code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=0 , ) -> Dict: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = projection_dim def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) A_ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = TFDPRContextEncoder(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = TFDPRQuestionEncoder(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = TFDPRReader(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = TFDPRModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFDPRQuestionEncoder.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFDPRReader.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) A_ = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] A_ = model(UpperCamelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. A_ = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
667
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = 50 # max width of layer names __lowerCamelCase = 70 # max width of quantizer names def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: A_ = parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""", type=UpperCAmelCase__, default=8, help="""weight precision""" ) group.add_argument("""--aprec""", type=UpperCAmelCase__, default=8, help="""activation precision""" ) group.add_argument("""--quant-per-tensor""", action="""store_true""", help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""", action="""store_true""", help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""", action="""store_true""", help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""", type=UpperCAmelCase__, nargs="""+""", help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""", type=UpperCAmelCase__, help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""", type=UpperCAmelCase__, help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""", default="""max""", help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""", default=UpperCAmelCase__, type=UpperCAmelCase__, help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""", action="""store_true""", help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""", metavar="""N""", type=UpperCAmelCase__, help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""", action="""store_true""", help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ), ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: if args.calibrator == "max": A_ = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) A_ = """histogram""" elif args.calibrator == "mse": A_ = """histogram""" else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) A_ = QuantDescriptor(num_bits=args.aprec, calib_method=UpperCAmelCase__ ) A_ = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(UpperCAmelCase__ ) quant_nn.QuantLinear.set_default_quant_desc_weight(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=False, UpperCAmelCase__=False ) -> Optional[Any]: logger.info("""Configuring Model for Quantization""" ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(UpperCAmelCase__, ["""embeddings"""], which="""weight""", _disabled=UpperCAmelCase__ ) if args.quant_disable: set_quantizer_by_name(UpperCAmelCase__, [""""""], _disabled=UpperCAmelCase__ ) if args.quant_disable_keyword: set_quantizer_by_name(UpperCAmelCase__, args.quant_disable_keyword, _disabled=UpperCAmelCase__ ) if args.quant_disable_layer_module: set_quantizer_by_name(UpperCAmelCase__, [r"""layer.\d+.""" + args.quant_disable_layer_module], _disabled=UpperCAmelCase__ ) if args.quant_enable_layer_module: set_quantizer_by_name(UpperCAmelCase__, [r"""layer.\d+.""" + args.quant_enable_layer_module], _disabled=UpperCAmelCase__ ) if args.recalibrate_weights: recalibrate_weights(UpperCAmelCase__ ) if args.fuse_qkv: fuse_qkv(UpperCAmelCase__, UpperCAmelCase__ ) if args.clip_gelu: clip_gelu(UpperCAmelCase__, args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator, calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""", percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: def fusea(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): for mod in [qq, qk, qv]: if not hasattr(UpperCAmelCase__, """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return A_ = qq._amax.detach().item() A_ = qk._amax.detach().item() A_ = qv._amax.detach().item() A_ = max(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) qq._amax.fill_(UpperCAmelCase__ ) qk._amax.fill_(UpperCAmelCase__ ) qv._amax.fill_(UpperCAmelCase__ ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): A_ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=UpperCAmelCase__ ) A_ = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: for name, mod in model.named_modules(): if hasattr(UpperCAmelCase__, """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: A_ = mod.weight.shape[0] A_ = mod._weight_quantizer._amax.detach() A_ = torch.ones(UpperCAmelCase__, dtype=amax.dtype, device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: for name, mod in model.named_modules(): if hasattr(UpperCAmelCase__, """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer, """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) A_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) A_ = set(range(len(mod.weight.size() ) ) ) - axis_set A_ = pytorch_quantization.utils.reduce_amax(mod.weight, axis=UpperCAmelCase__, keepdims=UpperCAmelCase__ ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) A_ = amax def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__=25, UpperCAmelCase__=1_80, UpperCAmelCase__=None ) -> Optional[int]: if ignore is None: A_ = [] elif not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [ignore] A_ = 0 for name, mod in model.named_modules(): if not hasattr(UpperCAmelCase__, """weight""" ): continue A_ = max(UpperCAmelCase__, len(UpperCAmelCase__ ) ) for name, mod in model.named_modules(): A_ = getattr(UpperCAmelCase__, """_input_quantizer""", UpperCAmelCase__ ) A_ = getattr(UpperCAmelCase__, """_weight_quantizer""", UpperCAmelCase__ ) if not hasattr(UpperCAmelCase__, """weight""" ): continue if type(UpperCAmelCase__ ) in ignore: continue if [True for s in ignore if type(UpperCAmelCase__ ) is str and s in name]: continue A_ = F'''Act:{input_q.extra_repr()}''' A_ = F'''Wgt:{weight_q.extra_repr()}''' A_ = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(UpperCAmelCase__ ) <= line_width: logger.info(UpperCAmelCase__ ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = 0 for name, mod in model.named_modules(): if isinstance(UpperCAmelCase__, pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = getattr(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if quantizer_mod is not None: assert hasattr(UpperCAmelCase__, UpperCAmelCase__ ) setattr(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: logger.warning(F'''{name} has no {quantizer}''' ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__="both", **UpperCAmelCase__ ) -> Any: A_ = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(UpperCAmelCase__, UpperCAmelCase__, """_input_quantizer""", UpperCAmelCase__, UpperCAmelCase__ ) if which in ["weight", "both"]: set_quantizer(UpperCAmelCase__, UpperCAmelCase__, """_weight_quantizer""", UpperCAmelCase__, UpperCAmelCase__ ) logger.info(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ) -> Optional[Any]: for name, mod in model.named_modules(): if hasattr(UpperCAmelCase__, """_input_quantizer""" ) or hasattr(UpperCAmelCase__, """_weight_quantizer""" ): for n in names: if re.search(UpperCAmelCase__, UpperCAmelCase__ ): set_quantizers(UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(UpperCAmelCase__, UpperCAmelCase__ ): A_ = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) logger.info(UpperCAmelCase__ )
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Any: '''simple docstring''' A_ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> Optional[Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = embedding_size def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = TFMobileBertModel(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) A_ = [input_ids, input_mask] A_ = model(UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = TFMobileBertForMaskedLM(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = TFMobileBertForNextSentencePrediction(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = TFMobileBertForPreTraining(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self.num_labels A_ = TFMobileBertForSequenceClassification(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.num_choices A_ = TFMobileBertForMultipleChoice(config=UpperCamelCase__ ) A_ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.num_labels A_ = TFMobileBertForTokenClassification(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = TFMobileBertForQuestionAnswering(config=UpperCamelCase__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = TFMobileBertModelTest.TFMobileBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCamelCase__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: A_ = TFMobileBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCamelCase__ )[0] A_ = [1, 6, 30522] self.assertEqual(output.shape , UpperCamelCase__ ) A_ = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 )
667
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = [[] for _ in range(UpperCAmelCase__ )] A_ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(UpperCAmelCase__ ) <= key: return input_string for position, character in enumerate(UpperCAmelCase__ ): A_ = position % (lowest * 2) # puts it in bounds A_ = min(UpperCAmelCase__, lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCAmelCase__ ) A_ = ["""""".join(UpperCAmelCase__ ) for row in temp_grid] A_ = """""".join(UpperCAmelCase__ ) return output_string def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: A_ = [] A_ = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string A_ = [[] for _ in range(UpperCAmelCase__ )] # generates template for position in range(len(UpperCAmelCase__ ) ): A_ = position % (lowest * 2) # puts it in bounds A_ = min(UpperCAmelCase__, lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) A_ = 0 for row in temp_grid: # fills in the characters A_ = input_string[counter : counter + len(UpperCAmelCase__ )] grid.append(list(UpperCAmelCase__ ) ) counter += len(UpperCAmelCase__ ) A_ = """""" # reads as zigzag for position in range(len(UpperCAmelCase__ ) ): A_ = position % (lowest * 2) # puts it in bounds A_ = min(UpperCAmelCase__, lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def UpperCAmelCase__ ( UpperCAmelCase__ ) -> dict[int, str]: A_ = {} for key_guess in range(1, len(UpperCAmelCase__ ) ): # tries every key A_ = decrypt(UpperCAmelCase__, UpperCAmelCase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
