code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class A__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowercase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def UpperCAmelCase__ ( ) -> Optional[Any]: if os.name == "nt": A_ = CursorInfo() A_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__, ctypes.byref(UpperCAmelCase__ ) ) A_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__, ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def UpperCAmelCase__ ( ) -> Tuple: if os.name == "nt": A_ = CursorInfo() A_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__, ctypes.byref(UpperCAmelCase__ ) ) A_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__, ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def UpperCAmelCase__ ( ) -> List[Any]: try: hide_cursor() yield finally: show_cursor()
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = {'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' import os def UpperCAmelCase__ ( ) -> Tuple: with open(os.path.dirname(UpperCAmelCase__ ) + """/p022_names.txt""" ) as file: A_ = str(file.readlines()[0] ) A_ = names.replace("""\"""", """""" ).split(""",""" ) names.sort() A_ = 0 A_ = 0 for i, name in enumerate(UpperCAmelCase__ ): for letter in name: name_score += ord(UpperCAmelCase__ ) - 64 total_score += (i + 1) * name_score A_ = 0 return total_score if __name__ == "__main__": print(solution())
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' import sys __lowerCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase__ ( UpperCAmelCase__ = N ) -> int: A_ = -sys.maxsize - 1 for i in range(len(UpperCAmelCase__ ) - 12 ): A_ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: A_ = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "mgp-str" def __init__( self , UpperCamelCase__=[32, 128] , UpperCamelCase__=4 , UpperCamelCase__=3 , UpperCamelCase__=27 , UpperCamelCase__=38 , UpperCamelCase__=50257 , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=4.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=False , UpperCamelCase__=0.02 , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Any: '''simple docstring''' A_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Optional[Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = embedding_size def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = TFMobileBertModel(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) A_ = [input_ids, input_mask] A_ = model(UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = TFMobileBertForMaskedLM(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = TFMobileBertForNextSentencePrediction(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = TFMobileBertForPreTraining(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self.num_labels A_ = TFMobileBertForSequenceClassification(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.num_choices A_ = TFMobileBertForMultipleChoice(config=UpperCamelCase__ ) A_ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.num_labels A_ = TFMobileBertForTokenClassification(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = TFMobileBertForQuestionAnswering(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = TFMobileBertModelTest.TFMobileBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCamelCase__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: A_ = TFMobileBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCamelCase__ )[0] A_ = [1, 6, 30522] self.assertEqual(output.shape , UpperCamelCase__ ) A_ = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 )
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # load base model A_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__, torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A_ = load_file(UpperCAmelCase__ ) A_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A_ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) A_ = pipeline.text_encoder else: A_ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) A_ = pipeline.unet # find the target layer A_ = layer_infos.pop(0 ) while len(UpperCAmelCase__ ) > -1: try: A_ = curr_layer.__getattr__(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: A_ = layer_infos.pop(0 ) elif len(UpperCAmelCase__ ) == 0: break except Exception: if len(UpperCAmelCase__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A_ = layer_infos.pop(0 ) A_ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""", """lora_up""" ) ) pair_keys.append(UpperCAmelCase__ ) else: pair_keys.append(UpperCAmelCase__ ) pair_keys.append(key.replace("""lora_up""", """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__, UpperCAmelCase__ ).unsqueeze(2 ).unsqueeze(3 ) else: A_ = state_dict[pair_keys[0]].to(torch.floataa ) A_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__, UpperCAmelCase__ ) # update visited list for item in pair_keys: visited.append(UpperCAmelCase__ ) return pipeline if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.base_model_path __lowerCamelCase = args.checkpoint_path __lowerCamelCase = args.dump_path __lowerCamelCase = args.lora_prefix_unet __lowerCamelCase = args.lora_prefix_text_encoder __lowerCamelCase = args.alpha __lowerCamelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __lowerCamelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , ) -> Dict: '''simple docstring''' A_ = size if size is not None else {"""shortest_edge""": 20} A_ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_center_crop A_ = crop_size A_ = do_flip_channel_order def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class A__ ( _snake_case , unittest.TestCase ): lowercase = MobileViTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = MobileViTImageProcessingTester(self ) @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_flip_channel_order""" ) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""", set() ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: class A__ : def __init__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = metric_id class A__ : lowercase = [MetricMock(_snake_case ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def snake_case_ ( self ) -> str: '''simple docstring''' return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""", HfhMock() ) @pytest.mark.parametrize( """func, args""", [(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: if "tmp_path" in args: A_ = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(UpperCAmelCase__, match="""https://huggingface.co/docs/evaluate""" ): func(*UpperCAmelCase__ )
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' import math import sys def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if number != int(UpperCAmelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 A_ = [-1] * (number + 1) A_ = 0 for i in range(1, number + 1 ): A_ = sys.maxsize A_ = int(math.sqrt(UpperCAmelCase__ ) ) for j in range(1, root + 1 ): A_ = 1 + answers[i - (j**2)] A_ = min(UpperCAmelCase__, UpperCAmelCase__ ) A_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> Tuple: A_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: A_ = """""" else: A_ = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = dct.pop(UpperCAmelCase__ ) A_ = val def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = DeiTConfig() # all deit models have fine-tuned heads A_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A_ = 10_00 A_ = """huggingface/label-files""" A_ = """imagenet-1k-id2label.json""" A_ = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A_ = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = int(deit_name[-6:-4] ) A_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A_ = 1_92 A_ = 7_68 A_ = 12 A_ = 3 elif deit_name[9:].startswith("""small""" ): A_ = 3_84 A_ = 15_36 A_ = 12 A_ = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 # load original model from timm A_ = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() A_ = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A_ = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A_ = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A_ = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A_ = image_processor(images=prepare_img(), return_tensors="""pt""" ) A_ = encoding["""pixel_values"""] A_ = model(UpperCAmelCase__ ) A_ = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCamelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A__ ( _snake_case ): lowercase = "camembert" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = classifier_dropout class A__ ( _snake_case ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase__ ( UpperCAmelCase__=32, UpperCAmelCase__=10, UpperCAmelCase__=1_00, UpperCAmelCase__=10_26, UpperCAmelCase__=True, UpperCAmelCase__="data/tokenized_stories_train_wikitext103.jbl", UpperCAmelCase__="igf_context_pairs.jbl", ) -> List[str]: set_seed(3 ) # generate train_data and objective_set A_ , A_ = generate_datasets( UpperCAmelCase__, UpperCAmelCase__, number=UpperCAmelCase__, min_len=10_26, trim=UpperCAmelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? A_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model A_ = load_gpta("""gpt2""" ).to(UpperCAmelCase__ ) print("""computing perplexity on objective set""" ) A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ).item() print("""perplexity on objective set:""", UpperCAmelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=15, UpperCAmelCase__=1_28, UpperCAmelCase__=1_00, UpperCAmelCase__="igf_model.pt", ) -> List[Any]: set_seed(42 ) # Load pre-trained model A_ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model A_ = SecondaryLearner(UpperCAmelCase__ ) # Train secondary learner A_ = train_secondary_learner( UpperCAmelCase__, UpperCAmelCase__, max_epochs=UpperCAmelCase__, batch_size=UpperCAmelCase__, eval_freq=1_00, igf_model_path=UpperCAmelCase__, ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=32, UpperCAmelCase__=10_00, UpperCAmelCase__=16, UpperCAmelCase__=1.0, UpperCAmelCase__=recopy_gpta, UpperCAmelCase__=None, UpperCAmelCase__=10, UpperCAmelCase__="gpt2_finetuned.pt", ) -> Optional[Any]: A_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) A_ = RandomSampler(UpperCAmelCase__ ) A_ = DataLoader(UpperCAmelCase__, sampler=UpperCAmelCase__ ) A_ = max_steps // (len(UpperCAmelCase__ )) + 1 A_ = 0 A_ = torch.zeros((1, context_len), dtype=torch.long, device=UpperCAmelCase__ ) A_ , A_ , A_ = recopy_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCAmelCase__ ) secondary_learner.eval() A_ = [] A_ = 0 A_ = [] A_ = [] # Compute the performance of the transformer model at the beginning A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) test_perps.append(UpperCAmelCase__ ) print("""Test perplexity, step""", UpperCAmelCase__, """:""", UpperCAmelCase__ ) for epoch in range(int(UpperCAmelCase__ ) ): for step, example in enumerate(UpperCAmelCase__ ): torch.cuda.empty_cache() A_ = random.randint(0, example.size(2 ) - context_len - 1 ) A_ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() A_ = model(UpperCAmelCase__, labels=UpperCAmelCase__ ) A_ = True if secondary_learner is not None: A_ = secondary_learner.forward( torch.tensor(UpperCAmelCase__, dtype=torch.long, device=UpperCAmelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCAmelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: A_ = -1 if predicted_q < threshold: A_ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) A_ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() A_ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: A_ = compute_perplexity(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) test_perps.append(UpperCAmelCase__ ) print("""Test perplexity, step""", UpperCAmelCase__, """:""", UpperCAmelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict(), UpperCAmelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""The input data dir. Should contain data files for WikiText.""", ) parser.add_argument( """--model_name_or_path""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""Path to pretrained model or model identifier from huggingface.co/models""", ) parser.add_argument( """--data_file""", type=UpperCAmelCase__, default=UpperCAmelCase__, help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ), ) parser.add_argument( """--igf_data_file""", type=UpperCAmelCase__, default=UpperCAmelCase__, help="""A jbl file containing the context and information gain pairs to train secondary learner.""", ) parser.add_argument( """--output_dir""", default=UpperCAmelCase__, type=UpperCAmelCase__, required=UpperCAmelCase__, help="""The output directory where the final fine-tuned model is stored.""", ) parser.add_argument( """--tokenizer_name""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument("""--seed""", type=UpperCAmelCase__, default=UpperCAmelCase__, help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""", default=32, type=UpperCAmelCase__, help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ), ) parser.add_argument( """--size_objective_set""", default=1_00, type=UpperCAmelCase__, help="""number of articles that are long enough to be used as our objective set""", ) parser.add_argument( """--eval_freq""", default=1_00, type=UpperCAmelCase__, help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""", default=10_00, type=UpperCAmelCase__, help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""", default=1_28, type=UpperCAmelCase__, help="""batch size of training data for secondary learner""", ) parser.add_argument( """--batch_size""", default=16, type=UpperCAmelCase__, help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""", default=10, type=UpperCAmelCase__, help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ), ) parser.add_argument( """--number""", default=1_00, type=UpperCAmelCase__, help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""", default=10_26, type=UpperCAmelCase__, help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""", default=15, type=UpperCAmelCase__, help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""", default=1.0, type=UpperCAmelCase__, help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ), ) parser.add_argument("""--finetuned_model_name""", default="""gpt2_finetuned.pt""", type=UpperCAmelCase__, help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""Reset the model to the original pretrained GPT-2 weights after each iteration""", ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32, max_steps=10, size_objective_set=1_00, min_len=10_26, trim=UpperCAmelCase__, data_file="""data/tokenized_stories_train_wikitext103.jbl""", igf_data_file="""igf_context_pairs.jbl""", ) # Load train data for secondary learner A_ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner A_ = training_secondary_learner( UpperCAmelCase__, secondary_learner_max_epochs=15, secondary_learner_batch_size=1_28, eval_freq=1_00, igf_model_path="""igf_model.pt""", ) # load pretrained gpt2 model A_ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model A_ , A_ = generate_datasets( context_len=32, file="""data/tokenized_stories_train_wikitext103.jbl""", number=1_00, min_len=10_26, trim=UpperCAmelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, context_len=32, max_steps=10_00, batch_size=16, threshold=1.0, recopy_model=UpperCAmelCase__, secondary_learner=UpperCAmelCase__, eval_interval=10, finetuned_model_name="""gpt2_finetuned.pt""", ) if __name__ == "__main__": main()
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=100 , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = vocab_size A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def snake_case_ ( self ) -> int: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = FlaxBeitModel(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = FlaxBeitForMaskedImageModeling(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = self.type_sequence_label_size A_ = FlaxBeitForImageClassification(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = FlaxBeitForImageClassification(UpperCamelCase__ ) A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class A__ ( _snake_case , unittest.TestCase ): lowercase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def snake_case_ ( self ) -> None: '''simple docstring''' A_ = FlaxBeitModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) A_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) A_ = model_class(UpperCamelCase__ ) @jax.jit def model_jitted(UpperCamelCase__ , **UpperCamelCase__ ): return model(pixel_values=UpperCamelCase__ , **UpperCamelCase__ ) with self.subTest("""JIT Enabled""" ): A_ = model_jitted(**UpperCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A_ = model_jitted(**UpperCamelCase__ ).to_tuple() self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for jitted_output, output in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: A_ = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) A_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( ) -> List[str]: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> int: '''simple docstring''' return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""np""" ).pixel_values # prepare bool_masked_pos A_ = np.ones((1, 196) , dtype=UpperCamelCase__ ) # forward pass A_ = model(pixel_values=UpperCamelCase__ , bool_masked_pos=UpperCamelCase__ ) A_ = outputs.logits # verify the logits A_ = (1, 196, 8192) self.assertEqual(logits.shape , UpperCamelCase__ ) A_ = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase__ , atol=1e-2 ) ) @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""np""" ) # forward pass A_ = model(**UpperCamelCase__ ) A_ = outputs.logits # verify the logits A_ = (1, 1000) self.assertEqual(logits.shape , UpperCamelCase__ ) A_ = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) A_ = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""np""" ) # forward pass A_ = model(**UpperCamelCase__ ) A_ = outputs.logits # verify the logits A_ = (1, 21841) self.assertEqual(logits.shape , UpperCamelCase__ ) A_ = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) A_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ )
