-left A_ = cva.resize(UpperCAmelCase__, (divid_point_x, divid_point_y) ) A_ = img for bbox in img_annos: A_ = bbox[1] * scale_x A_ = bbox[2] * scale_y A_ = bbox[3] * scale_x A_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right A_ = cva.resize(UpperCAmelCase__, (output_size[1] - divid_point_x, divid_point_y) ) A_ = img for bbox in img_annos: A_ = scale_x + bbox[1] * (1 - scale_x) A_ = bbox[2] * scale_y A_ = scale_x + bbox[3] * (1 - scale_x) A_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left A_ = cva.resize(UpperCAmelCase__, (divid_point_x, output_size[0] - divid_point_y) ) A_ = img for bbox in img_annos: A_ = bbox[1] * scale_x A_ = scale_y + bbox[2] * (1 - scale_y) A_ = bbox[3] * scale_x A_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right A_ = cva.resize( UpperCAmelCase__, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) A_ = img for bbox in img_annos: A_ = scale_x + bbox[1] * (1 - scale_x) A_ = scale_y + bbox[2] * (1 - scale_y) A_ = scale_x + bbox[3] * (1 - scale_x) A_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: A_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: assert number_char > 1, "The number of character should greater than 1" A_ = ascii_lowercase + digits return "".join(random.choice(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ) ) if __name__ == "__main__": main() print('''DONE ✅''')
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ) -> List[str]: '''simple docstring''' A_ = start A_ = end A_ = val A_ = (start + end) // 2 A_ = left A_ = right def __repr__( self ) -> Optional[int]: '''simple docstring''' return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = collection A_ = function if self.collection: A_ = self._build_tree(0 , len(_UpperCAmelCase ) - 1 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' self._update_tree(self.root , _UpperCAmelCase , _UpperCAmelCase ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self._query_range(self.root , _UpperCAmelCase , _UpperCAmelCase ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if start == end: return SegmentTreeNode(_UpperCAmelCase , _UpperCAmelCase , self.collection[start] ) A_ = (start + end) // 2 A_ = self._build_tree(_UpperCAmelCase , _UpperCAmelCase ) A_ = self._build_tree(mid + 1 , _UpperCAmelCase ) return SegmentTreeNode(_UpperCAmelCase , _UpperCAmelCase , self.fn(left.val , right.val ) , _UpperCAmelCase , _UpperCAmelCase ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if node.start == i and node.end == i: A_ = val return if i <= node.mid: self._update_tree(node.left , _UpperCAmelCase , _UpperCAmelCase ) else: self._update_tree(node.right , _UpperCAmelCase , _UpperCAmelCase ) A_ = self.fn(node.left.val , node.right.val ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _UpperCAmelCase , _UpperCAmelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _UpperCAmelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , _UpperCAmelCase ) , ) else: # range in right child tree return self._query_range(node.right , _UpperCAmelCase , _UpperCAmelCase ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' if self.root is not None: A_ = Queue() queue.put(self.root ) while not queue.empty(): A_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __lowerCamelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase__ ( UpperCAmelCase__=32, UpperCAmelCase__=10, UpperCAmelCase__=1_00, UpperCAmelCase__=10_26, UpperCAmelCase__=True, UpperCAmelCase__="data/tokenized_stories_train_wikitext103.jbl", UpperCAmelCase__="igf_context_pairs.jbl", ) -> List[str]: set_seed(3 ) # generate train_data and objective_set A_ , A_ = generate_datasets( UpperCAmelCase__, UpperCAmelCase__, number=UpperCAmelCase__, min_len=10_26, trim=UpperCAmelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? A_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model A_ = load_gpta("""gpt2""" ).to(UpperCAmelCase__ ) print("""computing perplexity on objective set""" ) A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ).item() print("""perplexity on objective set:""", UpperCAmelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=15, UpperCAmelCase__=1_28, UpperCAmelCase__=1_00, UpperCAmelCase__="igf_model.pt", ) -> Union[str, Any]: set_seed(42 ) # Load pre-trained model A_ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model A_ = SecondaryLearner(UpperCAmelCase__ ) # Train secondary learner A_ = train_secondary_learner( UpperCAmelCase__, UpperCAmelCase__, max_epochs=UpperCAmelCase__, batch_size=UpperCAmelCase__, eval_freq=1_00, igf_model_path=UpperCAmelCase__, ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=32, UpperCAmelCase__=10_00, UpperCAmelCase__=16, UpperCAmelCase__=1.0, UpperCAmelCase__=recopy_gpta, UpperCAmelCase__=None, UpperCAmelCase__=10, UpperCAmelCase__="gpt2_finetuned.pt", ) -> int: A_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) A_ = RandomSampler(UpperCAmelCase__ ) A_ = DataLoader(UpperCAmelCase__, sampler=UpperCAmelCase__ ) A_ = max_steps // (len(UpperCAmelCase__ )) + 1 A_ = 0 A_ = torch.zeros((1, context_len), dtype=torch.long, device=UpperCAmelCase__ ) A_ , A_ , A_ = recopy_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase__ ) secondary_learner.eval() A_ = [] A_ = 0 A_ = [] A_ = [] # Compute the performance of the transformer model at the beginning A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) test_perps.append(UpperCAmelCase__ ) print("""Test perplexity, step""", UpperCAmelCase__, """:""", UpperCAmelCase__ ) for epoch in range(int(UpperCAmelCase__ ) ): for step, example in enumerate(UpperCAmelCase__ ): torch.cuda.empty_cache() A_ = random.randint(0, example.size(2 ) - context_len - 1 ) A_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() A_ = model(UpperCAmelCase__, labels=UpperCAmelCase__ ) A_ = True if secondary_learner is not None: A_ = secondary_learner.forward( torch.tensor(UpperCAmelCase__, dtype=torch.long, device=UpperCAmelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: A_ = -1 if predicted_q < threshold: A_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) A_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() A_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) test_perps.append(UpperCAmelCase__ ) print("""Test perplexity, step""", UpperCAmelCase__, """:""", UpperCAmelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict(), UpperCAmelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase__ ( ) -> List[str]: A_ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""The input data dir. Should contain data files for WikiText.""", ) parser.add_argument( """--model_name_or_path""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""Path to pretrained model or model identifier from huggingface.co/models""", ) parser.add_argument( """--data_file""", type=UpperCAmelCase__, default=UpperCAmelCase__, help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ), ) parser.add_argument( """--igf_data_file""", type=UpperCAmelCase__, default=UpperCAmelCase__, help="""A jbl file containing the context and information gain pairs to train secondary learner.""", ) parser.add_argument( """--output_dir""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""The output directory where the final fine-tuned model is stored.""", ) parser.add_argument( """--tokenizer_name""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument("""--seed""", type=UpperCAmelCase__, default=UpperCAmelCase__, help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""", default=32, type=UpperCAmelCase__, help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ), ) parser.add_argument( """--size_objective_set""", default=1_00, type=UpperCAmelCase__, help="""number of articles that are long enough to be used as our objective set""", ) parser.add_argument( """--eval_freq""", default=1_00, type=UpperCAmelCase__, help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""", default=10_00, type=UpperCAmelCase__, help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""", default=1_28, type=UpperCAmelCase__, help="""batch size of training data for secondary learner""", ) parser.add_argument( """--batch_size""", default=16, type=UpperCAmelCase__, help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""", default=10, type=UpperCAmelCase__, help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ), ) parser.add_argument( """--number""", default=1_00, type=UpperCAmelCase__, help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""", default=10_26, type=UpperCAmelCase__, help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""", default=15, type=UpperCAmelCase__, help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""", default=1.0, type=UpperCAmelCase__, help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ), ) parser.add_argument("""--finetuned_model_name""", default="""gpt2_finetuned.pt""", type=UpperCAmelCase__, help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""Reset the model to the original pretrained GPT-2 weights after each iteration""", ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32, max_steps=10, size_objective_set=1_00, min_len=10_26, trim=UpperCAmelCase__, data_file="""data/tokenized_stories_train_wikitext103.jbl""", igf_data_file="""igf_context_pairs.jbl""", ) # Load train data for secondary learner A_ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner A_ = training_secondary_learner( UpperCAmelCase__, secondary_learner_max_epochs=15, secondary_learner_batch_size=1_28, eval_freq=1_00, igf_model_path="""igf_model.pt""", ) # load pretrained gpt2 model A_ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model A_ , A_ = generate_datasets( context_len=32, file="""data/tokenized_stories_train_wikitext103.jbl""", number=1_00, min_len=10_26, trim=UpperCAmelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, context_len=32, max_steps=10_00, batch_size=16, threshold=1.0, recopy_model=UpperCAmelCase__, secondary_learner=UpperCAmelCase__, eval_interval=10, finetuned_model_name="""gpt2_finetuned.pt""", ) if __name__ == "__main__": main()