1
'''simple docstring''' import math from datetime import datetime, timedelta def UpperCAmelCase__ ( UpperCAmelCase__ ) -> datetime: A_ = year % 19 A_ = year % 4 A_ = year % 7 A_ = math.floor(year / 1_00 ) A_ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) A_ = leap_day_inhibits / 4 A_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 A_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 A_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon A_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase__, 4, 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase__, 4, 18 ) else: return datetime(UpperCAmelCase__, 3, 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __lowerCamelCase = '''will be''' if year > datetime.now().year else '''was''' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
'''simple docstring''' import os def UpperCAmelCase__ ( ) -> Union[str, Any]: with open(os.path.dirname(UpperCAmelCase__ ) + """/grid.txt""" ) as f: A_ = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCAmelCase__ ) for x in f.readline().split()] ) A_ = 0 # right for i in range(20 ): for j in range(17 ): A_ = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: A_ = temp # down for i in range(17 ): for j in range(20 ): A_ = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: A_ = temp # diagonal 1 for i in range(17 ): for j in range(17 ): A_ = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: A_ = temp # diagonal 2 for i in range(17 ): for j in range(3, 20 ): A_ = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: A_ = temp return maximum if __name__ == "__main__": print(solution())
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=_snake_case ): lowercase = ["keras_nlp"] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""keras_nlp"""] )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> int: '''simple docstring''' A_ = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=UpperCamelCase__ ).to(UpperCamelCase__ ) A_ = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A_ = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids A_ = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids A_ = model(input_ids.to(UpperCamelCase__ ) , labels=labels.to(UpperCamelCase__ ) ).loss A_ = -(labels.shape[-1] * loss.item()) A_ = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size if size is not None else {"""height""": 18, """width""": 20} A_ = do_thumbnail A_ = do_align_axis A_ = do_pad A_ = do_normalize A_ = image_mean A_ = image_std def snake_case_ ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A__ ( _snake_case , unittest.TestCase ): lowercase = DonutImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = DonutImageProcessingTester(self ) @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_thumbnail""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_align_long_axis""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @is_flaky() def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def snake_case_ ( self ) -> int: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def snake_case_ ( self ) -> List[Any]: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' from math import isqrt def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: A_ = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, UpperCAmelCase__, UpperCAmelCase__ ): A_ = False return [i for i in range(2, UpperCAmelCase__ ) if is_prime[i]] def UpperCAmelCase__ ( UpperCAmelCase__ = 10**8 ) -> int: A_ = calculate_prime_numbers(max_number // 2 ) A_ = 0 A_ = 0 A_ = len(UpperCAmelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __lowerCamelCase = '''CompVis/stable-diffusion-v1-1''' __lowerCamelCase = '''CompVis/stable-diffusion-v1-2''' __lowerCamelCase = '''CompVis/stable-diffusion-v1-3''' __lowerCamelCase = '''CompVis/stable-diffusion-v1-4''' class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True , ) -> Optional[Any]: '''simple docstring''' super()._init_() A_ = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) A_ = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) A_ = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) A_ = StableDiffusionPipeline( vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=UpperCamelCase__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def snake_case_ ( self ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , UpperCamelCase__ ) for k in self.config.keys() if not k.startswith("""_""" )} def snake_case_ ( self , UpperCamelCase__ = "auto" ) -> Any: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' self.enable_attention_slicing(UpperCamelCase__ ) @torch.no_grad() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , **UpperCamelCase__ , ) -> List[str]: '''simple docstring''' return self.pipea( prompt=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , **UpperCamelCase__ , ) @torch.no_grad() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , **UpperCamelCase__ , ) -> int: '''simple docstring''' return self.pipea( prompt=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , **UpperCamelCase__ , ) @torch.no_grad() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , **UpperCamelCase__ , ) -> str: '''simple docstring''' return self.pipea( prompt=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , **UpperCamelCase__ , ) @torch.no_grad() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , **UpperCamelCase__ , ) -> int: '''simple docstring''' return self.pipea( prompt=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , **UpperCamelCase__ , ) @torch.no_grad() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = 512 , UpperCamelCase__ = 512 , UpperCamelCase__ = 50 , UpperCamelCase__ = 7.5 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "pil" , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 , **UpperCamelCase__ , ) -> int: '''simple docstring''' A_ = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(UpperCamelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 A_ = self.textaimg_sda_a( prompt=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , **UpperCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 A_ = self.textaimg_sda_a( prompt=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , **UpperCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 A_ = self.textaimg_sda_a( prompt=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , **UpperCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 A_ = self.textaimg_sda_a( prompt=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , **UpperCamelCase__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __lowerCamelCase = logging.get_logger(__name__) enable_full_determinism() class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = UNetaDModel lowercase = "sample" @property def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = 4 A_ = 3 A_ = (32, 32) A_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) A_ = torch.tensor([10] ).to(UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def snake_case_ ( self ) -> int: '''simple docstring''' return (3, 32, 32) @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return (3, 32, 32) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } A_ = self.dummy_input return init_dict, inputs_dict class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = UNetaDModel lowercase = "sample" @property def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = 4 A_ = 4 A_ = (32, 32) A_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) A_ = torch.tensor([10] ).to(UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def snake_case_ ( self ) -> str: '''simple docstring''' return (4, 32, 32) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' return (4, 32, 32) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } A_ = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self ) -> str: '''simple docstring''' A_ , A_ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCamelCase__ ) A_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ , A_ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCamelCase__ ) model.to(UpperCamelCase__ ) A_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` A_ , A_ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCamelCase__ ) model_accelerate.to(UpperCamelCase__ ) model_accelerate.eval() A_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) A_ = noise.to(UpperCamelCase__ ) A_ = torch.tensor([10] * noise.shape[0] ).to(UpperCamelCase__ ) A_ = model_accelerate(UpperCamelCase__ , UpperCamelCase__ )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A_ , A_ = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=UpperCamelCase__ , low_cpu_mem_usage=UpperCamelCase__ ) model_normal_load.to(UpperCamelCase__ ) model_normal_load.eval() A_ = model_normal_load(UpperCamelCase__ , UpperCamelCase__ )["""sample"""] assert torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(UpperCamelCase__ ) A_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A_ = noise.to(UpperCamelCase__ ) A_ = torch.tensor([10] * noise.shape[0] ).to(UpperCamelCase__ ) with torch.no_grad(): A_ = model(UpperCamelCase__ , UpperCamelCase__ ).sample A_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A_ = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) ) class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = UNetaDModel lowercase = "sample" @property def snake_case_ ( self , UpperCamelCase__=(32, 32) ) -> Union[str, Any]: '''simple docstring''' A_ = 4 A_ = 3 A_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) A_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCamelCase__ ) return {"sample": noise, "timestep": time_step} @property def snake_case_ ( self ) -> int: '''simple docstring''' return (3, 32, 32) @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return (3, 32, 32) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } A_ = self.dummy_input return init_dict, inputs_dict @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ , A_ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCamelCase__ ) A_ = self.dummy_input A_ = floats_tensor((4, 3) + (256, 256) ).to(UpperCamelCase__ ) A_ = noise A_ = model(**UpperCamelCase__ ) assert image is not None, "Make sure output is not None" @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(UpperCamelCase__ ) A_ = 4 A_ = 3 A_ = (256, 256) A_ = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) A_ = torch.tensor(batch_size * [1e-4] ).to(UpperCamelCase__ ) with torch.no_grad(): A_ = model(UpperCamelCase__ , UpperCamelCase__ ).sample A_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A_ = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-2 ) ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(UpperCamelCase__ ) A_ = 4 A_ = 3 A_ = (32, 32) A_ = torch.ones((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) A_ = torch.tensor(batch_size * [1e-4] ).to(UpperCamelCase__ ) with torch.no_grad(): A_ = model(UpperCamelCase__ , UpperCamelCase__ ).sample A_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A_ = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-2 ) ) def snake_case_ ( self ) -> int: '''simple docstring''' # not required for this model pass