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: A_ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) A_ = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""", UpperCAmelCase__ ) if matches: A_ = float(matches[1] ) A_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". A_ = 10_01 A_ = """imagenet-1k-id2label.json""" A_ = """huggingface/label-files""" A_ = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A_ = {int(UpperCAmelCase__ ) + 1: v for k, v in idalabel.items()} A_ = """background""" A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ ( ) -> int: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False ) -> Optional[Any]: A_ = get_mobilenet_va_config(UpperCAmelCase__ ) # Load 🤗 model A_ = MobileNetVaForImageClassification(UpperCAmelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor A_ = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size}, size={"""shortest_edge""": config.image_size + 32}, ) A_ = image_processor(images=prepare_img(), return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": A_ = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": A_ = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: A_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3], UpperCAmelCase__, atol=1e-4 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) A_ = """google/""" + model_name image_processor.push_to_hub(UpperCAmelCase__ ) model.push_to_hub(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCamelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=None , ) -> Dict: '''simple docstring''' A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = ViTMSNModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.type_sequence_label_size A_ = ViTMSNForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = ViTMSNForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowercase = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ViTMSNModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMSNModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def snake_case_ ( self ) -> int: '''simple docstring''' torch.manual_seed(2 ) A_ = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(UpperCamelCase__ ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A_ = model(**UpperCamelCase__ ) # verify the logits A_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A_ = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __lowerCamelCase = logging.get_logger(__name__) class A__ ( enum.Enum ): lowercase = 0 lowercase = 1 @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): lowercase = "generated" def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def snake_case_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' A_ = {} if truncation is not None: A_ = truncation A_ = generate_kwargs A_ = {} if return_tensors is not None and return_type is None: A_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: A_ = return_type if clean_up_tokenization_spaces is not None: A_ = clean_up_tokenization_spaces if stop_sequence is not None: A_ = self.tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) if len(UpperCamelCase__ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) A_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' return True def snake_case_ ( self , *UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , UpperCamelCase__ ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) A_ = ([prefix + arg for arg in args[0]],) A_ = True elif isinstance(args[0] , UpperCamelCase__ ): A_ = (prefix + args[0],) A_ = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) A_ = self.tokenizer(*UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' A_ = super().__call__(*UpperCamelCase__ , **UpperCamelCase__ ) if ( isinstance(args[0] , UpperCamelCase__ ) and all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for el in args[0] ) and all(len(UpperCamelCase__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self._parse_and_tokenize(UpperCamelCase__ , truncation=UpperCamelCase__ , **UpperCamelCase__ ) return inputs def snake_case_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' if self.framework == "pt": A_ , A_ = model_inputs["""input_ids"""].shape elif self.framework == "tf": A_ , A_ = tf.shape(model_inputs["""input_ids"""] ).numpy() A_ = generate_kwargs.get("""min_length""" , self.model.config.min_length ) A_ = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(UpperCamelCase__ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) A_ = self.model.generate(**UpperCamelCase__ , **UpperCamelCase__ ) A_ = output_ids.shape[0] if self.framework == "pt": A_ = output_ids.reshape(UpperCamelCase__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": A_ = tf.reshape(UpperCamelCase__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=ReturnType.TEXT , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: A_ = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: A_ = { f'''{self.return_name}_text''': self.tokenizer.decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ , ) } records.append(UpperCamelCase__ ) return records @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): lowercase = "summary" def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return super().__call__(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' """a summarization task, where outputs shorter than the input are typically wanted, you might """ f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): lowercase = "translation" def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def snake_case_ ( self , *UpperCamelCase__ , UpperCamelCase__=TruncationStrategy.DO_NOT_TRUNCATE , UpperCamelCase__=None , UpperCamelCase__=None ) -> int: '''simple docstring''' if getattr(self.tokenizer , """_build_translation_inputs""" , UpperCamelCase__ ): return self.tokenizer._build_translation_inputs( *UpperCamelCase__ , return_tensors=self.framework , truncation=UpperCamelCase__ , src_lang=UpperCamelCase__ , tgt_lang=UpperCamelCase__ ) else: return super()._parse_and_tokenize(*UpperCamelCase__ , truncation=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Any: '''simple docstring''' A_ , A_ , A_ = super()._sanitize_parameters(**UpperCamelCase__ ) if src_lang is not None: A_ = src_lang if tgt_lang is not None: A_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. A_ = kwargs.get("""task""" , self.task ) A_ = task.split("""_""" ) if task and len(UpperCamelCase__ ) == 4: # translation, XX, to YY A_ = items[1] A_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return super().__call__(*UpperCamelCase__ , **UpperCamelCase__ )
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( _snake_case ): @staticmethod @abstractmethod def snake_case_ ( UpperCamelCase__ ) -> List[Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError()
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) def UpperCAmelCase__ ( *UpperCAmelCase__, **UpperCAmelCase__ ) -> int: requires_backends(UpperCAmelCase__, ["""torch"""] ) def UpperCAmelCase__ ( *UpperCAmelCase__, **UpperCAmelCase__ ) -> List[str]: requires_backends(UpperCAmelCase__, ["""torch"""] ) def UpperCAmelCase__ ( *UpperCAmelCase__, **UpperCAmelCase__ ) -> int: requires_backends(UpperCAmelCase__, ["""torch"""] ) def UpperCAmelCase__ ( *UpperCAmelCase__, **UpperCAmelCase__ ) -> str: requires_backends(UpperCAmelCase__, ["""torch"""] ) def UpperCAmelCase__ ( *UpperCAmelCase__, **UpperCAmelCase__ ) -> int: requires_backends(UpperCAmelCase__, ["""torch"""] ) def UpperCAmelCase__ ( *UpperCAmelCase__, **UpperCAmelCase__ ) -> Any: requires_backends(UpperCAmelCase__, ["""torch"""] ) def UpperCAmelCase__ ( *UpperCAmelCase__, **UpperCAmelCase__ ) -> Any: requires_backends(UpperCAmelCase__, ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch"""] ) class A__ ( metaclass=_snake_case ): lowercase = ["torch"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch"""] ) @classmethod def snake_case_ ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["""torch"""] )
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import argparse import copy def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = {} with open(UpperCAmelCase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: A_ = [] _list.append([line.split()[1], line.split()[2]] ) A_ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: A_ = [] _list.append([line.split()[0], line.split()[2]] ) A_ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: with open(UpperCAmelCase__ ) as f: A_ = f.read(1 ) A_ = start_node A_ = [] A_ = start_node A_ = 0 while visiting not in first_solution: A_ = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCAmelCase__ ) and k[0] not in first_solution: A_ = k[1] A_ = k[0] first_solution.append(UpperCAmelCase__ ) A_ = distance_of_first_solution + int(UpperCAmelCase__ ) A_ = best_node first_solution.append(UpperCAmelCase__ ) A_ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 A_ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for n in solution[1:-1]: A_ = solution.index(UpperCAmelCase__ ) for kn in solution[1:-1]: A_ = solution.index(UpperCAmelCase__ ) if n == kn: continue A_ = copy.deepcopy(UpperCAmelCase__ ) A_ = kn A_ = n A_ = 0 for k in _tmp[:-1]: A_ = _tmp[_tmp.index(UpperCAmelCase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: A_ = distance + int(i[1] ) _tmp.append(UpperCAmelCase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) A_ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCAmelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: A_ = 1 A_ = first_solution A_ = [] A_ = distance_of_first_solution A_ = solution while count <= iters: A_ = find_neighborhood(UpperCAmelCase__, UpperCAmelCase__ ) A_ = 0 A_ = neighborhood[index_of_best_solution] A_ = len(UpperCAmelCase__ ) - 1 A_ = False while not found: A_ = 0 while i < len(UpperCAmelCase__ ): if best_solution[i] != solution[i]: A_ = best_solution[i] A_ = solution[i] break A_ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) A_ = True A_ = best_solution[:-1] A_ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: A_ = cost A_ = solution else: A_ = index_of_best_solution + 1 A_ = neighborhood[index_of_best_solution] if len(UpperCAmelCase__ ) >= size: tabu_list.pop(0 ) A_ = count + 1 return best_solution_ever, best_cost def UpperCAmelCase__ ( UpperCAmelCase__=None ) -> Dict: A_ = generate_neighbours(args.File ) A_ , A_ = generate_first_solution( args.File, UpperCAmelCase__ ) A_ , A_ = tabu_search( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, args.Iterations, args.Size, ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' from collections.abc import Callable import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> np.array: A_ = int(np.ceil((x_end - xa) / step_size ) ) A_ = np.zeros((n + 1,) ) A_ = ya A_ = xa for k in range(UpperCAmelCase__ ): A_ = y[k] + step_size * ode_func(UpperCAmelCase__, y[k] ) A_ = y[k] + ( (step_size / 2) * (ode_func(UpperCAmelCase__, y[k] ) + ode_func(x + step_size, UpperCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __lowerCamelCase = logging.get_logger(__name__) class A__ : lowercase = None @experimental def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return _map_with_joblib(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: A_ = num_proc if num_proc <= len(UpperCAmelCase__ ) else len(UpperCAmelCase__ ) A_ = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCAmelCase__ ): A_ = len(UpperCAmelCase__ ) // num_proc A_ = len(UpperCAmelCase__ ) % num_proc A_ = div * index + min(UpperCAmelCase__, UpperCAmelCase__ ) A_ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCAmelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'''Error dividing inputs iterable among processes. ''' F'''Total number of objects {len(UpperCAmelCase__ )}, ''' F'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( F'''Spawning {num_proc} processes for {len(UpperCAmelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) A_ , A_ = None, None if not disable_tqdm: A_ , A_ = (RLock(),), tqdm.set_lock with Pool(UpperCAmelCase__, initargs=UpperCAmelCase__, initializer=UpperCAmelCase__ ) as pool: A_ = pool.map(UpperCAmelCase__, UpperCAmelCase__ ) logger.info(F'''Finished {num_proc} processes''' ) A_ = [obj for proc_res in mapped for obj in proc_res] logger.info(F'''Unpacked {len(UpperCAmelCase__ )} objects''' ) return mapped def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=UpperCAmelCase__ ): return joblib.Parallel()( joblib.delayed(UpperCAmelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: A_ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: A_ = None
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = """hf-internal-testing/tiny-random-t5""" A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) A_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) A_ = tokenizer("""This is me""" , return_tensors="""pt""" ) A_ = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) A_ = model.generate(**UpperCamelCase__ ) A_ = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) A_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) A_ = model_reloaded.generate(**UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = """hf-internal-testing/tiny-random-t5""" A_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ) A_ = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase__ ): model.save_pretrained(UpperCamelCase__ ) A_ = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase__ )