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class A__ : def __init__( self ) -> Union[str, Any]: '''simple docstring''' A_ = [] A_ = 0 A_ = 0 def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.head == self.tail def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' self.data.append(__UpperCamelCase ) A_ = self.tail + 1 def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.data[self.head] A_ = self.head + 1 return ret def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.tail - self.head def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class A__ : def __init__( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = data A_ = None A_ = None A_ = 1 def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.data def snake_case_ ( self ) -> Dict: '''simple docstring''' return self.left def snake_case_ ( self ) -> Any: '''simple docstring''' return self.right def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.height def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = data def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = node def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = node def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = height def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if node is None: return 0 return node.get_height() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: if a > b: return a return b def UpperCAmelCase__ ( UpperCAmelCase__ ) -> MyNode: print("""left rotation node:""", node.get_data() ) A_ = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(UpperCAmelCase__ ) A_ = my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) A_ = my_max(get_height(ret.get_right() ), get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def UpperCAmelCase__ ( UpperCAmelCase__ ) -> MyNode: print("""right rotation node:""", node.get_data() ) A_ = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(UpperCAmelCase__ ) A_ = my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) A_ = my_max(get_height(ret.get_right() ), get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def UpperCAmelCase__ ( UpperCAmelCase__ ) -> MyNode: A_ = node.get_left() assert left_child is not None node.set_left(left_rotation(UpperCAmelCase__ ) ) return right_rotation(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> MyNode: A_ = node.get_right() assert right_child is not None node.set_right(right_rotation(UpperCAmelCase__ ) ) return left_rotation(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> MyNode | None: if node is None: return MyNode(UpperCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left(), UpperCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected A_ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child A_ = right_rotation(UpperCAmelCase__ ) else: A_ = lr_rotation(UpperCAmelCase__ ) else: node.set_right(insert_node(node.get_right(), UpperCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: A_ = node.get_right() assert right_child is not None if data < right_child.get_data(): A_ = rl_rotation(UpperCAmelCase__ ) else: A_ = left_rotation(UpperCAmelCase__ ) A_ = my_max(get_height(node.get_right() ), get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) return node def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: while True: A_ = root.get_right() if right_child is None: break A_ = right_child return root.get_data() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: while True: A_ = root.get_left() if left_child is None: break A_ = left_child return root.get_data() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> MyNode | None: A_ = root.get_left() A_ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: A_ = get_left_most(UpperCAmelCase__ ) root.set_data(UpperCAmelCase__ ) root.set_right(del_node(UpperCAmelCase__, UpperCAmelCase__ ) ) elif left_child is not None: A_ = left_child elif right_child is not None: A_ = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(UpperCAmelCase__, UpperCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(UpperCAmelCase__, UpperCAmelCase__ ) ) if get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): A_ = left_rotation(UpperCAmelCase__ ) else: A_ = rl_rotation(UpperCAmelCase__ ) elif get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): A_ = right_rotation(UpperCAmelCase__ ) else: A_ = lr_rotation(UpperCAmelCase__ ) A_ = my_max(get_height(root.get_right() ), get_height(root.get_left() ) ) + 1 root.set_height(UpperCAmelCase__ ) return root class A__ : def __init__( self ) -> Dict: '''simple docstring''' A_ = None def snake_case_ ( self ) -> List[str]: '''simple docstring''' return get_height(self.root ) def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' print("""insert:""" + str(__UpperCamelCase ) ) A_ = insert_node(self.root , __UpperCamelCase ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' print("""delete:""" + str(__UpperCamelCase ) ) if self.root is None: print("""Tree is empty!""" ) return A_ = del_node(self.root , __UpperCamelCase ) def __str__( self , ) -> Optional[int]: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' A_ = """""" A_ = MyQueue() q.push(self.root ) A_ = self.get_height() if layer == 0: return output A_ = 0 while not q.is_empty(): A_ = q.pop() A_ = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__UpperCamelCase ) q.push(__UpperCamelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space A_ = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __UpperCamelCase ) - 1: A_ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase__ ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() __lowerCamelCase = AVLtree() __lowerCamelCase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowerCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class A__ ( unittest.TestCase ): lowercase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) A_ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) A_ = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) A_ = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) A_ = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior A_ = text_classifier("""This is great !""" , return_all_scores=UpperCamelCase__ ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) A_ = text_classifier("""This is great !""" , return_all_scores=UpperCamelCase__ ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) A_ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=UpperCamelCase__ ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) A_ = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=UpperCamelCase__ ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def snake_case_ ( self ) -> str: '''simple docstring''' import torch A_ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) A_ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) A_ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = pipeline("""text-classification""" ) A_ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) A_ = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) A_ = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = pipeline("""text-classification""" , framework="""tf""" ) A_ = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) A_ = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) A_ = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = TextClassificationPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 A_ = """HuggingFace is in""" A_ = text_classifier(UpperCamelCase__ ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , [{"""label""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) A_ = ["""HuggingFace is in """, """Paris is in France"""] A_ = text_classifier(UpperCamelCase__ ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [{"""label""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ )}, {"""label""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format A_ = text_classifier(UpperCamelCase__ , top_k=UpperCamelCase__ ) A_ = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [[{"""label""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ )}] * N, [{"""label""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ )}] * N] , ) A_ = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} A_ = text_classifier(UpperCamelCase__ ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , {"""label""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. A_ = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(UpperCamelCase__ ): text_classifier(UpperCamelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility A_ = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [{"""label""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class A__ ( __UpperCAmelCase , unittest.TestCase ): lowercase = RoFormerTokenizer lowercase = RoFormerTokenizerFast lowercase = True lowercase = True def snake_case_ ( self ) -> str: '''simple docstring''' super().setUp() def snake_case_ ( self , **UpperCamelCase__ ) -> Any: '''simple docstring''' return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> Any: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = """永和服装饰品有限公司,今天天气非常好""" A_ = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.get_tokenizer() A_ , A_ = self.get_chinese_input_output_texts() A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) A_ = tokens + [tokenizer.unk_token] A_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.get_rust_tokenizer() A_ , A_ = self.get_chinese_input_output_texts() A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) A_ = tokens + [tokenizer.unk_token] A_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self ) -> List[str]: '''simple docstring''' pass def snake_case_ ( self ) -> Any: '''simple docstring''' pass
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def snake_case_ ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class A__ ( unittest.TestCase ): lowercase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) A_ = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = object_detector(examples[0] , threshold=0.0 ) A_ = len(lowerCamelCase__ ) self.assertGreater(lowerCamelCase__ , 0 ) self.assertEqual( lowerCamelCase__ , [ { """score""": ANY(lowerCamelCase__ ), """label""": ANY(lowerCamelCase__ ), """box""": {"""xmin""": ANY(lowerCamelCase__ ), """ymin""": ANY(lowerCamelCase__ ), """xmax""": ANY(lowerCamelCase__ ), """ymax""": ANY(lowerCamelCase__ )}, } for i in range(lowerCamelCase__ ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def snake_case_ ( self ) -> str: '''simple docstring''' pass @require_torch def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) A_ = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) A_ = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline("""zero-shot-object-detection""" ) A_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) A_ = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass @require_torch @slow def snake_case_ ( self ) -> str: '''simple docstring''' A_ = 0.2 A_ = pipeline("""zero-shot-object-detection""" ) A_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCamelCase__ , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def snake_case_ ( self ) -> int: '''simple docstring''' A_ = 2 A_ = pipeline("""zero-shot-object-detection""" ) A_ = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCamelCase__ , ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class A__ ( UpperCamelCase_ ): lowercase = "efficientnet" def __init__( self , UpperCamelCase__ = 3 , UpperCamelCase__ = 600 , UpperCamelCase__ = 2.0 , UpperCamelCase__ = 3.1 , UpperCamelCase__ = 8 , UpperCamelCase__ = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase__ = [32, 16, 24, 40, 80, 112, 192] , UpperCamelCase__ = [16, 24, 40, 80, 112, 192, 320] , UpperCamelCase__ = [] , UpperCamelCase__ = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase__ = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase__ = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase__ = 0.25 , UpperCamelCase__ = "swish" , UpperCamelCase__ = 2560 , UpperCamelCase__ = "mean" , UpperCamelCase__ = 0.02 , UpperCamelCase__ = 0.001 , UpperCamelCase__ = 0.99 , UpperCamelCase__ = 0.5 , UpperCamelCase__ = 0.2 , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = num_channels A_ = image_size A_ = width_coefficient A_ = depth_coefficient A_ = depth_divisor A_ = kernel_sizes A_ = in_channels A_ = out_channels A_ = depthwise_padding A_ = strides A_ = num_block_repeats A_ = expand_ratios A_ = squeeze_expansion_ratio A_ = hidden_act A_ = hidden_dim A_ = pooling_type A_ = initializer_range A_ = batch_norm_eps A_ = batch_norm_momentum A_ = dropout_rate A_ = drop_connect_rate A_ = sum(UpperCamelCase__ ) * 4 class A__ ( UpperCamelCase_ ): lowercase = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case_ ( self ) -> float: '''simple docstring''' return 1e-5
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' import re def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ = re.compile( r"""^(?:0|94|\+94|0{2}94)""" r"""7(0|1|2|4|5|6|7|8)""" r"""(-| |)""" r"""\d{7}$""" ) return bool(re.search(UpperCamelCase__, UpperCamelCase__ ) ) if __name__ == "__main__": __lowerCamelCase = """0094702343221""" print(is_sri_lankan_phone_number(phone))
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class A__ ( unittest.TestCase ): lowercase = MODEL_FOR_MASKED_LM_MAPPING lowercase = TF_MODEL_FOR_MASKED_LM_MAPPING def snake_case_ ( self ) -> int: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) A_ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1e-0_5, """token""": 38015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1e-0_5, """token""": 25506, """token_str""": """ accuser"""}, ] , ) A_ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1e-0_5, """token""": 38015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1e-0_5, """token""": 25506, """token_str""": """ accuser""", }, ] , ) A_ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2e-0_5, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2e-0_5, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9e-0_5, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def snake_case_ ( self ) -> int: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) A_ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2e-0_5, """token""": 35676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2e-0_5, """token""": 16416, """token_str""": """ELS"""}, ] , ) A_ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2e-0_5, """token""": 35676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2e-0_5, """token""": 16416, """token_str""": """ELS"""}, ] , ) A_ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1e-0_5, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2e-0_5, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2e-0_5, """token""": 13606, """token_str""": """ Clara"""}, ] , ) A_ = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__ , decimals=6 ) , [ [ { """score""": 2.2e-0_5, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2e-0_5, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2e-0_5, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2e-0_5, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() A_ = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @slow @require_torch def snake_case_ ( self ) -> int: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(UpperCamelCase__ ) @slow @require_tf def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) A_ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12790, """token_str""": """ Lyon""", }, ] , ) A_ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) A_ = None A_ = None self.run_pipeline_test(UpperCamelCase__ , [] ) @require_tf def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) A_ = None A_ = None self.run_pipeline_test(UpperCamelCase__ , [] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) A_ = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) A_ = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = fill_masker.tokenizer A_ = fill_masker.model A_ = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) A_ = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) A_ = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( UpperCamelCase__ , [ [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], ] , ) with self.assertRaises(UpperCamelCase__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(UpperCamelCase__ ): fill_masker("""This is""" ) self.run_test_top_k(UpperCamelCase__ , UpperCamelCase__ ) self.run_test_targets(UpperCamelCase__ , UpperCamelCase__ ) self.run_test_top_k_targets(UpperCamelCase__ , UpperCamelCase__ ) self.fill_mask_with_duplicate_targets_and_top_k(UpperCamelCase__ , UpperCamelCase__ ) self.fill_mask_with_multiple_masks(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = sorted(vocab.keys() )[:2] # Pipeline argument A_ = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , targets=UpperCamelCase__ ) A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , UpperCamelCase__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(UpperCamelCase__ ) ) # Call argument A_ = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , UpperCamelCase__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(UpperCamelCase__ ) ) # Score equivalence A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) A_ = [top_mask["""token_str"""] for top_mask in outputs] A_ = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCamelCase__ ) == set(UpperCamelCase__ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=UpperCamelCase__ ) A_ = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) # Raises with invalid with self.assertRaises(UpperCamelCase__ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(UpperCamelCase__ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""""""] ) with self.assertRaises(UpperCamelCase__ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="""""" ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ , top_k=2 ) A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) A_ = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ] , ) self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # top_k=2, ntargets=3 A_ = sorted(vocab.keys() )[:3] A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=UpperCamelCase__ ) # If we use the most probably targets, and filter differently, we should still # have the same results A_ = [el["""token_str"""] for el in sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x["score"] , reverse=UpperCamelCase__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCamelCase__ ).issubset(UpperCamelCase__ ): A_ = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=UpperCamelCase__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(UpperCamelCase__ ) , nested_simplify(UpperCamelCase__ ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) A_ = tokenizer.get_vocab() # String duplicates + id duplicates A_ = sorted(vocab.keys() )[:3] A_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] A_ = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=UpperCamelCase__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(UpperCamelCase__ ) , 3 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = FillMaskPipeline(model=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) A_ = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( UpperCamelCase__ , [ [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], [ {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, {"""sequence""": ANY(UpperCamelCase__ ), """score""": ANY(UpperCamelCase__ ), """token""": ANY(UpperCamelCase__ ), """token_str""": ANY(UpperCamelCase__ )}, ], ] , )
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCamelCase = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( ) -> Dict: A_ = """https://pypi.org/pypi/diffusers/json""" A_ = json.loads(request.urlopen(UpperCAmelCase__ ).read() )["""releases"""].keys() return sorted(UpperCAmelCase__, key=lambda UpperCAmelCase__ : version.Version(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( ) -> Tuple: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCAmelCase__ ) os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) A_ = Path(UpperCAmelCase__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: init_hf_modules() A_ = Path(UpperCAmelCase__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) A_ = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: with open(UpperCAmelCase__, """r""", encoding="""utf-8""" ) as f: A_ = f.read() # Imports of the form `import .xxx` A_ = re.findall("""^\s*import\s+\.