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( _snake_case ): @staticmethod @abstractmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError()
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list: if any(not isinstance(UpperCAmelCase__, UpperCAmelCase__ ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(UpperCAmelCase__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCAmelCase__, sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: create_state_space_tree(UpperCAmelCase__, [], 0, [0 for i in range(len(UpperCAmelCase__ ) )] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> None: if index == len(UpperCAmelCase__ ): print(UpperCAmelCase__ ) return for i in range(len(UpperCAmelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A_ = True create_state_space_tree(UpperCAmelCase__, UpperCAmelCase__, index + 1, UpperCAmelCase__ ) current_sequence.pop() A_ = False __lowerCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __lowerCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''ViTFeatureExtractor'''] __lowerCamelCase = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[int]: # load base model A_ = StableDiffusionPipeline.from_pretrained(UpperCAmelCase__, torch_dtype=torch.floataa ) # load LoRA weight from .safetensors A_ = load_file(UpperCAmelCase__ ) A_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: A_ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) A_ = pipeline.text_encoder else: A_ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) A_ = pipeline.unet # find the target layer A_ = layer_infos.pop(0 ) while len(UpperCAmelCase__ ) > -1: try: A_ = curr_layer.__getattr__(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: A_ = layer_infos.pop(0 ) elif len(UpperCAmelCase__ ) == 0: break except Exception: if len(UpperCAmelCase__ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: A_ = layer_infos.pop(0 ) A_ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""", """lora_up""" ) ) pair_keys.append(UpperCAmelCase__ ) else: pair_keys.append(UpperCAmelCase__ ) pair_keys.append(key.replace("""lora_up""", """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: A_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) A_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__, UpperCAmelCase__ ).unsqueeze(2 ).unsqueeze(3 ) else: A_ = state_dict[pair_keys[0]].to(torch.floataa ) A_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase__, UpperCAmelCase__ ) # update visited list for item in pair_keys: visited.append(UpperCAmelCase__ ) return pipeline if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.base_model_path __lowerCamelCase = args.checkpoint_path __lowerCamelCase = args.dump_path __lowerCamelCase = args.lora_prefix_unet __lowerCamelCase = args.lora_prefix_text_encoder __lowerCamelCase = args.alpha __lowerCamelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __lowerCamelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: A_ = str(UpperCAmelCase__ ) A_ = [n] for i in range(1, len(UpperCAmelCase__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if len(str(UpperCAmelCase__ ) ) > 3: if not is_prime(int(str(UpperCAmelCase__ )[-3:] ) ) or not is_prime(int(str(UpperCAmelCase__ )[:3] ) ): return False return True def UpperCAmelCase__ ( UpperCAmelCase__ = 11 ) -> list[int]: A_ = [] A_ = 13 while len(UpperCAmelCase__ ) != count: if validate(UpperCAmelCase__ ): A_ = list_truncated_nums(UpperCAmelCase__ ) if all(is_prime(UpperCAmelCase__ ) for i in list_nums ): list_truncated_primes.append(UpperCAmelCase__ ) num += 2 return list_truncated_primes def UpperCAmelCase__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"""{sum(compute_truncated_primes(11)) = }""")
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
1
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A__ ( _snake_case ): lowercase = 42 lowercase = jnp.floataa lowercase = True def snake_case_ ( self ) -> Tuple: '''simple docstring''' super().setup() A_ = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = super().__call__(*UpperCamelCase__ , **UpperCamelCase__ ) A_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A__ ( _snake_case ): lowercase = FlaxBigBirdForNaturalQuestionsModule def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: def cross_entropy(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None ): A_ = logits.shape[-1] A_ = (labels[..., None] == jnp.arange(UpperCAmelCase__ )[None]).astype("""f4""" ) A_ = jax.nn.log_softmax(UpperCAmelCase__, axis=-1 ) A_ = -jnp.sum(labels * logits, axis=-1 ) if reduction is not None: A_ = reduction(UpperCAmelCase__ ) return loss A_ = partial(UpperCAmelCase__, reduction=jnp.mean ) A_ = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) A_ = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) A_ = cross_entropy(UpperCAmelCase__, UpperCAmelCase__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A__ : lowercase = "google/bigbird-roberta-base" lowercase = 3_000 lowercase = 10_500 lowercase = 128 lowercase = 3 lowercase = 1 lowercase = 5 # tx_args lowercase = 3e-5 lowercase = 0.0 lowercase = 20_000 lowercase = 0.0095 lowercase = "bigbird-roberta-natural-questions" lowercase = "training-expt" lowercase = "data/nq-training.jsonl" lowercase = "data/nq-validation.jsonl" def snake_case_ ( self ) -> Tuple: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=UpperCamelCase__ ) A_ = os.path.join(self.base_dir , self.save_dir ) A_ = self.batch_size_per_device * jax.device_count() @dataclass class A__ : lowercase = 42 lowercase = 4_096 # no dynamic padding on TPUs def __call__( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = self.collate_fn(UpperCamelCase__ ) A_ = jax.tree_util.tree_map(UpperCamelCase__ , UpperCamelCase__ ) return batch def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ , A_ = self.fetch_inputs(features["""input_ids"""] ) A_ = { """input_ids""": jnp.array(UpperCamelCase__ , dtype=jnp.intaa ), """attention_mask""": jnp.array(UpperCamelCase__ , dtype=jnp.intaa ), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ), } return batch def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = [self._fetch_inputs(UpperCamelCase__ ) for ids in input_ids] return zip(*UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = [1 for _ in range(len(UpperCamelCase__ ) )] while len(UpperCamelCase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None ) -> int: if seed is not None: A_ = dataset.shuffle(seed=UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) // batch_size ): A_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCAmelCase__ ) @partial(jax.pmap, axis_name="""batch""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ) -> Any: def loss_fn(UpperCAmelCase__ ): A_ = model_inputs.pop("""start_labels""" ) A_ = model_inputs.pop("""end_labels""" ) A_ = model_inputs.pop("""pooled_labels""" ) A_ = state.apply_fn(**UpperCAmelCase__, params=UpperCAmelCase__, dropout_rng=UpperCAmelCase__, train=UpperCAmelCase__ ) A_ , A_ , A_ = outputs return state.loss_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ , A_ = jax.random.split(UpperCAmelCase__ ) A_ = jax.value_and_grad(UpperCAmelCase__ ) A_ , A_ = grad_fn(state.params ) A_ = jax.lax.pmean({"""loss""": loss}, axis_name="""batch""" ) A_ = jax.lax.pmean(UpperCAmelCase__, """batch""" ) A_ = state.apply_gradients(grads=UpperCAmelCase__ ) return state, metrics, new_drp_rng @partial(jax.pmap, axis_name="""batch""" ) def UpperCAmelCase__ ( UpperCAmelCase__, **UpperCAmelCase__ ) -> List[str]: A_ = model_inputs.pop("""start_labels""" ) A_ = model_inputs.pop("""end_labels""" ) A_ = model_inputs.pop("""pooled_labels""" ) A_ = state.apply_fn(**UpperCAmelCase__, params=state.params, train=UpperCAmelCase__ ) A_ , A_ , A_ = outputs A_ = state.loss_fn(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = jax.lax.pmean({"""loss""": loss}, axis_name="""batch""" ) return metrics class A__ ( train_state.TrainState ): lowercase = struct.field(pytree_node=_snake_case ) @dataclass class A__ : lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = None def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> int: '''simple docstring''' A_ = model.params A_ = TrainState.create( apply_fn=model.__call__ , params=UpperCamelCase__ , tx=UpperCamelCase__ , loss_fn=UpperCamelCase__ , ) if ckpt_dir is not None: A_ , A_ , A_ , A_ , A_ = restore_checkpoint(UpperCamelCase__ , UpperCamelCase__ ) A_ = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } A_ , A_ = build_tx(**UpperCamelCase__ ) A_ = train_state.TrainState( step=UpperCamelCase__ , apply_fn=model.__call__ , params=UpperCamelCase__ , tx=UpperCamelCase__ , opt_state=UpperCamelCase__ , ) A_ = args A_ = data_collator A_ = lr A_ = params A_ = jax_utils.replicate(UpperCamelCase__ ) return state def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = self.args A_ = len(UpperCamelCase__ ) // args.batch_size A_ = jax.random.PRNGKey(0 ) A_ = jax.random.split(UpperCamelCase__ , jax.device_count() ) for epoch in range(args.max_epochs ): A_ = jnp.array(0 , dtype=jnp.floataa ) A_ = get_batched_dataset(UpperCamelCase__ , args.batch_size , seed=UpperCamelCase__ ) A_ = 0 for batch in tqdm(UpperCamelCase__ , total=UpperCamelCase__ , desc=f'''Running EPOCH-{epoch}''' ): A_ = self.data_collator(UpperCamelCase__ ) A_ , A_ , A_ = self.train_step_fn(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 if i % args.logging_steps == 0: A_ = jax_utils.unreplicate(state.step ) A_ = running_loss.item() / i A_ = self.scheduler_fn(state_step - 1 ) A_ = self.evaluate(UpperCamelCase__ , UpperCamelCase__ ) A_ = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(UpperCamelCase__ ) ) self.logger.log(UpperCamelCase__ , commit=UpperCamelCase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = get_batched_dataset(UpperCamelCase__ , self.args.batch_size ) A_ = len(UpperCamelCase__ ) // self.args.batch_size A_ = jnp.array(0 , dtype=jnp.floataa ) A_ = 0 for batch in tqdm(UpperCamelCase__ , total=UpperCamelCase__ , desc="""Evaluating ... """ ): A_ = self.data_collator(UpperCamelCase__ ) A_ = self.val_step_fn(UpperCamelCase__ , **UpperCamelCase__ ) running_loss += jax_utils.unreplicate(metrics["""loss"""] ) i += 1 return running_loss / i def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = jax_utils.unreplicate(UpperCamelCase__ ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ ) self.model_save_fn(UpperCamelCase__ , params=state.params ) with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """wb""" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(UpperCamelCase__ , """args.joblib""" ) ) joblib.dump(self.data_collator , os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) ) with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """w""" ) as f: json.dump({"""step""": state.step.item()} , UpperCamelCase__ ) print("""DONE""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> str: print(F'''RESTORING CHECKPOINT FROM {save_dir}''', end=""" ... """ ) with open(os.path.join(UpperCAmelCase__, """flax_model.msgpack""" ), """rb""" ) as f: A_ = from_bytes(state.params, f.read() ) with open(os.path.join(UpperCAmelCase__, """opt_state.msgpack""" ), """rb""" ) as f: A_ = from_bytes(state.opt_state, f.read() ) A_ = joblib.load(os.path.join(UpperCAmelCase__, """args.joblib""" ) ) A_ = joblib.load(os.path.join(UpperCAmelCase__, """data_collator.joblib""" ) ) with open(os.path.join(UpperCAmelCase__, """training_state.