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''ConvNextFeatureExtractor'''] __lowerCamelCase = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase__, n - 1, UpperCAmelCase__ ) * a) % mod else: A_ = binary_exponentiation(UpperCAmelCase__, n / 2, UpperCAmelCase__ ) return (b * b) % mod # a prime number __lowerCamelCase = 701 __lowerCamelCase = 10_0000_0000 __lowerCamelCase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class A__ ( _snake_case ): @require_torch def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ A_ = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ A_ = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache A_ = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCamelCase__ ) BertModel.from_pretrained(UpperCamelCase__ ) BertTokenizer.from_pretrained(UpperCamelCase__ ) pipeline(task="""fill-mask""" , model=UpperCamelCase__ ) # baseline - just load from_pretrained with normal network A_ = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed A_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A_ = """1""" A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> str: '''simple docstring''' A_ = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ A_ = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ A_ = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache A_ = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCamelCase__ ) BertModel.from_pretrained(UpperCamelCase__ ) BertTokenizer.from_pretrained(UpperCamelCase__ ) pipeline(task="""fill-mask""" , model=UpperCamelCase__ ) # baseline - just load from_pretrained with normal network A_ = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed A_ = self.get_env() A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = """ from transformers import BertConfig, BertModel, BertTokenizer """ A_ = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ A_ = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network A_ = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed A_ = self.get_env() A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network A_ = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A_ = """1""" A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """ from transformers import pipeline """ A_ = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ A_ = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ A_ = self.get_env() A_ = """1""" A_ = [sys.executable, """-c""", """\n""".join([load, mock, run] )] A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = """ from transformers import AutoModel """ A_ = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network A_ = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed A_ = self.get_env() A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A_ = """1""" A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase__, 2 ) - pow(UpperCAmelCase__, 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase__, 2 ) - pow(UpperCAmelCase__, 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase__, 2 ) + pow(UpperCAmelCase__, 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 1_00, ) -> float: A_ = x_start A_ = fnc(UpperCAmelCase__ ) A_ = 0.0 for _ in range(UpperCAmelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area A_ = (x_end - x_start) / steps + xa A_ = fnc(UpperCAmelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step A_ = xa A_ = fxa return area if __name__ == "__main__": def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') __lowerCamelCase = 10 while i <= 10_0000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) A_ = str(bin(UpperCAmelCase__ ) ) binary_number += "0" * shift_amount return binary_number def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) A_ = str(bin(UpperCAmelCase__ ) )[2:] if shift_amount >= len(UpperCAmelCase__ ): return "0b0" A_ = binary_number[: len(UpperCAmelCase__ ) - shift_amount] return "0b" + shifted_binary_number def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: if number >= 0: # Get binary representation of positive number A_ = """0""" + str(bin(UpperCAmelCase__ ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number A_ = len(bin(UpperCAmelCase__ )[3:] ) # Find 2's complement of number A_ = bin(abs(UpperCAmelCase__ ) - (1 << binary_number_length) )[3:] A_ = ( """1""" + """0""" * (binary_number_length - len(UpperCAmelCase__ )) + binary_number ) if shift_amount >= len(UpperCAmelCase__ ): return "0b" + binary_number[0] * len(UpperCAmelCase__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(UpperCAmelCase__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=3 , UpperCamelCase__=32 , UpperCamelCase__=3 , UpperCamelCase__=10 , UpperCamelCase__=[10, 20, 30, 40] , UpperCamelCase__=[1, 1, 2, 1] , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=3 , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = image_size A_ = num_channels A_ = embeddings_size A_ = hidden_sizes A_ = depths A_ = is_training A_ = use_labels A_ = hidden_act A_ = num_labels A_ = scope A_ = len(UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> int: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = TFResNetModel(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = TFResNetForImageClassification(UpperCamelCase__ ) A_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = TFResNetModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ) -> Any: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def snake_case_ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Any: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) A_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A_ = model_class(UpperCamelCase__ ) A_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ = layer_type A_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFResNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( ) -> str: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # forward pass A_ = model(**UpperCamelCase__ ) # verify the logits A_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A_ = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCamelCase__ , atol=1e-4 ) )
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' import baseaa def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: return baseaa.baaencode(string.encode("""utf-8""" ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: return baseaa.baadecode(UpperCAmelCase__ ).decode("""utf-8""" ) if __name__ == "__main__": __lowerCamelCase = '''Hello World!''' __lowerCamelCase = baseaa_encode(test) print(encoded) __lowerCamelCase = baseaa_decode(encoded) print(decoded)
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = None, ) -> List[Any]: if config_name_or_path is None: A_ = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: A_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: A_ = question_encoder_name_or_path A_ = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. A_ = RagConfig.from_pretrained(UpperCAmelCase__ ) A_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) A_ = AutoConfig.from_pretrained(UpperCAmelCase__ ) A_ = gen_config A_ = question_encoder_config A_ = model_class.from_pretrained_question_encoder_generator( UpperCAmelCase__, UpperCAmelCase__, config=UpperCAmelCase__ ) rag_model.save_pretrained(UpperCAmelCase__ ) # Sanity check. model_class.from_pretrained(UpperCAmelCase__ ) # Save tokenizers. A_ = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) A_ = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = 0 @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(UpperCamelCase__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(UpperCamelCase__ ) , 0 ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) # Check that tokenizer_type ≠ model_type A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCamelCase__ , """vocab.txt""" ) ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , tokenizer_type="""bert""" , use_fast=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCamelCase__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCamelCase__ , """merges.txt""" ) ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , tokenizer_type="""gpt2""" , use_fast=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) @require_tokenizers def snake_case_ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(UpperCamelCase__ , """vocab.txt""" ) ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , tokenizer_type="""bert""" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(UpperCamelCase__ , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(UpperCamelCase__ , """merges.txt""" ) ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , tokenizer_type="""gpt2""" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def snake_case_ ( self ) -> List[str]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: A_ = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , UpperCamelCase__ ) else: self.assertEqual(tokenizer.do_lower_case , UpperCamelCase__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def snake_case_ ( self ) -> List[str]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( UpperCamelCase__ , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): A_ = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = TOKENIZER_MAPPING.values() A_ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(UpperCamelCase__ ) @require_tokenizers def snake_case_ ( self ) -> List[str]: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=UpperCamelCase__ ) , UpperCamelCase__ ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , UpperCamelCase__ ) @require_tokenizers def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=UpperCamelCase__ ) A_ = """Hello, world. How are you?""" A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertEqual("""[UNK]""" , tokens[0] ) A_ = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=UpperCamelCase__ ) A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = get_tokenizer_config("""bert-base-cased""" ) A_ = config.pop("""_commit_hash""" , UpperCamelCase__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(UpperCamelCase__ , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. A_ = get_tokenizer_config(UpperCamelCase__ ) self.assertDictEqual(UpperCamelCase__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = get_tokenizer_config(UpperCamelCase__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def snake_case_ ( self ) -> str: '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) A_ = CustomTokenizer.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' try: AutoConfig.register("""custom""" , UpperCamelCase__ ) # Can register in two steps AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(UpperCamelCase__ , fast_tokenizer_class=UpperCamelCase__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ , fast_tokenizer_class=UpperCamelCase__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase__ ): AutoTokenizer.register(UpperCamelCase__ , fast_tokenizer_class=UpperCamelCase__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: A_ = BertTokenizerFast.from_pretrained(UpperCamelCase__ ) bert_tokenizer.save_pretrained(UpperCamelCase__ ) A_ = CustomTokenizerFast.from_pretrained(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase__ ): A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase__ ): A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def snake_case_ ( self ) -> Any: '''simple docstring''' class A__ ( _snake_case ): lowercase = False class A__ ( _snake_case ): lowercase = NewTokenizer lowercase = False try: AutoConfig.register("""custom""" , UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , slow_tokenizer_class=UpperCamelCase__ ) AutoTokenizer.register(UpperCamelCase__ , fast_tokenizer_class=UpperCamelCase__ ) # If remote code is not set, the default is to use local A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCamelCase__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version A_ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=UpperCamelCase__ , use_fast=UpperCamelCase__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): A_ = AutoTokenizer.from_pretrained("""bert-base""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( UpperCamelCase__ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , revision="""aaaaaa""" ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class A__ : def __init__( self , UpperCamelCase__ = "cpu" , UpperCamelCase__ = "openai/clip-vit-large-patch14" ) -> None: '''simple docstring''' A_ = device A_ = CLIPTokenizerFast.from_pretrained(UpperCamelCase__ ) A_ = [0.48145466, 0.4578275, 0.40821073] A_ = [0.26862954, 0.26130258, 0.27577711] A_ = torchvision.transforms.Normalize(self.image_mean , self.image_std ) A_ = torchvision.transforms.Resize(224 ) A_ = torchvision.transforms.CenterCrop(224 ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = self.resize(UpperCamelCase__ ) A_ = self.center_crop(UpperCamelCase__ ) A_ = self.normalize(UpperCamelCase__ ) return images def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self.tokenizer(text=UpperCamelCase__ , **UpperCamelCase__ ) A_ = self.preprocess_img(UpperCamelCase__ ) A_ = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=10 , UpperCamelCase__=0.01 , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__="image" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , ) -> None: '''simple docstring''' super().__init__() A_ = None A_ = device if device else get_device() if vqgan: A_ = vqgan else: A_ = load_vqgan(self.device , conf_path=UpperCamelCase__ , ckpt_path=UpperCamelCase__ ) self.vqgan.eval() if clip: A_ = clip else: A_ = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) A_ = ProcessorGradientFlow(device=self.device ) A_ = iterations A_ = lr A_ = log A_ = make_grid A_ = return_val A_ = quantize A_ = self.vqgan.decoder.z_shape def snake_case_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=5 , UpperCamelCase__=True ) -> List[str]: '''simple docstring''' A_ = [] if output_path is None: A_ = """./animation.gif""" if input_path is None: A_ = self.save_path A_ = sorted(glob(input_path + """/*""" ) ) if not len(UpperCamelCase__ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(UpperCamelCase__ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) A_ = total_duration / len(UpperCamelCase__ ) A_ = [frame_duration] * len(UpperCamelCase__ ) if extend_frames: A_ = 1.5 A_ = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(UpperCamelCase__ ) ) imageio.mimsave(UpperCamelCase__ , UpperCamelCase__ , duration=UpperCamelCase__ ) print(f'''gif saved to {output_path}''' ) def snake_case_ ( self , UpperCamelCase__=None , UpperCamelCase__=None ) -> Optional[int]: '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError A_ = preprocess(Image.open(UpperCamelCase__ ) , target_image_size=256 ).to(self.device ) A_ = preprocess_vqgan(UpperCamelCase__ ) A_ , *A_ = self.vqgan.encode(UpperCamelCase__ ) return z def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.latent.detach().requires_grad_() A_ = base_latent + transform_vector if self.quantize: A_ , *A_ = self.vqgan.quantize(UpperCamelCase__ ) else: A_ = trans_latent return self.vqgan.decode(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> Union[str, Any]: '''simple docstring''' A_ = self.clip_preprocessor(text=UpperCamelCase__ , images=UpperCamelCase__ , return_tensors="""pt""" , padding=UpperCamelCase__ ) A_ = self.clip(**UpperCamelCase__ ) A_ = clip_outputs.logits_per_image if weights is not None: A_ = similarity_logits * weights return similarity_logits.sum() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self._get_clip_similarity(pos_prompts["""prompts"""] , UpperCamelCase__ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: A_ = self._get_clip_similarity(neg_prompts["""prompts"""] , UpperCamelCase__ , weights=neg_prompts["""weights"""] ) else: A_ = torch.tensor([1] , device=self.device ) A_ = -torch.log(UpperCamelCase__ ) + torch.log(UpperCamelCase__ ) return loss def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = torch.randn_like(self.latent , requires_grad=UpperCamelCase__ , device=self.device ) A_ = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() A_ = self._add_vector(UpperCamelCase__ ) A_ = loop_post_process(UpperCamelCase__ ) A_ = self._get_CLIP_loss(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) print("""CLIP loss""" , UpperCamelCase__ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' wandb.init(reinit=UpperCamelCase__ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: A_ = Image.open(UpperCamelCase__ ) A_ = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(UpperCamelCase__ ) ) def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if not prompts: return [] A_ = [] A_ = [] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(UpperCamelCase__ , (tuple, list) ): A_ = prompt[0] A_ = float(prompt[1] ) elif ":" in prompt: A_ , A_ = prompt.split(""":""" ) A_ = float(UpperCamelCase__ ) else: A_ = prompt A_ = 1.0 processed_prompts.append(UpperCamelCase__ ) weights.append(UpperCamelCase__ ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase__ , device=self.device ), } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=None , ) -> Tuple: '''simple docstring''' if image_path: A_ = self._get_latent(UpperCamelCase__ ) else: A_ = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert pos_prompts, "You must provide at least one positive prompt." A_ = self.process_prompts(UpperCamelCase__ ) A_ = self.process_prompts(UpperCamelCase__ ) if save_final and save_path is None: A_ = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) else: A_ = save_path + """_""" + get_timestamp() os.makedirs(UpperCamelCase__ ) A_ = save_path A_ = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(UpperCamelCase__ ) ) A_ = loop_post_process(UpperCamelCase__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ): if show_intermediate: show_pil(UpperCamelCase__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(UpperCamelCase__ )} ) if show_final: show_pil(UpperCamelCase__ ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import requests __lowerCamelCase = '''''' # <-- Put your OpenWeatherMap appid here! __lowerCamelCase = '''https://api.openweathermap.org/data/2.5/''' def UpperCAmelCase__ ( UpperCAmelCase__ = "Chicago", UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """weather""", params=locals() ).json() def UpperCAmelCase__ ( UpperCAmelCase__ = "Kolkata, India", UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """forecast""", params=locals() ).json() def UpperCAmelCase__ ( UpperCAmelCase__ = 55.68, UpperCAmelCase__ = 12.57, UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """onecall""", params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowerCamelCase = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): def __init__( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase__ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = {} A_ = {} A_ = {} # preprocess args if "points_per_batch" in kwargs: A_ = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: A_ = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: A_ = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: A_ = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: A_ = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: A_ = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: A_ = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: A_ = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: A_ = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: A_ = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: A_ = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: A_ = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , UpperCamelCase__ , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return super().