(\S+)\s*$""", UpperCAmelCase__, flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""", UpperCAmelCase__, flags=re.MULTILINE ) # Unique-ify return list(set(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = False A_ = [module_file] A_ = [] # Let's recurse through all relative imports while not no_change: A_ = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCAmelCase__ ) ) A_ = Path(UpperCAmelCase__ ).parent A_ = [str(module_path / m ) for m in new_imports] A_ = [f for f in new_import_files if f not in all_relative_imports] A_ = [F'''{f}.py''' for f in new_import_files] A_ = len(UpperCAmelCase__ ) == 0 all_relative_imports.extend(UpperCAmelCase__ ) return all_relative_imports def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: with open(UpperCAmelCase__, """r""", encoding="""utf-8""" ) as f: A_ = f.read() # Imports of the form `import xxx` A_ = re.findall("""^\s*import\s+(\S+)\s*$""", UpperCAmelCase__, flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""", UpperCAmelCase__, flags=re.MULTILINE ) # Only keep the top-level module A_ = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all A_ = list(set(UpperCAmelCase__ ) ) A_ = [] for imp in imports: try: importlib.import_module(UpperCAmelCase__ ) except ImportError: missing_packages.append(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'''{", ".join(UpperCAmelCase__ )}. Run `pip install {" ".join(UpperCAmelCase__ )}`''' ) return get_relative_imports(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = module_path.replace(os.path.sep, """.""" ) A_ = importlib.import_module(UpperCAmelCase__ ) if class_name is None: return find_pipeline_class(UpperCAmelCase__ ) return getattr(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: from ..pipelines import DiffusionPipeline A_ = dict(inspect.getmembers(UpperCAmelCase__, inspect.isclass ) ) A_ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls, UpperCAmelCase__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) A_ = cls return pipeline_class def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = False, UpperCAmelCase__ = False, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = False, ) -> List[str]: A_ = str(UpperCAmelCase__ ) A_ = os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) if os.path.isfile(UpperCAmelCase__ ): A_ = module_file_or_url A_ = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: A_ = get_diffusers_versions() # cut ".dev0" A_ = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: A_ = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: A_ = F'''v{revision}''' elif revision == "main": A_ = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {", ".join(available_versions + ["main"] )}.''' ) # community pipeline on GitHub A_ = COMMUNITY_PIPELINES_URL.format(revision=UpperCAmelCase__, pipeline=UpperCAmelCase__ ) try: A_ = cached_download( UpperCAmelCase__, cache_dir=UpperCAmelCase__, force_download=UpperCAmelCase__, proxies=UpperCAmelCase__, resume_download=UpperCAmelCase__, local_files_only=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, ) A_ = """git""" A_ = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached A_ = hf_hub_download( UpperCAmelCase__, UpperCAmelCase__, cache_dir=UpperCAmelCase__, force_download=UpperCAmelCase__, proxies=UpperCAmelCase__, resume_download=UpperCAmelCase__, local_files_only=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, ) A_ = os.path.join("""local""", """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment A_ = check_imports(UpperCAmelCase__ ) # Now we move the module inside our cached dynamic modules. A_ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCAmelCase__ ) A_ = Path(UpperCAmelCase__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCAmelCase__, submodule_path / module_file ) for module_needed in modules_needed: A_ = F'''{module_needed}.py''' shutil.copy(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ), submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = use_auth_token elif use_auth_token is True: A_ = HfFolder.get_token() else: A_ = None A_ = model_info(UpperCAmelCase__, revision=UpperCAmelCase__, token=UpperCAmelCase__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A_ = submodule_path / commit_hash A_ = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCAmelCase__ ) if not (submodule_path / module_file).exists(): shutil.copy(UpperCAmelCase__, submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCAmelCase__, F'''{module_needed}.py''', cache_dir=UpperCAmelCase__, force_download=UpperCAmelCase__, resume_download=UpperCAmelCase__, proxies=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, revision=UpperCAmelCase__, local_files_only=UpperCAmelCase__, ) return os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = False, UpperCAmelCase__ = False, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = False, **UpperCAmelCase__, ) -> List[str]: A_ = get_cached_module_file( UpperCAmelCase__, UpperCAmelCase__, cache_dir=UpperCAmelCase__, force_download=UpperCAmelCase__, resume_download=UpperCAmelCase__, proxies=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, revision=UpperCAmelCase__, local_files_only=UpperCAmelCase__, ) return get_class_in_module(UpperCAmelCase__, final_module.replace(""".py""", """""" ) )
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __lowerCamelCase = TaTokenizerFast __lowerCamelCase = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __lowerCamelCase = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0