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = num_train_steps - warmup_steps A_ = optax.linear_schedule(init_value=UpperCAmelCase__, end_value=UpperCAmelCase__, transition_steps=UpperCAmelCase__ ) A_ = optax.linear_schedule(init_value=UpperCAmelCase__, end_value=1e-7, transition_steps=UpperCAmelCase__ ) A_ = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps] ) return lr def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: def weight_decay_mask(UpperCAmelCase__ ): A_ = traverse_util.flatten_dict(UpperCAmelCase__ ) A_ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCAmelCase__ ) A_ = scheduler_fn(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = optax.adamw(learning_rate=UpperCAmelCase__, weight_decay=UpperCAmelCase__, mask=UpperCAmelCase__ ) return tx, lr
667
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 1_00, ) -> float: A_ = x_start A_ = fnc(UpperCAmelCase__ ) A_ = 0.0 for _ in range(UpperCAmelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area A_ = (x_end - x_start) / steps + xa A_ = fnc(UpperCAmelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step A_ = xa A_ = fxa return area if __name__ == "__main__": def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') __lowerCamelCase = 10 while i <= 10_0000: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __lowerCamelCase = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) __lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( ) -> Dict: A_ = """https://pypi.org/pypi/diffusers/json""" A_ = json.loads(request.urlopen(UpperCAmelCase__ ).read() )["""releases"""].keys() return sorted(UpperCAmelCase__, key=lambda UpperCAmelCase__ : version.Version(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( ) -> Tuple: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCAmelCase__ ) os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) A_ = Path(UpperCAmelCase__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: init_hf_modules() A_ = Path(UpperCAmelCase__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(UpperCAmelCase__, exist_ok=UpperCAmelCase__ ) A_ = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: with open(UpperCAmelCase__, """r""", encoding="""utf-8""" ) as f: A_ = f.read() # Imports of the form `import .xxx` A_ = re.findall("""^\s*import\s+\.(\S+)\s*$""", UpperCAmelCase__, flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""", UpperCAmelCase__, flags=re.MULTILINE ) # Unique-ify return list(set(UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = False A_ = [module_file] A_ = [] # Let's recurse through all relative imports while not no_change: A_ = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCAmelCase__ ) ) A_ = Path(UpperCAmelCase__ ).parent A_ = [str(module_path / m ) for m in new_imports] A_ = [f for f in new_import_files if f not in all_relative_imports] A_ = [F'''{f}.py''' for f in new_import_files] A_ = len(UpperCAmelCase__ ) == 0 all_relative_imports.extend(UpperCAmelCase__ ) return all_relative_imports def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: with open(UpperCAmelCase__, """r""", encoding="""utf-8""" ) as f: A_ = f.read() # Imports of the form `import xxx` A_ = re.findall("""^\s*import\s+(\S+)\s*$""", UpperCAmelCase__, flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""", UpperCAmelCase__, flags=re.MULTILINE ) # Only keep the top-level module A_ = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all A_ = list(set(UpperCAmelCase__ ) ) A_ = [] for imp in imports: try: importlib.import_module(UpperCAmelCase__ ) except ImportError: missing_packages.append(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F'''{", ".join(UpperCAmelCase__ )}. Run `pip install {" ".join(UpperCAmelCase__ )}`''' ) return get_relative_imports(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: A_ = module_path.replace(os.path.sep, """.""" ) A_ = importlib.import_module(UpperCAmelCase__ ) if class_name is None: return find_pipeline_class(UpperCAmelCase__ ) return getattr(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: from ..pipelines import DiffusionPipeline A_ = dict(inspect.getmembers(UpperCAmelCase__, inspect.isclass ) ) A_ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls, UpperCAmelCase__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) A_ = cls return pipeline_class def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = False, UpperCAmelCase__ = False, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = False, ) -> List[str]: A_ = str(UpperCAmelCase__ ) A_ = os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) if os.path.isfile(UpperCAmelCase__ ): A_ = module_file_or_url A_ = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: A_ = get_diffusers_versions() # cut ".dev0" A_ = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: A_ = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: A_ = F'''v{revision}''' elif revision == "main": A_ = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {", ".join(available_versions + ["main"] )}.''' ) # community pipeline on GitHub A_ = COMMUNITY_PIPELINES_URL.format(revision=UpperCAmelCase__, pipeline=UpperCAmelCase__ ) try: A_ = cached_download( UpperCAmelCase__, cache_dir=UpperCAmelCase__, force_download=UpperCAmelCase__, proxies=UpperCAmelCase__, resume_download=UpperCAmelCase__, local_files_only=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, ) A_ = """git""" A_ = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached A_ = hf_hub_download( UpperCAmelCase__, UpperCAmelCase__, cache_dir=UpperCAmelCase__, force_download=UpperCAmelCase__, proxies=UpperCAmelCase__, resume_download=UpperCAmelCase__, local_files_only=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, ) A_ = os.path.join("""local""", """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment A_ = check_imports(UpperCAmelCase__ ) # Now we move the module inside our cached dynamic modules. A_ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCAmelCase__ ) A_ = Path(UpperCAmelCase__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCAmelCase__, submodule_path / module_file ) for module_needed in modules_needed: A_ = F'''{module_needed}.py''' shutil.copy(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ), submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = use_auth_token elif use_auth_token is True: A_ = HfFolder.get_token() else: A_ = None A_ = model_info(UpperCAmelCase__, revision=UpperCAmelCase__, token=UpperCAmelCase__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A_ = submodule_path / commit_hash A_ = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCAmelCase__ ) if not (submodule_path / module_file).exists(): shutil.copy(UpperCAmelCase__, submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCAmelCase__, F'''{module_needed}.py''', cache_dir=UpperCAmelCase__, force_download=UpperCAmelCase__, resume_download=UpperCAmelCase__, proxies=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, revision=UpperCAmelCase__, local_files_only=UpperCAmelCase__, ) return os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = False, UpperCAmelCase__ = False, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = None, UpperCAmelCase__ = False, **UpperCAmelCase__, ) -> List[str]: A_ = get_cached_module_file( UpperCAmelCase__, UpperCAmelCase__, cache_dir=UpperCAmelCase__, force_download=UpperCAmelCase__, resume_download=UpperCAmelCase__, proxies=UpperCAmelCase__, use_auth_token=UpperCAmelCase__, revision=UpperCAmelCase__, local_files_only=UpperCAmelCase__, ) return get_class_in_module(UpperCAmelCase__, final_module.replace(""".py""", """""" ) )
667
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> tuple[float, list[float]]: A_ = list(range(len(UpperCAmelCase__ ) ) ) A_ = [v / w for v, w in zip(UpperCAmelCase__, UpperCAmelCase__ )] index.sort(key=lambda UpperCAmelCase__ : ratio[i], reverse=UpperCAmelCase__ ) A_ = 0 A_ = [0] * len(UpperCAmelCase__ ) for i in index: if weight[i] <= capacity: A_ = 1 max_value += value[i] capacity -= weight[i] else: A_ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = tempfile.mkdtemp() # fmt: off A_ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A_ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A_ = {"""unk_token""": """<unk>"""} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase__ ) ) A_ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } A_ = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> str: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> str: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = self.get_image_processor() A_ = OwlViTProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) A_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) A_ = OwlViTProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) A_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ = self.get_image_processor(do_normalize=UpperCamelCase__ ) A_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = OwlViTProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCamelCase__ , return_tensors="""np""" ) A_ = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = OwlViTProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = """lower newer""" A_ = processor(text=UpperCamelCase__ , return_tensors="""np""" ) A_ = tokenizer(UpperCamelCase__ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = OwlViTProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = """lower newer""" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = """google/owlvit-base-patch32""" A_ = OwlViTProcessor.from_pretrained(UpperCamelCase__ ) A_ = ["""cat""", """nasa badge"""] A_ = processor(text=UpperCamelCase__ ) A_ = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = """google/owlvit-base-patch32""" A_ = OwlViTProcessor.from_pretrained(UpperCamelCase__ ) A_ = [["""cat""", """nasa badge"""], ["""person"""]] A_ = processor(text=UpperCamelCase__ ) A_ = 16 A_ = len(UpperCamelCase__ ) A_ = max([len(UpperCamelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def snake_case_ ( self ) -> str: '''simple docstring''' A_ = """google/owlvit-base-patch32""" A_ = OwlViTProcessor.from_pretrained(UpperCamelCase__ ) A_ = ["""cat""", """nasa badge"""] A_ = processor(text=UpperCamelCase__ ) A_ = 16 A_ = inputs["""input_ids"""] A_ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = OwlViTProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = self.prepare_image_inputs() A_ = self.prepare_image_inputs() A_ = processor(images=UpperCamelCase__ , query_images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = OwlViTProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCamelCase__ ) A_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