__call__(UpperCamelCase__ , *UpperCamelCase__ , num_workers=UpperCamelCase__ , batch_size=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=64 , UpperCamelCase__ = 0 , UpperCamelCase__ = 512 / 1500 , UpperCamelCase__ = 32 , UpperCamelCase__ = 1 , ) -> List[Any]: '''simple docstring''' A_ = load_image(UpperCamelCase__ ) A_ = self.image_processor.size["""longest_edge"""] A_ , A_ , A_ , A_ = self.image_processor.generate_crop_boxes( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = self.image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": A_ = self.get_inference_context() with inference_context(): A_ = self._ensure_tensor_on_device(UpperCamelCase__ , device=self.device ) A_ = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) A_ = image_embeddings A_ = grid_points.shape[1] A_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCamelCase__ , UpperCamelCase__ ): A_ = grid_points[:, i : i + points_per_batch, :, :] A_ = input_labels[:, i : i + points_per_batch] A_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0.88 , UpperCamelCase__=0.95 , UpperCamelCase__=0 , UpperCamelCase__=1 , ) -> Optional[Any]: '''simple docstring''' A_ = model_inputs.pop("""input_boxes""" ) A_ = model_inputs.pop("""is_last""" ) A_ = model_inputs.pop("""original_sizes""" ).tolist() A_ = model_inputs.pop("""reshaped_input_sizes""" ).tolist() A_ = self.model(**UpperCamelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks A_ = model_outputs["""pred_masks"""] A_ = self.image_processor.post_process_masks( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , binarize=UpperCamelCase__ ) A_ = model_outputs["""iou_scores"""] A_ , A_ , A_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=0.7 , ) -> str: '''simple docstring''' A_ = [] A_ = [] A_ = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) A_ = torch.cat(UpperCamelCase__ ) A_ = torch.cat(UpperCamelCase__ ) A_ , A_ , A_ , A_ = self.image_processor.post_process_for_mask_generation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = defaultdict(UpperCamelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCamelCase__ ) A_ = {} if output_rle_mask: A_ = rle_mask if output_bboxes_mask: A_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class A__ ( _snake_case ): lowercase = "open-llama" def __init__( self , UpperCamelCase__=100000 , UpperCamelCase__=4096 , UpperCamelCase__=11008 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=2048 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-6 , UpperCamelCase__=True , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> int: '''simple docstring''' A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = intermediate_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = initializer_range A_ = rms_norm_eps A_ = use_cache A_ = kwargs.pop( """use_memorry_efficient_attention""" , UpperCamelCase__ ) A_ = hidden_dropout_prob A_ = attention_dropout_prob A_ = use_stable_embedding A_ = shared_input_output_embedding A_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ , ) def snake_case_ ( self ) -> Dict: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) A_ = self.rope_scaling.get("""type""" , UpperCamelCase__ ) A_ = self.rope_scaling.get("""factor""" , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = '''▁''' __lowerCamelCase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __lowerCamelCase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __lowerCamelCase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __lowerCamelCase = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __lowerCamelCase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class A__ ( _snake_case ): lowercase = ["input_ids"] lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = RESOURCE_FILES_NAMES def __init__( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__="utf8" , UpperCamelCase__="[UNK]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="[PAD]" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: '''simple docstring''' A_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , vocab_file=UpperCamelCase__ , encoding=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A_ = do_lower_case A_ = sentencepiece_model_ckpt A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: A_ = self.load_vocab(filepath=UpperCamelCase__ ) else: A_ = {self.sp_model.id_to_piece(UpperCamelCase__ ): id for id in range(self.sp_model.get_piece_size() )} A_ = {v: k for k, v in self.vocab.items()} def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if text is None: return None A_ = self.tokenize(UpperCamelCase__ ) A_ , A_ = """""", [] for i, ch in enumerate(UpperCamelCase__ ): if ch in self.SP_CHAR_MAPPING: A_ = self.SP_CHAR_MAPPING.get(UpperCamelCase__ ) else: A_ = unicodedata.normalize("""NFKC""" , UpperCamelCase__ ) if self.is_whitespace(UpperCamelCase__ ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase__ ) ) A_ , A_ , A_ = normalized_text, [], 0 if self.do_lower_case: A_ = text.lower() for token in split_tokens: if token[:1] == "▁": A_ = token[1:] A_ = text[offset:].index(UpperCamelCase__ ) + offset A_ = start + len(UpperCamelCase__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) A_ = end return token_mapping @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return len(self.vocab ) def snake_case_ ( self ) -> int: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ) -> List[str]: '''simple docstring''' A_ = self.__dict__.copy() A_ = None return state def __setstate__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ = {} A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase__ , UpperCamelCase__ ) for c in text) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=64 , UpperCamelCase__=0.1 ) -> List[Any]: '''simple docstring''' if self.sp_model_kwargs.get("""enable_sampling""" ) is True: A_ = True if self.sp_model_kwargs.get("""alpha""" ) is not None: A_ = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: A_ = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: A_ = self.sp_model.EncodeAsPieces(UpperCamelCase__ ) else: A_ = self.sp_model.SampleEncodeAsPieces(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = [] for pi, piece in enumerate(UpperCamelCase__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase__ ) and pi != 0: new_pieces.append(UpperCamelCase__ ) continue else: continue A_ = 0 for i, chunk in enumerate(UpperCamelCase__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase__ ) or self.is_punct(UpperCamelCase__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase__ ) A_ = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A_ = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) A_ = i if len(UpperCamelCase__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = """""".join(UpperCamelCase__ ).replace(UpperCamelCase__ , """ """ ).strip() return out_string def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = self.convert_ids_to_tokens(UpperCamelCase__ ) A_ = """""".join(UpperCamelCase__ ).replace(UpperCamelCase__ , """ """ ).strip() return out_string def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token ) ) def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.reverse_vocab.get(UpperCamelCase__ , self.unk_token ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ = [self.cls_token_id] A_ = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase__ ) + 1) + [1] * (len(UpperCamelCase__ ) + 3) def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase__ ) == 1: A_ = unicodedata.category(UpperCamelCase__ ) if cat == "Zs": return True return False def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = {} with io.open(UpperCamelCase__ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCamelCase__ ): A_ = line.rstrip("""\n""" ) A_ = int(UpperCamelCase__ ) return token_to_idx def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' A_ = 0 if os.path.isdir(UpperCamelCase__ ): A_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: A_ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) A_ = token_index writer.write(token + """\n""" ) index += 1 A_ = os.path.join(UpperCamelCase__ , """sentencepiece.bpe.model""" ) with open(UpperCamelCase__ , """wb""" ) as fi: A_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (vocab_file,)
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowerCamelCase = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: for param, grad_param in zip(model_a.parameters(), model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad, grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=True ) -> Any: model.train() A_ = model(UpperCAmelCase__ ) A_ = F.mse_loss(UpperCAmelCase__, target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=False ) -> List[Any]: set_seed(42 ) A_ = RegressionModel() A_ = deepcopy(UpperCAmelCase__ ) A_ = RegressionDataset(length=80 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) model.to(accelerator.device ) if sched: A_ = AdamW(params=model.parameters(), lr=1e-3 ) A_ = AdamW(params=ddp_model.parameters(), lr=1e-3 ) A_ = LambdaLR(UpperCAmelCase__, lr_lambda=lambda UpperCAmelCase__ : epoch**0.65 ) A_ = LambdaLR(UpperCAmelCase__, lr_lambda=lambda UpperCAmelCase__ : epoch**0.65 ) # Make a copy of `model` if sched: A_ , A_ , A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # Test when on a single CPU or GPU that the context manager does nothing A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) # Use a single batch A_ , A_ = next(iter(UpperCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: # Sync grads step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad, ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: # Test on distributed setup that context manager behaves properly A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) # Use a single batch A_ , A_ = next(iter(UpperCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: # Sync grads step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] def UpperCAmelCase__ ( UpperCAmelCase__=False, UpperCAmelCase__=False ) -> int: A_ = Accelerator( split_batches=UpperCAmelCase__, dispatch_batches=UpperCAmelCase__, gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ , A_ , A_ = get_training_setup(UpperCAmelCase__ ) for iteration, batch in enumerate(UpperCAmelCase__ ): A_ , A_ = batch.values() # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCAmelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad, ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) A_ = ddp_input[torch.randperm(len(UpperCAmelCase__ ) )] GradientState._reset_state() def UpperCAmelCase__ ( UpperCAmelCase__=False, UpperCAmelCase__=False ) -> str: A_ = Accelerator( split_batches=UpperCAmelCase__, dispatch_batches=UpperCAmelCase__, gradient_accumulation_steps=2 ) # Test that context manager behaves properly A_ , A_ , A_ , A_ , A_ , A_ , A_ = get_training_setup(UpperCAmelCase__, UpperCAmelCase__ ) for iteration, batch in enumerate(UpperCAmelCase__ ): A_ , A_ = batch.values() # Gather the distributed inputs and targs for the base model A_ , A_ = accelerator.gather((ddp_input, ddp_target) ) A_ , A_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCAmelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCAmelCase__ ): step_model(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' A_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCAmelCase__ )) if accelerator.num_processes > 1: check_model_parameters(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def UpperCAmelCase__ ( ) -> Any: A_ = Accelerator() A_ = RegressionDataset(length=80 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) A_ = RegressionDataset(length=96 ) A_ = DataLoader(UpperCAmelCase__, batch_size=16 ) A_ , A_ = accelerator.prepare(UpperCAmelCase__, UpperCAmelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCAmelCase__ ) if iteration < len(UpperCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCAmelCase__ ) if batch_num < len(UpperCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def UpperCAmelCase__ ( ) -> Dict: A_ = Accelerator() A_ = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(UpperCAmelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(UpperCAmelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """, F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''', ) test_gradient_accumulation(UpperCAmelCase__, UpperCAmelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""", """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """, """`split_batches=False`, `dispatch_batches=False`**""", ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """, F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''', ) test_gradient_accumulation_with_opt_and_scheduler(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' import itertools import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( ) -> Optional[Any]: A_ = 2 while True: if is_prime(UpperCAmelCase__ ): yield num num += 1 def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_01 ) -> int: return next(itertools.islice(prime_generator(), nth - 1, UpperCAmelCase__ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (EulerDiscreteScheduler,) lowercase = 10 def snake_case_ ( self , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**UpperCamelCase__ ) return config def snake_case_ ( self ) -> str: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma A_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(prediction_type="""v_prediction""" ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma A_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ , use_karras_sigmas=UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) A_ = torch.manual_seed(0 ) A_ = self.dummy_model() A_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() A_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: A_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) A_ = output.prev_sample A_ = torch.sum(torch.abs(UpperCamelCase__ ) ) A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 124.52299499511719 ) < 1e-2 assert abs(result_mean.item() - 0.16213932633399963 ) < 1e-3
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaImgaImgPipeline lowercase = ["image_embeds", "negative_image_embeds", "image"] lowercase = [ "image_embeds", "negative_image_embeds", "image", ] lowercase = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> str: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) A_ = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.dummy_unet A_ = self.dummy_movq A_ = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } A_ = DDIMScheduler(**UpperCamelCase__ ) A_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create init_image A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ).resize((256, 256) ) if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.images A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -3:, -3:, -1] A_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A_ = """A red cartoon frog, 4k""" A_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) A_ = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) A_ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = torch.Generator(device="""cpu""" ).manual_seed(0 ) A_ , A_ = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A_ = pipeline( image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) A_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , ) -> Any: '''simple docstring''' super().__init__() self.register_modules(transformer=UpperCamelCase__ , vae=UpperCamelCase__ , scheduler=UpperCamelCase__ ) # create a imagenet -> id dictionary for easier use A_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): A_ = int(UpperCamelCase__ ) A_ = dict(sorted(self.labels.items() ) ) def snake_case_ ( self , UpperCamelCase__ ) -> List[int]: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = list(UpperCamelCase__ ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , UpperCamelCase__ , UpperCamelCase__ = 4.0 , UpperCamelCase__ = None , UpperCamelCase__ = 50 , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' A_ = len(UpperCamelCase__ ) A_ = self.transformer.config.sample_size A_ = self.transformer.config.in_channels A_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=UpperCamelCase__ , device=self.device , dtype=self.transformer.dtype , ) A_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents A_ = torch.tensor(UpperCamelCase__ , device=self.device ).reshape(-1 ) A_ = torch.tensor([1000] * batch_size , device=self.device ) A_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: A_ = latent_model_input[: len(UpperCamelCase__ ) // 2] A_ = torch.cat([half, half] , dim=0 ) A_ = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) A_ = t if not torch.is_tensor(UpperCamelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) A_ = latent_model_input.device.type == """mps""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = torch.floataa if is_mps else torch.floataa else: A_ = torch.intaa if is_mps else torch.intaa A_ = torch.tensor([timesteps] , dtype=UpperCamelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: A_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output A_ = self.transformer( UpperCamelCase__ , timestep=UpperCamelCase__ , class_labels=UpperCamelCase__ ).sample # perform guidance if guidance_scale > 1: A_ , A_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] A_ , A_ = torch.split(UpperCamelCase__ , len(UpperCamelCase__ ) // 2 , dim=0 ) A_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) A_ = torch.cat([half_eps, half_eps] , dim=0 ) A_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: A_ , A_ = torch.split(UpperCamelCase__ , UpperCamelCase__ , dim=1 ) else: A_ = noise_pred # compute previous image: x_t -> x_t-1 A_ = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample if guidance_scale > 1: A_ , A_ = latent_model_input.chunk(2 , dim=0 ) else: A_ = latent_model_input A_ = 1 / self.vae.config.scaling_factor * latents A_ = self.vae.decode(UpperCamelCase__ ).sample A_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=UpperCamelCase__ )