667
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( _snake_case ): lowercase = ["image_processor", "tokenizer"] lowercase = "BlipImageProcessor" lowercase = ("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = False super().__init__(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.image_processor def __call__( self , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: A_ = self.tokenizer A_ = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) return text_encoding # add pixel_values A_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) if text is not None: A_ = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) else: A_ = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase__ ) return encoding_image_processor def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCamelCase = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' import unittest from knapsack import knapsack as k class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = 0 A_ = [0] A_ = [0] A_ = len(UpperCamelCase__ ) self.assertEqual(k.knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , 0 ) A_ = [60] A_ = [10] A_ = len(UpperCamelCase__ ) self.assertEqual(k.knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , 0 ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = 3 A_ = [1, 2, 3] A_ = [3, 2, 1] A_ = len(UpperCamelCase__ ) self.assertEqual(k.knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , 5 ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = 50 A_ = [60, 100, 120] A_ = [10, 20, 30] A_ = len(UpperCamelCase__ ) self.assertEqual(k.knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , 220 ) if __name__ == "__main__": unittest.main()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> "list[int]": if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) A_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A_ = 1 if upper_limit > 0: A_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2, upper_limit + 1 ): for j in range(UpperCAmelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: __lowerCamelCase = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( ) -> Iterator[int]: A_ = 2 while True: if is_prime(UpperCAmelCase__ ): yield num num += 1 def UpperCAmelCase__ ( UpperCAmelCase__ = 2_00_00_00 ) -> int: return sum(takewhile(lambda UpperCAmelCase__ : x < n, prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class A__ ( _snake_case ): @require_torch def snake_case_ ( self ) -> Dict: '''simple docstring''' # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched A_ = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ A_ = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ A_ = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache A_ = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCamelCase__ ) BertModel.from_pretrained(UpperCamelCase__ ) BertTokenizer.from_pretrained(UpperCamelCase__ ) pipeline(task="""fill-mask""" , model=UpperCamelCase__ ) # baseline - just load from_pretrained with normal network A_ = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed A_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A_ = """1""" A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> str: '''simple docstring''' # python one-liner segments # this must be loaded before socket.socket is monkey-patched A_ = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ A_ = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ A_ = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache A_ = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCamelCase__ ) BertModel.from_pretrained(UpperCamelCase__ ) BertTokenizer.from_pretrained(UpperCamelCase__ ) pipeline(task="""fill-mask""" , model=UpperCamelCase__ ) # baseline - just load from_pretrained with normal network A_ = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed A_ = self.get_env() A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched A_ = """ from transformers import BertConfig, BertModel, BertTokenizer """ A_ = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ A_ = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network A_ = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed A_ = self.get_env() A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network A_ = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A_ = """1""" A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """ from transformers import pipeline """ A_ = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ A_ = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ A_ = self.get_env() A_ = """1""" A_ = [sys.executable, """-c""", """\n""".join([load, mock, run] )] A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = """ from transformers import AutoModel """ A_ = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network A_ = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed A_ = self.get_env() A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files A_ = """1""" A_ = subprocess.run(UpperCamelCase__ , env=UpperCamelCase__ , check=UpperCamelCase__ , capture_output=UpperCamelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): lowercase = "upernet" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=[1, 2, 3, 6] , UpperCamelCase__=True , UpperCamelCase__=0.4 , UpperCamelCase__=384 , UpperCamelCase__=256 , UpperCamelCase__=1 , UpperCamelCase__=False , UpperCamelCase__=255 , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A_ = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = backbone_config.get("""model_type""" ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(UpperCamelCase__ ) A_ = backbone_config A_ = hidden_size A_ = initializer_range A_ = pool_scales A_ = use_auxiliary_head A_ = auxiliary_loss_weight A_ = auxiliary_in_channels A_ = auxiliary_channels A_ = auxiliary_num_convs A_ = auxiliary_concat_input A_ = loss_ignore_index def snake_case_ ( self ) -> str: '''simple docstring''' A_ = copy.deepcopy(self.__dict__ ) A_ = self.backbone_config.to_dict() A_ = self.__class__.model_type return output
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class A__ ( datasets.BuilderConfig ): lowercase = None class A__ ( datasets.ArrowBasedBuilder ): lowercase = PandasConfig def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) A_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCamelCase__ , (str, list, tuple) ): A_ = data_files if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A_ = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A_ = [] for split_name, files in data_files.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A_ = [dl_manager.iter_files(UpperCamelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCamelCase__ , gen_kwargs={"""files""": files} ) ) return splits def snake_case_ ( self , UpperCamelCase__ ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A_ = table_cast(UpperCamelCase__ , self.config.features.arrow_schema ) return pa_table def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(UpperCamelCase__ ) ): with open(UpperCamelCase__ , """rb""" ) as f: A_ = pa.Table.from_pandas(pd.read_pickle(UpperCamelCase__ ) ) yield i, self._cast_table(UpperCamelCase__ )
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' from collections.abc import Callable import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> np.array: A_ = int(np.ceil((x_end - xa) / step_size ) ) A_ = np.zeros((n + 1,) ) A_ = ya A_ = xa for k in range(UpperCAmelCase__ ): A_ = y[k] + step_size * ode_func(UpperCAmelCase__, y[k] ) A_ = y[k] + ( (step_size / 2) * (ode_func(UpperCAmelCase__, y[k] ) + ode_func(x + step_size, UpperCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' from importlib import import_module from .logging import get_logger __lowerCamelCase = get_logger(__name__) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) A_ = module._original_module if isinstance(UpperCamelCase__ , _PatchedModuleObj ) else module class A__ : lowercase = [] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> str: '''simple docstring''' A_ = obj A_ = target A_ = new A_ = target.split(""".""" )[0] A_ = {} A_ = attrs or [] def __enter__( self ) -> List[Any]: '''simple docstring''' *A_ , A_ = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(UpperCamelCase__ ) ): try: A_ = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): A_ = getattr(self.obj , UpperCamelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(UpperCamelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): A_ = obj_attr # patch at top level setattr(self.obj , UpperCamelCase__ , _PatchedModuleObj(UpperCamelCase__ , attrs=self.attrs ) ) A_ = getattr(self.obj , UpperCamelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(UpperCamelCase__ , UpperCamelCase__ , _PatchedModuleObj(getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , attrs=self.attrs ) ) A_ = getattr(UpperCamelCase__ , UpperCamelCase__ ) # finally set the target attribute setattr(UpperCamelCase__ , UpperCamelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: A_ = getattr(import_module(""".""".join(UpperCamelCase__ ) ) , UpperCamelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , UpperCamelCase__ ) is attr_value: A_ = getattr(self.obj , UpperCamelCase__ ) setattr(self.obj , UpperCamelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" A_ = globals()["""__builtins__"""][target_attr] setattr(self.obj , UpperCamelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' for attr in list(self.original ): setattr(self.obj , UpperCamelCase__ , self.original.pop(UpperCamelCase__ ) ) def snake_case_ ( self ) -> str: '''simple docstring''' self.