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: for attribute in key.split(""".""" ): A_ = getattr(UpperCAmelCase__, UpperCAmelCase__ ) if weight_type is not None: A_ = getattr(UpperCAmelCase__, UpperCAmelCase__ ).shape else: A_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value else: A_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, hf_model.config.feat_extract_norm == """group""", ) A_ = True else: for key, mapped_key in MAPPING.items(): A_ = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): A_ = True if "*" in mapped_key: A_ = name.split(UpperCAmelCase__ )[0].split(""".""" )[-2] A_ = mapped_key.replace("""*""", UpperCAmelCase__ ) if "weight_g" in name: A_ = """weight_g""" elif "weight_v" in name: A_ = """weight_v""" elif "weight" in name: A_ = """weight""" elif "bias" in name: A_ = """bias""" else: A_ = None set_recursively(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) continue if not is_used: unused_weights.append(UpperCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = full_name.split("""conv_layers.""" )[-1] A_ = name.split(""".""" ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase__ ) @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__=None, UpperCAmelCase__=True ) -> List[Any]: if config_path is not None: A_ = HubertConfig.from_pretrained(UpperCAmelCase__ ) else: A_ = HubertConfig() if is_finetuned: if dict_path: A_ = Dictionary.load(UpperCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.eos_index A_ = len(target_dict.symbols ) A_ = os.path.join(UpperCAmelCase__, """vocab.json""" ) if not os.path.isdir(UpperCAmelCase__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(UpperCAmelCase__ ) ) return os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices, UpperCAmelCase__ ) A_ = WavaVecaCTCTokenizer( UpperCAmelCase__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="""|""", do_lower_case=UpperCAmelCase__, ) A_ = True if config.feat_extract_norm == """layer""" else False A_ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_60_00, padding_value=0, do_normalize=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__, ) A_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) A_ = HubertForCTC(UpperCAmelCase__ ) else: A_ = HubertModel(UpperCAmelCase__ ) if is_finetuned: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ = model[0].eval() recursively_load_weights(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) hf_wavavec.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __lowerCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=_snake_case ): lowercase = ["keras_nlp"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): lowercase = ["pixel_values"] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 0.9 , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = size if size is not None else {"""shortest_edge""": 224} A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) A_ = do_resize A_ = size A_ = crop_pct A_ = resample A_ = do_center_crop A_ = crop_size A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: A_ = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: A_ = int(size["""height"""] / crop_pct ) else: A_ = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(UpperCamelCase__ ) ) A_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) else: if "shortest_edge" in size: A_ = get_resize_output_image_size(UpperCamelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase__ ) elif "height" in size and "width" in size: A_ = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(UpperCamelCase__ ) ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' A_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> PIL.Image.Image: '''simple docstring''' A_ = do_resize if do_resize is not None else self.do_resize A_ = crop_pct if crop_pct is not None else self.crop_pct A_ = resample if resample is not None else self.resample A_ = do_center_crop if do_center_crop is not None else self.do_center_crop A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = size if size is not None else self.size A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A_ = crop_size if crop_size is not None else self.crop_size A_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) A_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: A_ = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , crop_pct=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: A_ = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: A_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: A_ = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] A_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] A_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A__ ( _snake_case ): lowercase = 42 lowercase = jnp.floataa lowercase = True def snake_case_ ( self ) -> Tuple: '''simple docstring''' super().setup() A_ = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = super().__call__(*UpperCamelCase__ , **UpperCamelCase__ ) A_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A__ ( _snake_case ): lowercase = FlaxBigBirdForNaturalQuestionsModule def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: def cross_entropy(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None ): A_ = logits.shape[-1] A_ = (labels[..., None] == jnp.arange(UpperCAmelCase__ )[None]).astype("""f4""" ) A_ = jax.nn.log_softmax(UpperCAmelCase__, axis=-1 ) A_ = -jnp.sum(labels * logits, axis=-1 ) if reduction is not None: A_ = reduction(UpperCAmelCase__ ) return loss A_ = partial(UpperCAmelCase__, reduction=jnp.mean ) A_ = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) A_ = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) A_ = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A__ : lowercase = "google/bigbird-roberta-base" lowercase = 3_000 lowercase = 10_500 lowercase = 128 lowercase = 3 lowercase = 1 lowercase = 5 # tx_args lowercase = 3e-5 lowercase = 0.0 lowercase = 20_000 lowercase = 0.0095 lowercase = "bigbird-roberta-natural-questions" lowercase = "training-expt" lowercase = "data/nq-training.jsonl" lowercase = "data/nq-validation.jsonl" def snake_case_ ( self ) -> Tuple: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=UpperCamelCase__ ) A_ = os.path.join(self.base_dir , self.save_dir ) A_ = self.batch_size_per_device * jax.device_count() @dataclass class A__ : lowercase = 42 lowercase = 4_096 # no dynamic padding on TPUs def __call__( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = self.collate_fn(UpperCamelCase__ ) A_ = jax.tree_util.tree_map(UpperCamelCase__ , UpperCamelCase__ ) return batch def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ , A_ = self.fetch_inputs(features["""input_ids"""] ) A_ = { """input_ids""": jnp.array(UpperCamelCase__ , dtype=jnp.intaa ), """attention_mask""": jnp.array(UpperCamelCase__ , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = [self._fetch_inputs(UpperCamelCase__ ) for ids in input_ids] return zip(*UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = [1 for _ in range(len(UpperCamelCase__ ) )] while len(UpperCamelCase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None ) -> int: if seed is not None: A_ = dataset.shuffle(seed=UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) // batch_size ): A_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCAmelCase__ ) @partial(jax.pmap, axis_name="""batch""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ) -> Any: def loss_fn(UpperCAmelCase__ ): A_ = model_inputs.pop("""start_labels""" ) A_ = model_inputs.pop("""end_labels""" ) A_ = model_inputs.pop("""pooled_labels""" ) A_ = state.apply_fn(**UpperCAmelCase__, params=UpperCAmelCase__, dropout_rng=UpperCAmelCase__, train=UpperCAmelCase__ ) A_ , A_ , A_ = outputs return state.loss_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ , A_ = jax.random.split(UpperCAmelCase__ ) A_ = jax.value_and_grad(UpperCAmelCase__ ) A_ , A_ = grad_fn(state.params ) A_ = jax.lax.pmean({"""loss""": loss}, axis_name="""batch""" ) A_ = jax.lax.pmean(UpperCAmelCase__, """batch""" ) A_ = state.apply_gradients(grads=UpperCAmelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap, axis_name="""batch""" ) def UpperCAmelCase__ ( UpperCAmelCase__, **UpperCAmelCase__ ) -> List[str]: A_ = model_inputs.pop("""start_labels""" ) A_ = model_inputs.pop("""end_labels""" ) A_ = model_inputs.pop("""pooled_labels""" ) A_ = state.apply_fn(**UpperCAmelCase__, params=state.params, train=UpperCAmelCase__ ) A_ , A_ , A_ = outputs A_ = state.loss_fn(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = jax.lax.pmean({"""loss""": loss}, axis_name="""batch""" ) return metrics class A__ ( train_state.TrainState ): lowercase = struct.field(pytree_node=_snake_case ) @dataclass class A__ : lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = None def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> int: '''simple docstring''' A_ = model.params A_ = TrainState.create( apply_fn=model.__call__ , params=UpperCamelCase__ , tx=UpperCamelCase__ , loss_fn=UpperCamelCase__ , ) if ckpt_dir is not None: A_ , A_ , A_ , A_ , A_ = restore_checkpoint(UpperCamelCase__ , UpperCamelCase__ ) A_ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } A_ , A_ = build_tx(**UpperCamelCase__ ) A_ = train_state.TrainState( step=UpperCamelCase__ , apply_fn=model.__call__ , params=UpperCamelCase__ , tx=UpperCamelCase__ , opt_state=UpperCamelCase__ , ) A_ = args A_ = data_collator A_ = lr A_ = params A_ = jax_utils.replicate(UpperCamelCase__ ) return state def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.args A_ = len(UpperCamelCase__ ) // args.batch_size A_ = jax.random.PRNGKey(0 ) A_ = jax.random.split(UpperCamelCase__ , jax.device_count() ) for epoch in range(args.max_epochs ): A_ = jnp.array(0 , dtype=jnp.floataa ) A_ = get_batched_dataset(UpperCamelCase__ , args.batch_size , seed=UpperCamelCase__ ) A_ = 0 for batch in tqdm(UpperCamelCase__ , total=UpperCamelCase__ , desc=f'''Running EPOCH-{epoch}''' ): A_ = self.data_collator(UpperCamelCase__ ) A_ , A_ , A_ = self.train_step_fn(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: A_ = jax_utils.unreplicate(state.step ) A_ = running_loss.item() / i A_ = self.scheduler_fn(state_step - 1 ) A_ = self.evaluate(UpperCamelCase__ , UpperCamelCase__ ) A_ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(UpperCamelCase__ ) ) self.logger.log(UpperCamelCase__ , commit=UpperCamelCase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = get_batched_dataset(UpperCamelCase__ , self.args.batch_size ) A_ = len(UpperCamelCase__ ) // self.args.batch_size A_ = jnp.array(0 , dtype=jnp.floataa ) A_ = 0 for batch in tqdm(UpperCamelCase__ , total=UpperCamelCase__ , desc="""Evaluating ... """ ): A_ = self.data_collator(UpperCamelCase__ ) A_ = self.val_step_fn(UpperCamelCase__ , **UpperCamelCase__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = jax_utils.unreplicate(UpperCamelCase__ ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(UpperCamelCase__ , params=state.params ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(UpperCamelCase__ , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , UpperCamelCase__ ) print("""DONE""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: print(F'''RESTORING CHECKPOINT FROM {save_dir}''', end=""" ... """ ) with open(os.path.join(UpperCAmelCase__, """flax_model.msgpack""" ), """rb""" ) as f: A_ = from_bytes(state.params, f.read() ) with open(os.path.join(UpperCAmelCase__, """opt_state.msgpack""" ), """rb""" ) as f: A_ = from_bytes(state.opt_state, f.read() ) A_ = joblib.load(os.path.join(UpperCAmelCase__, """args.joblib""" ) ) A_ = joblib.load(os.path.join(UpperCAmelCase__, """data_collator.joblib""" ) ) with open(os.path.join(UpperCAmelCase__, """training_state.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = num_train_steps - warmup_steps A_ = optax.linear_schedule(init_value=UpperCAmelCase__, end_value=UpperCAmelCase__, transition_steps=UpperCAmelCase__ ) A_ = optax.linear_schedule(init_value=UpperCAmelCase__, end_value=1e-7, transition_steps=UpperCAmelCase__ ) A_ = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps] ) return lr def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: def weight_decay_mask(UpperCAmelCase__ ): A_ = traverse_util.flatten_dict(UpperCAmelCase__ ) A_ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCAmelCase__ ) A_ = scheduler_fn(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = optax.adamw(learning_rate=UpperCAmelCase__, weight_decay=UpperCAmelCase__, mask=UpperCAmelCase__ ) return tx, lr
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __lowerCamelCase = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class A__ ( unittest.TestCase ): @classmethod def snake_case_ ( cls ) -> Union[str, Any]: '''simple docstring''' A_ = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def snake_case_ ( cls ) -> Tuple: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(UpperCamelCase__ ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase__ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCamelCase__ , repo_id="""test-model-flax""" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase__ , 1e-3 , msg=f'''{key} not identical''' ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(UpperCamelCase__ ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase__ , 1e-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCamelCase__ , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase__ , 1e-3 , msg=f'''{key} not identical''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: A_ = False return models_are_equal @require_flax class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> int: '''simple docstring''' A_ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A_ = FlaxBertModel(UpperCamelCase__ ) A_ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) with self.assertRaises(UpperCamelCase__ ): A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.assertTrue(check_models_equal(UpperCamelCase__ , UpperCamelCase__ ) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) A_ = FlaxBertModel(UpperCamelCase__ ) A_ = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , max_shard_size="""10KB""" ) with self.assertRaises(UpperCamelCase__ ): A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.assertTrue(check_models_equal(UpperCamelCase__ , UpperCamelCase__ ) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = """bert""" A_ = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(UpperCamelCase__ ): A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = """bert""" A_ = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(UpperCamelCase__ ): A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ ) A_ = FlaxBertModel.from_pretrained(UpperCamelCase__ , subfolder=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ )
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 A_ = 1 A_ = 1 while repunit: A_ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00_00 ) -> int: A_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(UpperCAmelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” __lowerCamelCase = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __lowerCamelCase = 0 __lowerCamelCase = 0Xe000 __lowerCamelCase = 0Xe001 __lowerCamelCase = 0Xe002 __lowerCamelCase = 0Xe003 __lowerCamelCase = 0Xe004 # Maps special codepoints to human-readable names. __lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: '''[CLS]''', SEP: '''[SEP]''', BOS: '''[BOS]''', MASK: '''[MASK]''', PAD: '''[PAD]''', RESERVED: '''[RESERVED]''', } # Maps special codepoint human-readable names to their codepoint values. __lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A__ ( _snake_case ): lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=False , UpperCamelCase__=2048 , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , model_max_length=UpperCamelCase__ , **UpperCamelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. A_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): A_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. A_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } A_ = UNICODE_VOCAB_SIZE A_ = len(self._special_codepoints ) @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._unicode_vocab_size def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return list(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' try: return ord(UpperCamelCase__ ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase__ ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' return "".join(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] A_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) A_ = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase__ )) + [1] return result def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] A_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple: '''simple docstring''' return ()
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) A_ = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) A_ = in_proj_weight[ : encoder_config.hidden_size, : ] A_ = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] A_ = in_proj_weight[ -encoder_config.hidden_size :, : ] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: A_ = dct.pop(UpperCAmelCase__ ) A_ = val def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: if "handwritten" in checkpoint_url: A_ = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: A_ = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ).convert("""RGB""" ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: A_ = ViTConfig(image_size=3_84, qkv_bias=UpperCAmelCase__ ) A_ = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: A_ = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 A_ = 10_24 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: A_ = False A_ = """relu""" A_ = 10_24 A_ = True A_ = False A_ = False # load HuggingFace model A_ = ViTModel(UpperCAmelCase__, add_pooling_layer=UpperCAmelCase__ ) A_ = TrOCRForCausalLM(UpperCAmelCase__ ) A_ = VisionEncoderDecoderModel(encoder=UpperCAmelCase__, decoder=UpperCAmelCase__ ) model.eval() # load state_dict of original model, rename some keys A_ = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""", check_hash=UpperCAmelCase__ )["""model"""] A_ = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): A_ = state_dict.pop(UpperCAmelCase__ ) if key.startswith("""decoder""" ) and "output_projection" not in key: A_ = val else: A_ = val # load state dict model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image A_ = ViTImageProcessor(size=encoder_config.image_size ) A_ = RobertaTokenizer.from_pretrained("""roberta-large""" ) A_ = TrOCRProcessor(UpperCAmelCase__, UpperCAmelCase__ ) A_ = processor(images=prepare_img(UpperCAmelCase__ ), return_tensors="""pt""" ).pixel_values # verify logits A_ = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) A_ = model(pixel_values=UpperCAmelCase__, decoder_input_ids=UpperCAmelCase__ ) A_ = outputs.logits A_ = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: A_ = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311] ) elif "trocr-large-handwritten" in checkpoint_url: A_ = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170] ) elif "trocr-base-printed" in checkpoint_url: A_ = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210] ) elif "trocr-large-printed" in checkpoint_url: A_ = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], UpperCAmelCase__, atol=1e-3 ), "First elements of logits not as expected" Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) __lowerCamelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from importlib import import_module from .logging import get_logger __lowerCamelCase = get_logger(__name__) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) A_ = module._original_module if isinstance(UpperCamelCase__ , _PatchedModuleObj ) else module class A__ : lowercase = [] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> str: '''simple docstring''' A_ = obj A_ = target A_ = new A_ = target.split(""".""" )[0] A_ = {} A_ = attrs or [] def __enter__( self ) -> List[Any]: '''simple docstring''' *A_ , A_ = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(UpperCamelCase__ ) ): try: A_ = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): A_ = getattr(self.obj , UpperCamelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(UpperCamelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): A_ = obj_attr # patch at top level setattr(self.obj , UpperCamelCase__ , _PatchedModuleObj(UpperCamelCase__ , attrs=self.attrs ) ) A_ = getattr(self.obj , UpperCamelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(UpperCamelCase__ , UpperCamelCase__ , _PatchedModuleObj(getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , attrs=self.attrs ) ) A_ = getattr(UpperCamelCase__ , UpperCamelCase__ ) # finally set the target attribute setattr(UpperCamelCase__ , UpperCamelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: A_ = getattr(import_module(""".""".join(UpperCamelCase__ ) ) , UpperCamelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , UpperCamelCase__ ) is attr_value: A_ = getattr(self.obj , UpperCamelCase__ ) setattr(self.obj , UpperCamelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" A_ = globals()["""__builtins__"""][target_attr] setattr(self.obj , UpperCamelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' for attr in list(self.original ): setattr(self.obj , UpperCamelCase__ , self.original.pop(UpperCamelCase__ ) ) def snake_case_ ( self ) -> str: '''simple docstring''' self.__enter__() self._active_patches.append(self ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ), end="""\t""" ) else: print("""INF""", end="""\t""" ) print() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: A_ = [[float("""inf""" ) for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): A_ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(UpperCAmelCase__ ): # looping through rows of graph array for i in range(UpperCAmelCase__ ): # looping through columns of graph array for j in range(UpperCAmelCase__ ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ = dist[i][k] + dist[k][j] _print_dist(UpperCAmelCase__, UpperCAmelCase__ ) return dist, v if __name__ == "__main__": __lowerCamelCase = int(input('''Enter number of vertices: ''')) __lowerCamelCase = int(input('''Enter number of edges: ''')) __lowerCamelCase = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): __lowerCamelCase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) __lowerCamelCase = int(input('''Enter source:''')) __lowerCamelCase = int(input('''Enter destination:''')) __lowerCamelCase = float(input('''Enter weight:''')) __lowerCamelCase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = 42 class A__ ( nn.Module ): lowercase = 42 lowercase = (16, 32, 96, 256) lowercase = jnp.floataa def snake_case_ ( self ) -> str: '''simple docstring''' A_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) A_ = [] for i in range(len(self.block_out_channels ) - 1 ): A_ = self.block_out_channels[i] A_ = self.block_out_channels[i + 1] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase__ ) A_ = blocks A_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = self.conv_in(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) for block in self.blocks: A_ = block(UpperCamelCase__ ) A_ = nn.silu(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return embedding @flax_register_to_config class A__ ( nn.Module , _snake_case , _snake_case ): lowercase = 32 lowercase = 4 lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase = False lowercase = (320, 640, 1_280, 1_280) lowercase = 2 lowercase = 8 lowercase = None lowercase = 1_280 lowercase = 0.0 lowercase = False lowercase = jnp.floataa lowercase = True lowercase = 0 lowercase = "rgb" lowercase = (16, 32, 96, 256) def snake_case_ ( self , UpperCamelCase__ ) -> FrozenDict: '''simple docstring''' A_ = (1, self.in_channels, self.sample_size, self.sample_size) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ = jnp.ones((1,) , dtype=jnp.intaa ) A_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) A_ = (1, 3, self.sample_size * 8, self.sample_size * 8) A_ = jnp.zeros(UpperCamelCase__ , dtype=jnp.floataa ) A_ , A_ = jax.random.split(UpperCamelCase__ ) A_ = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )["params"] def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.block_out_channels A_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. A_ = self.num_attention_heads or self.attention_head_dim # input A_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time A_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) A_ = FlaxTimestepEmbedding(UpperCamelCase__ , dtype=self.dtype ) A_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) A_ = self.only_cross_attention if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = (num_attention_heads,) * len(self.down_block_types ) # down A_ = [] A_ = [] A_ = block_out_channels[0] A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) for i, down_block_type in enumerate(self.down_block_types ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": A_ = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: A_ = FlaxDownBlockaD( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase__ ) for _ in range(self.layers_per_block ): A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) if not is_final_block: A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase__ ) A_ = down_blocks A_ = controlnet_down_blocks # mid A_ = block_out_channels[-1] A_ = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) A_ = nn.Conv( UpperCamelCase__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1.0 , UpperCamelCase__ = True , UpperCamelCase__ = False , ) -> Union[FlaxControlNetOutput, Tuple]: '''simple docstring''' A_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": A_ = jnp.flip(UpperCamelCase__ , axis=1 ) # 1. time if not isinstance(UpperCamelCase__ , jnp.ndarray ): A_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: A_ = timesteps.astype(dtype=jnp.floataa ) A_ = jnp.expand_dims(UpperCamelCase__ , 0 ) A_ = self.time_proj(UpperCamelCase__ ) A_ = self.time_embedding(UpperCamelCase__ ) # 2. pre-process A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.conv_in(UpperCamelCase__ ) A_ = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) A_ = self.controlnet_cond_embedding(UpperCamelCase__ ) sample += controlnet_cond # 3. down A_ = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) else: A_ , A_ = down_block(UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , deterministic=not train ) # 5. contronet blocks A_ = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase__ , self.controlnet_down_blocks ): A_ = controlnet_block(UpperCamelCase__ ) controlnet_down_block_res_samples += (down_block_res_sample,) A_ = controlnet_down_block_res_samples A_ = self.controlnet_mid_block(UpperCamelCase__ ) # 6. scaling A_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase__ , mid_block_res_sample=UpperCamelCase__ )
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class A__ ( _snake_case ): lowercase = "xlm-roberta" def __init__( self , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = classifier_dropout class A__ ( _snake_case ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __lowerCamelCase = (3, 9, -11, 0, 7, 5, 1, -1) __lowerCamelCase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : lowercase = 42 lowercase = 42 class A__ : def __init__( self , UpperCamelCase__ ) -> None: '''simple docstring''' A_ = None for i in sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ): A_ = Node(UpperCamelCase__ , self.head ) def __iter__( self ) -> Iterator[int]: '''simple docstring''' A_ = self.head while node: yield node.data A_ = node.next_node def __len__( self ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __str__( self ) -> str: '''simple docstring''' return " -> ".join([str(UpperCamelCase__ ) for node in self] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> SortedLinkedList: return SortedLinkedList(list(UpperCAmelCase__ ) + list(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import os def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = len(grid[0] ) A_ = len(UpperCAmelCase__ ) A_ = 0 A_ = 0 A_ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(UpperCAmelCase__ ): for j in range(n_rows - 3 ): A_ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] A_ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: A_ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: A_ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) A_ = max( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if max_product > largest: A_ = max_product return largest def UpperCAmelCase__ ( ) -> Tuple: A_ = [] with open(os.path.dirname(UpperCAmelCase__ ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) A_ = [[int(UpperCAmelCase__ ) for i in grid[j]] for j in range(len(UpperCAmelCase__ ) )] return largest_product(UpperCAmelCase__ ) if __name__ == "__main__": print(solution())
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) A_ = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(UpperCamelCase__ ) , torch_builtin(UpperCamelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCamelCase__ ) , gelu_new(UpperCamelCase__ ) ) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) A_ = get_activation("""gelu""" ) A_ = get_activation("""gelu_10""" ) A_ = torch_builtin(UpperCamelCase__ ) A_ = geluaa(UpperCamelCase__ ) A_ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCamelCase__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case_ ( self ) -> int: '''simple docstring''' get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(UpperCamelCase__ ): get_activation("""bogus""" ) with self.assertRaises(UpperCamelCase__ ): get_activation(UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = get_activation("""gelu""" ) A_ = 1 A_ = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCamelCase__ ): A_ = acta.a