__enter__() self._active_patches.append(self ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=3 , UpperCamelCase__=32 , UpperCamelCase__=3 , UpperCamelCase__=10 , UpperCamelCase__=[10, 20, 30, 40] , UpperCamelCase__=[1, 1, 2, 1] , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=3 , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = image_size A_ = num_channels A_ = embeddings_size A_ = hidden_sizes A_ = depths A_ = is_training A_ = use_labels A_ = hidden_act A_ = num_labels A_ = scope A_ = len(UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def snake_case_ ( self ) -> int: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = TFResNetModel(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = self.num_labels A_ = TFResNetForImageClassification(UpperCamelCase__ ) A_ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = TFResNetModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ) -> Any: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def snake_case_ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Any: '''simple docstring''' A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCamelCase__ ) A_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A_ = model_class(UpperCamelCase__ ) A_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: A_ = layer_type A_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFResNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( ) -> str: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""tf""" ) # forward pass A_ = model(**UpperCamelCase__ ) # verify the logits A_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A_ = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCamelCase__ , atol=1e-4 ) )
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowerCamelCase = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import argparse import datetime def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } A_ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCAmelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month A_ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) A_ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day A_ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator A_ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year A_ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation A_ = datetime.date(int(UpperCAmelCase__ ), int(UpperCAmelCase__ ), int(UpperCAmelCase__ ) ) # Start math if m <= 2: A_ = y - 1 A_ = m + 12 # maths var A_ = int(str(UpperCAmelCase__ )[:2] ) A_ = int(str(UpperCAmelCase__ )[2:] ) A_ = int(2.6 * m - 5.39 ) A_ = int(c / 4 ) A_ = int(k / 4 ) A_ = int(d + k ) A_ = int(t + u + v + x ) A_ = int(z - (2 * c) ) A_ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response A_ = F'''Your date {date_input}, is a {days[str(UpperCAmelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) __lowerCamelCase = parser.parse_args() zeller(args.date_input)
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class A__ : def __init__( self , UpperCamelCase__ = "cpu" , UpperCamelCase__ = "openai/clip-vit-large-patch14" ) -> None: '''simple docstring''' A_ = device A_ = CLIPTokenizerFast.from_pretrained(UpperCamelCase__ ) A_ = [0.48145466, 0.4578275, 0.40821073] A_ = [0.26862954, 0.26130258, 0.27577711] A_ = torchvision.transforms.Normalize(self.image_mean , self.image_std ) A_ = torchvision.transforms.Resize(224 ) A_ = torchvision.transforms.CenterCrop(224 ) def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = self.resize(UpperCamelCase__ ) A_ = self.center_crop(UpperCamelCase__ ) A_ = self.normalize(UpperCamelCase__ ) return images def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self.tokenizer(text=UpperCamelCase__ , **UpperCamelCase__ ) A_ = self.preprocess_img(UpperCamelCase__ ) A_ = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=10 , UpperCamelCase__=0.01 , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__="image" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , ) -> None: '''simple docstring''' super().__init__() A_ = None A_ = device if device else get_device() if vqgan: A_ = vqgan else: A_ = load_vqgan(self.device , conf_path=UpperCamelCase__ , ckpt_path=UpperCamelCase__ ) self.vqgan.eval() if clip: A_ = clip else: A_ = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) A_ = ProcessorGradientFlow(device=self.device ) A_ = iterations A_ = lr A_ = log A_ = make_grid A_ = return_val A_ = quantize A_ = self.vqgan.decoder.z_shape def snake_case_ ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=5 , UpperCamelCase__=True ) -> List[str]: '''simple docstring''' A_ = [] if output_path is None: A_ = """./animation.gif""" if input_path is None: A_ = self.save_path A_ = sorted(glob(input_path + """/*""" ) ) if not len(UpperCamelCase__ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(UpperCamelCase__ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) A_ = total_duration / len(UpperCamelCase__ ) A_ = [frame_duration] * len(UpperCamelCase__ ) if extend_frames: A_ = 1.5 A_ = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(UpperCamelCase__ ) ) imageio.mimsave(UpperCamelCase__ , UpperCamelCase__ , duration=UpperCamelCase__ ) print(f'''gif saved to {output_path}''' ) def snake_case_ ( self , UpperCamelCase__=None , UpperCamelCase__=None ) -> Optional[int]: '''simple docstring''' if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError A_ = preprocess(Image.open(UpperCamelCase__ ) , target_image_size=256 ).to(self.device ) A_ = preprocess_vqgan(UpperCamelCase__ ) A_ , *A_ = self.vqgan.encode(UpperCamelCase__ ) return z def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.latent.detach().requires_grad_() A_ = base_latent + transform_vector if self.quantize: A_ , *A_ = self.vqgan.quantize(UpperCamelCase__ ) else: A_ = trans_latent return self.vqgan.decode(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> Union[str, Any]: '''simple docstring''' A_ = self.clip_preprocessor(text=UpperCamelCase__ , images=UpperCamelCase__ , return_tensors="""pt""" , padding=UpperCamelCase__ ) A_ = self.clip(**UpperCamelCase__ ) A_ = clip_outputs.logits_per_image if weights is not None: A_ = similarity_logits * weights return similarity_logits.sum() def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self._get_clip_similarity(pos_prompts["""prompts"""] , UpperCamelCase__ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: A_ = self._get_clip_similarity(neg_prompts["""prompts"""] , UpperCamelCase__ , weights=neg_prompts["""weights"""] ) else: A_ = torch.tensor([1] , device=self.device ) A_ = -torch.log(UpperCamelCase__ ) + torch.log(UpperCamelCase__ ) return loss def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = torch.randn_like(self.latent , requires_grad=UpperCamelCase__ , device=self.device ) A_ = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() A_ = self._add_vector(UpperCamelCase__ ) A_ = loop_post_process(UpperCamelCase__ ) A_ = self._get_CLIP_loss(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) print("""CLIP loss""" , UpperCamelCase__ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=UpperCamelCase__ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' wandb.init(reinit=UpperCamelCase__ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: A_ = Image.open(UpperCamelCase__ ) A_ = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(UpperCamelCase__ ) ) def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if not prompts: return [] A_ = [] A_ = [] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(UpperCamelCase__ , (tuple, list) ): A_ = prompt[0] A_ = float(prompt[1] ) elif ":" in prompt: A_ , A_ = prompt.split(""":""" ) A_ = float(UpperCamelCase__ ) else: A_ = prompt A_ = 1.0 processed_prompts.append(UpperCamelCase__ ) weights.append(UpperCamelCase__ ) return { "prompts": processed_prompts, "weights": torch.tensor(UpperCamelCase__ , device=self.device ), } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=None , ) -> Tuple: '''simple docstring''' if image_path: A_ = self._get_latent(UpperCamelCase__ ) else: A_ = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) assert pos_prompts, "You must provide at least one positive prompt." A_ = self.process_prompts(UpperCamelCase__ ) A_ = self.process_prompts(UpperCamelCase__ ) if save_final and save_path is None: A_ = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) else: A_ = save_path + """_""" + get_timestamp() os.makedirs(UpperCamelCase__ ) A_ = save_path A_ = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(UpperCamelCase__ ) ) A_ = loop_post_process(UpperCamelCase__ ) for iter, transformed_img in enumerate(self._optimize_CLIP(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ): if show_intermediate: show_pil(UpperCamelCase__ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(UpperCamelCase__ )} ) if show_final: show_pil(UpperCamelCase__ ) if save_final: transformed_img.save(os.path.join(self.save_path , f'''iter_{iter:03d}_final.png''' ) )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) A_ = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) A_ = InstructBlipProcessor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def snake_case_ ( self , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def snake_case_ ( self , **UpperCamelCase__ ) -> Any: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).qformer_tokenizer def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self ) -> str: '''simple docstring''' A_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A_ = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) A_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = self.get_qformer_tokenizer() A_ = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCamelCase__ , return_tensors="""np""" ) A_ = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = self.get_qformer_tokenizer() A_ = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A_ = """lower newer""" A_ = processor(text=UpperCamelCase__ ) A_ = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) A_ = qformer_tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = self.get_qformer_tokenizer() A_ = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A_ = """lower newer""" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = self.get_qformer_tokenizer() A_ = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCamelCase__ ) A_ = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = self.get_qformer_tokenizer() A_ = InstructBlipProcessor( tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ , qformer_tokenizer=UpperCamelCase__ ) A_ = """lower newer""" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
667
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