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: # Initialise PyTorch model A_ = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) A_ = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __lowerCamelCase = pytest.mark.integration __lowerCamelCase = {'''comet'''} __lowerCamelCase = importlib.util.find_spec('''fairseq''') is not None __lowerCamelCase = {'''code_eval'''} __lowerCamelCase = os.name == '''nt''' __lowerCamelCase = {'''bertscore''', '''frugalscore''', '''perplexity'''} __lowerCamelCase = importlib.util.find_spec('''transformers''') is not None def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: @wraps(UpperCAmelCase__ ) def wrapper(self, UpperCAmelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self, UpperCAmelCase__ ) return wrapper def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: @wraps(UpperCAmelCase__ ) def wrapper(self, UpperCAmelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self, UpperCAmelCase__ ) return wrapper def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: @wraps(UpperCAmelCase__ ) def wrapper(self, UpperCAmelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self, UpperCAmelCase__ ) return wrapper def UpperCAmelCase__ ( ) -> List[str]: A_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _snake_case , _snake_case , _snake_case ) @local class A__ ( parameterized.TestCase ): lowercase = {} lowercase = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = """[...]""" A_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCamelCase__ ) ).module_path ) A_ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCamelCase__ ) # check parameters A_ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(UpperCamelCase__ , metric_module.__name__ ): with self.use_local_metrics(): try: A_ = doctest.testmod(UpperCamelCase__ , verbose=UpperCamelCase__ , raise_on_error=UpperCamelCase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = """[...]""" A_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , UpperCamelCase__ ) ).module_path ) # run doctest with self.use_local_metrics(): A_ = doctest.testmod(UpperCamelCase__ , verbose=UpperCamelCase__ , raise_on_error=UpperCamelCase__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCamelCase__ ): yield else: yield @contextmanager def snake_case_ ( self ) -> Tuple: '''simple docstring''' def load_local_metric(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ): return load_metric(os.path.join("""metrics""" , UpperCamelCase__ ) , *UpperCamelCase__ , **UpperCamelCase__ ) with patch("""datasets.load_metric""" ) as mock_load_metric: A_ = load_local_metric yield @classmethod def snake_case_ ( cls , UpperCamelCase__ ) -> Tuple: '''simple docstring''' def wrapper(UpperCamelCase__ ): A_ = contextmanager(UpperCamelCase__ ) A_ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""", """""", """""" ) # handle pytest cli flags class A__ ( _snake_case ): def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: A_ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: import torch def bert_cos_score_idf(UpperCAmelCase__, UpperCAmelCase__, *UpperCAmelCase__, **UpperCAmelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCAmelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: A_ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: def load_from_checkpoint(UpperCAmelCase__ ): class A__ : def snake_case_ ( self , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' assert len(UpperCamelCase__ ) == 2 A_ = [0.19, 0.92] return scores, sum(UpperCamelCase__ ) / len(UpperCamelCase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: A_ = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: A_ = load_from_checkpoint yield def UpperCAmelCase__ ( ) -> Dict: A_ = load_metric(os.path.join("""metrics""", """seqeval""" ) ) A_ = """ERROR""" A_ = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(UpperCAmelCase__, match=re.escape(UpperCAmelCase__ ) ): metric.compute(predictions=[], references=[], scheme=UpperCAmelCase__ )
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( _snake_case , unittest.TestCase ): lowercase = DebertaTokenizer lowercase = True lowercase = DebertaTokenizerFast def snake_case_ ( self ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] A_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A_ = {"""unk_token""": """[UNK]"""} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) def snake_case_ ( self , **UpperCamelCase__ ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = """lower newer""" A_ = """lower newer""" return input_text, output_text def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.get_tokenizer() A_ = """lower newer""" A_ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] A_ = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A_ = tokens + [tokenizer.unk_token] A_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.get_tokenizer() A_ = tokenizer("""Hello""" , """World""" ) A_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , UpperCamelCase__ ) @slow def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) A_ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.encode( """sequence builders""" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) A_ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A_ = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) A_ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] A_ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) A_ = [tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for seq in encoding["""input_ids"""]] # fmt: off A_ = { """input_ids""": [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A_ = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , UpperCamelCase__ ) for expected, decoded in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: A_ = test_results.split(""" """ ) A_ = 0 A_ = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. A_ = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCAmelCase__ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = {} A_ = None A_ = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""", UpperCAmelCase__ ): A_ = True A_ = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): A_ = line A_ = False return failures class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = title A_ = doc_test_results["""time_spent"""].split(""",""" )[0] A_ = doc_test_results["""success"""] A_ = doc_test_results["""failures"""] A_ = self.n_success + self.n_failures # Failures and success of the modeling tests A_ = doc_test_results @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = [self._time_spent] A_ = 0 for time in time_spent: A_ = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase__ ) == 1: A_ = [0, 0, time_parts[0]] A_ , A_ , A_ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds A_ , A_ , A_ = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f'''{int(UpperCamelCase__ )}h{int(UpperCamelCase__ )}m{int(UpperCamelCase__ )}s''' @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } @property def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = 40 A_ = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase__ , UpperCamelCase__ )} A_ = """""" for category, failures in category_failures.items(): if len(UpperCamelCase__ ) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase__ ) @staticmethod def snake_case_ ( ) -> Optional[int]: '''simple docstring''' A_ = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(UpperCamelCase__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase__ , ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) A_ = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" A_ = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = """""" for key, value in failures.items(): A_ = value[:200] + """ [Truncated]""" if len(UpperCamelCase__ ) > 250 else value failures_text += f'''*{key}*\n_{value}_\n\n''' A_ = job_name A_ = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: A_ = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case_ ( self ) -> int: '''simple docstring''' if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) A_ = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) A_ = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): A_ = f'''*Num failures* :{len(job_result["failed"] )} \n''' A_ = job_result["""failures"""] A_ = self.get_reply_blocks(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , text=UpperCamelCase__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f'''Results for {job}''' , blocks=UpperCamelCase__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def UpperCAmelCase__ ( ) -> Optional[int]: A_ = os.environ["""GITHUB_RUN_ID"""] A_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' A_ = requests.get(UpperCAmelCase__ ).json() A_ = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A_ = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(UpperCAmelCase__ ): A_ = requests.get(url + F'''&page={i + 2}''' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""", UpperCAmelCase__ ) return {} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = {} if os.path.exists(UpperCAmelCase__ ): A_ = os.listdir(UpperCAmelCase__ ) for file in files: try: with open(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ), encoding="""utf-8""" ) as f: A_ = f.read() except UnicodeDecodeError as e: raise ValueError(F'''Could not open {os.path.join(UpperCAmelCase__, UpperCAmelCase__ )}.''' ) from e return _artifact def UpperCAmelCase__ ( ) -> Optional[Any]: class A__ : def __init__( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = name A_ = [] def __str__( self ) -> Dict: '''simple docstring''' return self.name def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' self.paths.append({"""name""": self.name, """path""": path} ) A_ = {} A_ = filter(os.path.isdir, os.listdir() ) for directory in directories: A_ = directory if artifact_name not in _available_artifacts: A_ = Artifact(UpperCAmelCase__ ) _available_artifacts[artifact_name].add_path(UpperCAmelCase__ ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase = get_job_links() __lowerCamelCase = retrieve_available_artifacts() __lowerCamelCase = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase = github_actions_job_links.get('''run_doctests''') __lowerCamelCase = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] __lowerCamelCase = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = handle_test_results(artifact['''stats''']) __lowerCamelCase = failed __lowerCamelCase = success __lowerCamelCase = time_spent[1:-1] + ''', ''' __lowerCamelCase = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): __lowerCamelCase = line.replace('''FAILED ''', '''''') __lowerCamelCase = line.split()[0].replace('''\n''', '''''') if "::" in line: __lowerCamelCase , __lowerCamelCase = line.split('''::''') else: __lowerCamelCase , __lowerCamelCase = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase = all_failures[test] if test in all_failures else '''N/A''' __lowerCamelCase = failure break __lowerCamelCase = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=0 , ) -> Dict: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = projection_dim def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) A_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = TFDPRContextEncoder(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = TFDPRQuestionEncoder(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = TFDPRReader(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = TFDPRModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFDPRQuestionEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFDPRReader.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) A_ = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] A_ = model(UpperCamelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. A_ = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCAmelCase__ ( UpperCAmelCase__=None ) -> str: A_ = argparse.ArgumentParser(add_help=UpperCAmelCase__, allow_abbrev=UpperCAmelCase__ ) # The main config parser A_ = config_command_parser(UpperCAmelCase__ ) # The subparser to add commands to A_ = config_parser.add_subparsers(title="""subcommands""", dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(UpperCAmelCase__, parents=[parent_parser] ) update_command_parser(UpperCAmelCase__, parents=[parent_parser] ) return config_parser def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = get_config_parser() A_ = config_parser.parse_args() if not hasattr(UpperCAmelCase__, """func""" ): config_parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase__ ) if __name__ == "__main__": main()
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: create_state_space_tree(UpperCAmelCase__, [], 0, [0 for i in range(len(UpperCAmelCase__ ) )] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> None: if index == len(UpperCAmelCase__ ): print(UpperCAmelCase__ ) return for i in range(len(UpperCAmelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A_ = True create_state_space_tree(UpperCAmelCase__, UpperCAmelCase__, index + 1, UpperCAmelCase__ ) current_sequence.pop() A_ = False __lowerCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __lowerCamelCase = ['''A''', '''B''', '''C'''] generate_all_permutations(sequence_a)
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: # Return True if there is node that has not iterated. A_ = [False] * len(UpperCAmelCase__ ) A_ = [] queue.append(UpperCAmelCase__ ) A_ = True while queue: A_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase__ ) A_ = True A_ = u return visited[t] def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: # This array is filled by BFS and to store path A_ = [-1] * (len(UpperCAmelCase__ )) A_ = 0 while bfs(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): A_ = float("""Inf""" ) A_ = sink while s != source: # Find the minimum value in select path A_ = min(UpperCAmelCase__, graph[parent[s]][s] ) A_ = parent[s] max_flow += path_flow A_ = sink while v != source: A_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow A_ = parent[v] return max_flow __lowerCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __lowerCamelCase , __lowerCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
715
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
0
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCamelCase = '''<<<<<<< This should probably be modified because it mentions: ''' __lowerCamelCase = '''======= >>>>>>> ''' __lowerCamelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] __lowerCamelCase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: return ConvertCommand(args.tfds_path, args.datasets_directory ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) -> str: '''simple docstring''' A_ = get_logger("""datasets-cli/converting""" ) A_ = tfds_path A_ = datasets_directory def snake_case_ ( self ) -> str: '''simple docstring''' if os.path.isdir(self._tfds_path ): A_ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): A_ = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) A_ = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) A_ = [] A_ = [] A_ = {} if os.path.isdir(self._tfds_path ): A_ = os.listdir(UpperCamelCase__ ) else: A_ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) A_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) A_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if not os.path.isfile(UpperCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [] A_ = False A_ = False A_ = [] for line in lines: A_ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: A_ = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here A_ = """""" continue elif "from absl import logging" in out_line: A_ = """from datasets import logging\n""" elif "getLogger" in out_line: A_ = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): A_ = True A_ = list(filter(lambda UpperCamelCase__ : e in out_line , UpperCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase__ ) + """\n""" ) out_lines.append(UpperCamelCase__ ) out_lines.append(UpperCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: A_ = re.sub(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: A_ = re.match(R"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , UpperCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) A_ = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: A_ = True out_lines.append(UpperCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset A_ = f_name.replace(""".py""" , """""" ) A_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) A_ = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase__ ) if needs_manual_update: with_manual_update.append(UpperCamelCase__ ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.writelines(UpperCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: A_ = os.path.basename(UpperCamelCase__ ) A_ = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(UpperCamelCase__ , UpperCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
716
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = tf.convert_to_tensor(UpperCAmelCase__ ) A_ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ), x.dtype ) )) return x * cdf def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ = tf.convert_to_tensor(UpperCAmelCase__ ) A_ = tf.cast(math.pi, x.dtype ) A_ = tf.cast(0.044_715, x.dtype ) A_ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(UpperCAmelCase__, 3 )) )) return x * cdf def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: A_ = tf.convert_to_tensor(UpperCAmelCase__ ) return x * tf.tanh(tf.math.softplus(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: A_ = tf.convert_to_tensor(UpperCAmelCase__ ) A_ = tf.cast(0.044_715, x.dtype ) A_ = tf.cast(0.7_978_845_608, x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = tf.convert_to_tensor(UpperCAmelCase__ ) A_ = tf.cast(1.702, x.dtype ) return x * tf.math.sigmoid(coeff * x ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: return tf.clip_by_value(_gelu(UpperCAmelCase__ ), -10, 10 ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=-1 ) -> Optional[int]: A_ , A_ = tf.split(UpperCAmelCase__, 2, axis=UpperCAmelCase__ ) return a * tf.math.sigmoid(UpperCAmelCase__ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return tf.keras.activations.gelu(UpperCAmelCase__, approximate=UpperCAmelCase__ ) __lowerCamelCase = tf.keras.activations.gelu __lowerCamelCase = approximate_gelu_wrap else: __lowerCamelCase = _gelu __lowerCamelCase = _gelu_new __lowerCamelCase = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