1
'''simple docstring''' import math import sys def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if number != int(UpperCAmelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 A_ = [-1] * (number + 1) A_ = 0 for i in range(1, number + 1 ): A_ = sys.maxsize A_ = int(math.sqrt(UpperCAmelCase__ ) ) for j in range(1, root + 1 ): A_ = 1 + answers[i - (j**2)] A_ = min(UpperCAmelCase__, UpperCAmelCase__ ) A_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , ) -> Dict: '''simple docstring''' A_ = size if size is not None else {"""shortest_edge""": 20} A_ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_center_crop A_ = crop_size A_ = do_flip_channel_order def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class A__ ( _snake_case , unittest.TestCase ): lowercase = MobileViTImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = MobileViTImageProcessingTester(self ) @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_flip_channel_order""" ) ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> List[str]: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def snake_case_ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True A_ = 4 A_ = (1 << p) - 1 for _ in range(p - 2 ): A_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
667
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase__, 2 ) - pow(UpperCAmelCase__, 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase__, 2 ) - pow(UpperCAmelCase__, 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase__, 2 ) + pow(UpperCAmelCase__, 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): lowercase = ["pixel_values"] def __init__( self , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 0.9 , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = 1 / 255 , UpperCamelCase__ = True , UpperCamelCase__ = True , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = size if size is not None else {"""shortest_edge""": 224} A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) A_ = do_resize A_ = size A_ = crop_pct A_ = resample A_ = do_center_crop A_ = crop_size A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = PILImageResampling.BICUBIC , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: A_ = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: A_ = int(size["""height"""] / crop_pct ) else: A_ = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(UpperCamelCase__ ) ) A_ = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) else: if "shortest_edge" in size: A_ = get_resize_output_image_size(UpperCamelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase__ ) elif "height" in size and "width" in size: A_ = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(UpperCamelCase__ ) ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' A_ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = ChannelDimension.FIRST , **UpperCamelCase__ , ) -> PIL.Image.Image: '''simple docstring''' A_ = do_resize if do_resize is not None else self.do_resize A_ = crop_pct if crop_pct is not None else self.crop_pct A_ = resample if resample is not None else self.resample A_ = do_center_crop if do_center_crop is not None else self.do_center_crop A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = size if size is not None else self.size A_ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) A_ = crop_size if crop_size is not None else self.crop_size A_ = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" ) A_ = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A_ = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: A_ = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , crop_pct=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: A_ = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: A_ = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: A_ = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] A_ = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] A_ = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
667
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaImgaImgPipeline lowercase = ["image_embeds", "negative_image_embeds", "image"] lowercase = [ "image_embeds", "negative_image_embeds", "image", ] lowercase = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> str: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) A_ = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = self.dummy_unet A_ = self.dummy_movq A_ = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } A_ = DDIMScheduler(**UpperCamelCase__ ) A_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> List[str]: '''simple docstring''' A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create init_image A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ).resize((256, 256) ) if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.images A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -3:, -3:, -1] A_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ = np.array( [0.6199778, 0.63984406, 0.46145785, 0.62944984, 0.5622215, 0.47306132, 0.47441456, 0.4607606, 0.48719263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Tuple: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) A_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A_ = """A red cartoon frog, 4k""" A_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) A_ = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) A_ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = torch.Generator(device="""cpu""" ).manual_seed(0 ) A_ , A_ = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A_ = pipeline( image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) A_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __lowerCamelCase = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class A__ ( tr.AbstractTransform ): def __init__( self , UpperCamelCase__ = " " ) -> int: '''simple docstring''' A_ = sentence_delimiter def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' return list(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = [] for sent_idx, sentence in enumerate(UpperCamelCase__ ): chars.extend(self.process_string(UpperCamelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars __lowerCamelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __lowerCamelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __lowerCamelCase = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __lowerCamelCase = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __lowerCamelCase = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Tuple: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )["wer"] A_ = 0 A_ = 0 for prediction, reference in zip(UpperCamelCase__ , UpperCamelCase__ ): A_ = jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: A_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1 / 1_23_45 ) -> int: A_ = 0 A_ = 0 A_ = 3 while True: A_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(UpperCAmelCase__ ): A_ = int(UpperCAmelCase__ ) total_partitions += 1 if check_partition_perfect(UpperCAmelCase__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(UpperCAmelCase__ ) integer += 1 if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) # TODO Update this __lowerCamelCase = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A__ ( _snake_case ): lowercase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-1_2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = emb_layer_norm_before A_ = token_dropout A_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) A_ = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = EsmFoldConfig(**UpperCamelCase__ ) A_ = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) A_ = get_default_vocab_list() else: A_ = vocab_list else: A_ = None A_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCamelCase__ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A_ = self.esmfold_config.to_dict() return output @dataclass class A__ : lowercase = None lowercase = True lowercase = False lowercase = False lowercase = False lowercase = 0 lowercase = True lowercase = False lowercase = 128 lowercase = None def snake_case_ ( self ) -> List[str]: '''simple docstring''' if self.trunk is None: A_ = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A_ = TrunkConfig(**self.trunk ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = asdict(self ) A_ = self.trunk.to_dict() return output @dataclass class A__ : lowercase = 48 lowercase = 1_024 lowercase = 128 lowercase = 32 lowercase = 32 lowercase = 32 lowercase = 0 lowercase = 0 lowercase = False lowercase = 4 lowercase = 128 lowercase = None def snake_case_ ( self ) -> Any: '''simple docstring''' if self.structure_module is None: A_ = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) A_ = self.sequence_state_dim // self.sequence_head_width A_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = asdict(self ) A_ = self.structure_module.to_dict() return output @dataclass class A__ : lowercase = 384 lowercase = 128 lowercase = 16 lowercase = 128 lowercase = 12 lowercase = 4 lowercase = 8 lowercase = 0.1 lowercase = 8 lowercase = 1 lowercase = 2 lowercase = 7 lowercase = 10 lowercase = 1e-8 lowercase = 1e5 def snake_case_ ( self ) -> Any: '''simple docstring''' return asdict(self ) def UpperCAmelCase__ ( ) -> List[str]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' class A__ : # Public class to implement a graph def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: '''simple docstring''' A_ = row A_ = col A_ = graph def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> None: '''simple docstring''' # Checking all 8 elements surrounding nth element A_ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order A_ = [-1, 0, 1, -1, 1, -1, 0, 1] A_ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase__ ) def snake_case_ ( self ) -> int: # And finally, count all islands. '''simple docstring''' A_ = [[False for j in range(self.COL )] for i in range(self.ROW )] A_ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) count += 1 return count