717
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
718
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
719
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = 42 class A__ ( _snake_case , _snake_case ): lowercase = 1 @register_to_config def __init__( self , UpperCamelCase__ = 2000 , UpperCamelCase__ = 0.15 , UpperCamelCase__ = 0.01 , UpperCamelCase__ = 1348.0 , UpperCamelCase__ = 1e-5 , UpperCamelCase__ = 1 , ) -> List[Any]: '''simple docstring''' A_ = sigma_max # setable values A_ = None self.set_sigmas(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' A_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ = torch.linspace(1 , UpperCamelCase__ , UpperCamelCase__ , device=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> Optional[int]: '''simple docstring''' A_ = sigma_min if sigma_min is not None else self.config.sigma_min A_ = sigma_max if sigma_max is not None else self.config.sigma_max A_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(UpperCamelCase__ , UpperCamelCase__ ) A_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ = torch.exp(torch.linspace(math.log(UpperCamelCase__ ) , math.log(UpperCamelCase__ ) , UpperCamelCase__ ) ) A_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) A_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ = timesteps.to(self.discrete_sigmas.device ) A_ = self.discrete_sigmas[timesteps].to(sample.device ) A_ = self.get_adjacent_sigma(UpperCamelCase__ , UpperCamelCase__ ).to(sample.device ) A_ = torch.zeros_like(UpperCamelCase__ ) A_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ = diffusion.unsqueeze(-1 ) A_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ = randn_tensor( sample.shape , layout=sample.layout , generator=UpperCamelCase__ , device=sample.device , dtype=sample.dtype ) A_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=UpperCamelCase__ , prev_sample_mean=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ = randn_tensor(sample.shape , layout=sample.layout , generator=UpperCamelCase__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ = step_size.unsqueeze(-1 ) A_ = sample + step_size * model_output A_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' A_ = timesteps.to(original_samples.device ) A_ = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(UpperCamelCase__ ) * sigmas[:, None, None, None] ) A_ = noise + original_samples return noisy_samples def __len__( self ) -> int: '''simple docstring''' return self.config.num_train_timesteps
720
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class A__ ( unittest.TestCase ): @require_torch def snake_case_ ( self ) -> int: '''simple docstring''' A_ = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) A_ = load_dataset("""ashraq/esc50""" ) A_ = dataset["""train"""]["""audio"""][-1]["""array"""] A_ = audio_classifier(UpperCamelCase__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass @slow @require_torch def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog A_ = load_dataset("""ashraq/esc50""" ) A_ = dataset["""train"""]["""audio"""][-1]["""array"""] A_ = audio_classifier(UpperCamelCase__ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) A_ = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) A_ = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass
721
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> set[str]: A_ , A_ = set(UpperCAmelCase__ ), [start] while stack: A_ = stack.pop() explored.add(UpperCAmelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase__ ) return explored __lowerCamelCase = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' from math import isqrt def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: A_ = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, UpperCAmelCase__, UpperCAmelCase__ ): A_ = False return [i for i in range(2, UpperCAmelCase__ ) if is_prime[i]] def UpperCAmelCase__ ( UpperCAmelCase__ = 10**8 ) -> int: A_ = calculate_prime_numbers(max_number // 2 ) A_ = 0 A_ = 0 A_ = len(UpperCAmelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): lowercase = "AutoTokenizer" lowercase = ["tokenizer"] lowercase = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ ) A_ = speaker_embeddings @classmethod def snake_case_ ( cls , UpperCamelCase__ , UpperCamelCase__="speaker_embeddings_path.json" , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if speaker_embeddings_dict_path is not None: A_ = get_file_from_repo( UpperCamelCase__ , UpperCamelCase__ , subfolder=kwargs.pop("""subfolder""" , UpperCamelCase__ ) , cache_dir=kwargs.pop("""cache_dir""" , UpperCamelCase__ ) , force_download=kwargs.pop("""force_download""" , UpperCamelCase__ ) , proxies=kwargs.pop("""proxies""" , UpperCamelCase__ ) , resume_download=kwargs.pop("""resume_download""" , UpperCamelCase__ ) , local_files_only=kwargs.pop("""local_files_only""" , UpperCamelCase__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , UpperCamelCase__ ) , revision=kwargs.pop("""revision""" , UpperCamelCase__ ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(UpperCamelCase__ , UpperCamelCase__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) A_ = None else: with open(UpperCamelCase__ ) as speaker_embeddings_json: A_ = json.load(UpperCamelCase__ ) else: A_ = None A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) return cls(tokenizer=UpperCamelCase__ , speaker_embeddings=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__="speaker_embeddings_path.json" , UpperCamelCase__="speaker_embeddings" , UpperCamelCase__ = False , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCamelCase__ , UpperCamelCase__ , """v2""" ) , exist_ok=UpperCamelCase__ ) A_ = {} A_ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A_ = self._load_voice_preset(UpperCamelCase__ ) A_ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , UpperCamelCase__ , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=UpperCamelCase__ , ) A_ = os.path.join(UpperCamelCase__ , f'''{prompt_key}_{key}.npy''' ) A_ = tmp_dict with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , """w""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) super().save_pretrained(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ = None , **UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.speaker_embeddings[voice_preset] A_ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) A_ = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , UpperCamelCase__ ) , cache_dir=kwargs.pop("""cache_dir""" , UpperCamelCase__ ) , force_download=kwargs.pop("""force_download""" , UpperCamelCase__ ) , proxies=kwargs.pop("""proxies""" , UpperCamelCase__ ) , resume_download=kwargs.pop("""resume_download""" , UpperCamelCase__ ) , local_files_only=kwargs.pop("""local_files_only""" , UpperCamelCase__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , UpperCamelCase__ ) , revision=kwargs.pop("""revision""" , UpperCamelCase__ ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) A_ = np.load(UpperCamelCase__ ) return voice_preset_dict def snake_case_ ( self , UpperCamelCase__ = None ) -> int: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="pt" , UpperCamelCase__=256 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' if voice_preset is not None and not isinstance(UpperCamelCase__ , UpperCamelCase__ ): if ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A_ = self._load_voice_preset(UpperCamelCase__ ) else: if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and not voice_preset.endswith(""".npz""" ): A_ = voice_preset + """.npz""" A_ = np.load(UpperCamelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCamelCase__ , **UpperCamelCase__ ) A_ = BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) A_ = self.tokenizer( UpperCamelCase__ , return_tensors=UpperCamelCase__ , padding="""max_length""" , max_length=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) if voice_preset is not None: A_ = voice_preset return encoded_text
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
import math import random def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __lowerCamelCase = 0.02 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: A_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(UpperCAmelCase__ ): # Forward propagation A_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? A_ = (expected / 1_00) - layer_a # Error delta A_ = layer_1_error * sigmoid_function(UpperCAmelCase__, UpperCAmelCase__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = int(input('''Expected value: ''')) __lowerCamelCase = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' import math from collections.abc import Callable def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> float: A_ = xa A_ = xa while True: if x_n == x_na or function(UpperCAmelCase__ ) == function(UpperCAmelCase__ ): raise ZeroDivisionError("""float division by zero, could not find root""" ) A_ = x_na - ( function(UpperCAmelCase__ ) / ((function(UpperCAmelCase__ ) - function(UpperCAmelCase__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na A_ = x_na A_ = x_na def UpperCAmelCase__ ( UpperCAmelCase__ ) -> float: return math.pow(UpperCAmelCase__, 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: A_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1 / 1_23_45 ) -> int: A_ = 0 A_ = 0 A_ = 3 while True: A_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCAmelCase__ ): A_ = int(UpperCAmelCase__ ) total_partitions += 1 if check_partition_perfect(UpperCAmelCase__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCAmelCase__ ) integer += 1 if __name__ == "__main__": print(f"""{solution() = }""")
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = np.full((len(UpperCAmelCase__ ), sequence_length, 2), UpperCAmelCase__ ) else: A_ = np.full((len(UpperCAmelCase__ ), sequence_length), UpperCAmelCase__ ) for i, tensor in enumerate(UpperCAmelCase__ ): if padding_side == "right": if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = tensor[:sequence_length] else: A_ = tensor[:sequence_length] else: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = tensor[:sequence_length] else: A_ = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: A_ = ord(UpperCAmelCase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True A_ = unicodedata.category(UpperCAmelCase__ ) if cat.startswith("""P""" ): return True return False @dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = True lowercase = None lowercase = None lowercase = -100 lowercase = "pt" def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' import torch A_ = """label""" if """label""" in features[0].keys() else """labels""" A_ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None A_ = self.tokenizer.pad( UpperCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch A_ = torch.tensor(batch["""entity_ids"""] ).shape[1] A_ = self.tokenizer.padding_side if padding_side == "right": A_ = [ list(UpperCamelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase__ )) for label in labels ] else: A_ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase__ )) + list(UpperCamelCase__ ) for label in labels ] A_ = [feature["""ner_tags"""] for feature in features] A_ = padding_tensor(UpperCamelCase__ , -1 , UpperCamelCase__ , UpperCamelCase__ ) A_ = [feature["""original_entity_spans"""] for feature in features] A_ = padding_tensor(UpperCamelCase__ , (-1, -1) , UpperCamelCase__ , UpperCamelCase__ ) A_ = {k: torch.tensor(UpperCamelCase__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' import unittest from knapsack import knapsack as k class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = 0 A_ = [0] A_ = [0] A_ = len(UpperCamelCase__ ) self.assertEqual(k.knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , 0 ) A_ = [60] A_ = [10] A_ = len(UpperCamelCase__ ) self.assertEqual(k.knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , 0 ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = 3 A_ = [1, 2, 3] A_ = [3, 2, 1] A_ = len(UpperCamelCase__ ) self.assertEqual(k.knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , 5 ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = 50 A_ = [60, 100, 120] A_ = [10, 20, 30] A_ = len(UpperCamelCase__ ) self.assertEqual(k.knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' from math import loga def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if a < 0: raise ValueError("""Input value must be a positive integer""" ) elif isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise TypeError("""Input value must be a 'int' type""" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size if size is not None else {"""height""": 18, """width""": 20} A_ = do_thumbnail A_ = do_align_axis A_ = do_pad A_ = do_normalize A_ = image_mean A_ = image_std def snake_case_ ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A__ ( _snake_case , unittest.TestCase ): lowercase = DonutImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = DonutImageProcessingTester(self ) @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_thumbnail""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_align_long_axis""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @is_flaky() def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) # TODO Update this __lowerCamelCase = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A__ ( _snake_case ): lowercase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = emb_layer_norm_before A_ = token_dropout A_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) A_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = EsmFoldConfig(**UpperCamelCase__ ) A_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) A_ = get_default_vocab_list() else: A_ = vocab_list else: A_ = None A_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A_ = self.esmfold_config.to_dict() return output @dataclass class A__ : lowercase = None lowercase = True lowercase = False lowercase = False lowercase = False lowercase = 0 lowercase = True lowercase = False lowercase = 128 lowercase = None def snake_case_ ( self ) -> List[str]: '''simple docstring''' if self.trunk is None: A_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A_ = TrunkConfig(**self.trunk ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = asdict(self ) A_ = self.trunk.to_dict() return output @dataclass class A__ : lowercase = 48 lowercase = 1_024 lowercase = 128 lowercase = 32 lowercase = 32 lowercase = 32 lowercase = 0 lowercase = 0 lowercase = False lowercase = 4 lowercase = 128 lowercase = None def snake_case_ ( self ) -> Any: '''simple docstring''' if self.structure_module is None: A_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) A_ = self.sequence_state_dim // self.sequence_head_width A_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = asdict(self ) A_ = self.structure_module.to_dict() return output @dataclass class A__ : lowercase = 384 lowercase = 128 lowercase = 16 lowercase = 128 lowercase = 12 lowercase = 4 lowercase = 8 lowercase = 0.1 lowercase = 8 lowercase = 1 lowercase = 2 lowercase = 7 lowercase = 10 lowercase = 1e-8 lowercase = 1e5 def snake_case_ ( self ) -> Any: '''simple docstring''' return asdict(self ) def UpperCAmelCase__ ( ) -> List[str]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = [[] for _ in range(UpperCAmelCase__ )] A_ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(UpperCAmelCase__ ) <= key: return input_string for position, character in enumerate(UpperCAmelCase__ ): A_ = position % (lowest * 2) # puts it in bounds A_ = min(UpperCAmelCase__, lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCAmelCase__ ) A_ = ["""""".join(UpperCAmelCase__ ) for row in temp_grid] A_ = """""".join(UpperCAmelCase__ ) return output_string def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = [] A_ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string A_ = [[] for _ in range(UpperCAmelCase__ )] # generates template for position in range(len(UpperCAmelCase__ ) ): A_ = position % (lowest * 2) # puts it in bounds A_ = min(UpperCAmelCase__, lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) A_ = 0 for row in temp_grid: # fills in the characters A_ = input_string[counter : counter + len(UpperCAmelCase__ )] grid.append(list(UpperCAmelCase__ ) ) counter += len(UpperCAmelCase__ ) A_ = """""" # reads as zigzag for position in range(len(UpperCAmelCase__ ) ): A_ = position % (lowest * 2) # puts it in bounds A_ = min(UpperCAmelCase__, lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase__ ( UpperCAmelCase__ ) -> dict[int, str]: A_ = {} for key_guess in range(1, len(UpperCAmelCase__ ) ): # tries every key A_ = decrypt(UpperCAmelCase__, UpperCAmelCase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(UpperCAmelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
713
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
0