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: # Initialise PyTorch model A_ = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) A_ = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ = 16 , UpperCamelCase__ = 88 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 32 , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "geglu" , UpperCamelCase__ = None , ) -> str: '''simple docstring''' super().__init__() A_ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , in_channels=UpperCamelCase__ , num_layers=UpperCamelCase__ , dropout=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , cross_attention_dim=UpperCamelCase__ , attention_bias=UpperCamelCase__ , sample_size=UpperCamelCase__ , num_vector_embeds=UpperCamelCase__ , activation_fn=UpperCamelCase__ , num_embeds_ada_norm=UpperCamelCase__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A_ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A_ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A_ = [1, 0] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = True , ) -> str: '''simple docstring''' A_ = hidden_states A_ = [] A_ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A_ = self.transformer_index_for_condition[i] A_ = self.transformers[transformer_index]( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , timestep=UpperCamelCase__ , cross_attention_kwargs=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A_ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCamelCase__ )
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __lowerCamelCase = TaTokenizerFast __lowerCamelCase = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __lowerCamelCase = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) A_ = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(UpperCamelCase__ ) , torch_builtin(UpperCamelCase__ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCamelCase__ ) , gelu_new(UpperCamelCase__ ) ) ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) A_ = get_activation("""gelu""" ) A_ = get_activation("""gelu_10""" ) A_ = torch_builtin(UpperCamelCase__ ) A_ = geluaa(UpperCamelCase__ ) A_ = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCamelCase__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def snake_case_ ( self ) -> int: '''simple docstring''' get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(UpperCamelCase__ ): get_activation("""bogus""" ) with self.assertRaises(UpperCamelCase__ ): get_activation(UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = get_activation("""gelu""" ) A_ = 1 A_ = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCamelCase__ ): A_ = acta.a
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "mgp-str" def __init__( self , UpperCamelCase__=[32, 128] , UpperCamelCase__=4 , UpperCamelCase__=3 , UpperCamelCase__=27 , UpperCamelCase__=38 , UpperCamelCase__=50257 , UpperCamelCase__=30522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=4.0 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=False , UpperCamelCase__=0.02 , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): lowercase = "AutoTokenizer" lowercase = ["tokenizer"] lowercase = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ ) A_ = speaker_embeddings @classmethod def snake_case_ ( cls , UpperCamelCase__ , UpperCamelCase__="speaker_embeddings_path.json" , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' if speaker_embeddings_dict_path is not None: A_ = get_file_from_repo( UpperCamelCase__ , UpperCamelCase__ , subfolder=kwargs.pop("""subfolder""" , UpperCamelCase__ ) , cache_dir=kwargs.pop("""cache_dir""" , UpperCamelCase__ ) , force_download=kwargs.pop("""force_download""" , UpperCamelCase__ ) , proxies=kwargs.pop("""proxies""" , UpperCamelCase__ ) , resume_download=kwargs.pop("""resume_download""" , UpperCamelCase__ ) , local_files_only=kwargs.pop("""local_files_only""" , UpperCamelCase__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , UpperCamelCase__ ) , revision=kwargs.pop("""revision""" , UpperCamelCase__ ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(UpperCamelCase__ , UpperCamelCase__ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) A_ = None else: with open(UpperCamelCase__ ) as speaker_embeddings_json: A_ = json.load(UpperCamelCase__ ) else: A_ = None A_ = AutoTokenizer.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) return cls(tokenizer=UpperCamelCase__ , speaker_embeddings=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__="speaker_embeddings_path.json" , UpperCamelCase__="speaker_embeddings" , UpperCamelCase__ = False , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCamelCase__ , UpperCamelCase__ , """v2""" ) , exist_ok=UpperCamelCase__ ) A_ = {} A_ = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A_ = self._load_voice_preset(UpperCamelCase__ ) A_ = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , UpperCamelCase__ , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=UpperCamelCase__ , ) A_ = os.path.join(UpperCamelCase__ , f'''{prompt_key}_{key}.npy''' ) A_ = tmp_dict with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , """w""" ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) super().save_pretrained(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ = None , **UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.speaker_embeddings[voice_preset] A_ = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) A_ = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , UpperCamelCase__ ) , cache_dir=kwargs.pop("""cache_dir""" , UpperCamelCase__ ) , force_download=kwargs.pop("""force_download""" , UpperCamelCase__ ) , proxies=kwargs.pop("""proxies""" , UpperCamelCase__ ) , resume_download=kwargs.pop("""resume_download""" , UpperCamelCase__ ) , local_files_only=kwargs.pop("""local_files_only""" , UpperCamelCase__ ) , use_auth_token=kwargs.pop("""use_auth_token""" , UpperCamelCase__ ) , revision=kwargs.pop("""revision""" , UpperCamelCase__ ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) A_ = np.load(UpperCamelCase__ ) return voice_preset_dict def snake_case_ ( self , UpperCamelCase__ = None ) -> int: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="pt" , UpperCamelCase__=256 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' if voice_preset is not None and not isinstance(UpperCamelCase__ , UpperCamelCase__ ): if ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A_ = self._load_voice_preset(UpperCamelCase__ ) else: if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and not voice_preset.endswith(""".npz""" ): A_ = voice_preset + """.npz""" A_ = np.load(UpperCamelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCamelCase__ , **UpperCamelCase__ ) A_ = BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) A_ = self.tokenizer( UpperCamelCase__ , return_tensors=UpperCamelCase__ , padding="""max_length""" , max_length=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) if voice_preset is not None: A_ = voice_preset return encoded_text
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0.2 , UpperCamelCase__=0.2 ) -> Dict: '''simple docstring''' A_ = bp_numa A_ = bp_numa A_ = bp_numa A_ = conva_get[:2] A_ = conva_get[2] A_ = size_pa A_ = rate_w A_ = rate_t A_ = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] A_ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A_ = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A_ = -2 * np.random.rand(self.conva[1] ) + 1 A_ = -2 * np.random.rand(self.num_bpa ) + 1 A_ = -2 * np.random.rand(self.num_bpa ) + 1 def snake_case_ ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' # save model dict with pickle A_ = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(UpperCamelCase__ , """wb""" ) as f: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Model saved: {save_path}''' ) @classmethod def snake_case_ ( cls , UpperCamelCase__ ) -> int: '''simple docstring''' # read saved model with open(UpperCamelCase__ , """rb""" ) as f: A_ = pickle.load(UpperCamelCase__ ) # noqa: S301 A_ = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) A_ = model_dic.get("""size_pooling1""" ) A_ = model_dic.get("""num_bp1""" ) A_ = model_dic.get("""num_bp2""" ) A_ = model_dic.get("""num_bp3""" ) A_ = model_dic.get("""rate_weight""" ) A_ = model_dic.get("""rate_thre""" ) # create model instance A_ = CNN(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # modify model parameter A_ = model_dic.get("""w_conv1""" ) A_ = model_dic.get("""wkj""" ) A_ = model_dic.get("""vji""" ) A_ = model_dic.get("""thre_conv1""" ) A_ = model_dic.get("""thre_bp2""" ) A_ = model_dic.get("""thre_bp3""" ) return conv_ins def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' return round(UpperCamelCase__ , 3 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' # convolution process A_ = convs[0] A_ = convs[1] A_ = np.shape(UpperCamelCase__ )[0] # get the data slice of original image data, data_focus A_ = [] for i_focus in range(0 , size_data - size_conv + 1 , UpperCamelCase__ ): for j_focus in range(0 , size_data - size_conv + 1 , UpperCamelCase__ ): A_ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(UpperCamelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix A_ = [] A_ = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(UpperCamelCase__ ): A_ = [] for i_focus in range(len(UpperCamelCase__ ) ): A_ = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(UpperCamelCase__ ) ) A_ = np.asmatrix(UpperCamelCase__ ).reshape( UpperCamelCase__ , UpperCamelCase__ ) data_featuremap.append(UpperCamelCase__ ) # expanding the data slice to One dimenssion A_ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(UpperCamelCase__ ) ) A_ = np.asarray(UpperCamelCase__ ) return focus_list, data_featuremap def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="average_pool" ) -> List[Any]: '''simple docstring''' # pooling process A_ = len(featuremaps[0] ) A_ = int(size_map / size_pooling ) A_ = [] for i_map in range(len(UpperCamelCase__ ) ): A_ = featuremaps[i_map] A_ = [] for i_focus in range(0 , UpperCamelCase__ , UpperCamelCase__ ): for j_focus in range(0 , UpperCamelCase__ , UpperCamelCase__ ): A_ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(UpperCamelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(UpperCamelCase__ ) ) A_ = np.asmatrix(UpperCamelCase__ ).reshape(UpperCamelCase__ , UpperCamelCase__ ) featuremap_pooled.append(UpperCamelCase__ ) return featuremap_pooled def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' # expanding three dimension data to one dimension list A_ = [] for i in range(len(UpperCamelCase__ ) ): A_ = np.shape(data[i] ) A_ = data[i].reshape(1 , shapes[0] * shapes[1] ) A_ = data_listed.getA().tolist()[0] data_expanded.extend(UpperCamelCase__ ) A_ = np.asarray(UpperCamelCase__ ) return data_expanded def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' # expanding matrix to one dimension list A_ = np.asarray(UpperCamelCase__ ) A_ = np.shape(UpperCamelCase__ ) A_ = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = [] A_ = 0 for i_map in range(UpperCamelCase__ ): A_ = np.ones((size_map, size_map) ) for i in range(0 , UpperCamelCase__ , UpperCamelCase__ ): for j in range(0 , UpperCamelCase__ , UpperCamelCase__ ): A_ = pd_pool[ i_pool ] A_ = i_pool + 1 A_ = np.multiply( UpperCamelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(UpperCamelCase__ ) return pd_all def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=bool ) -> List[Any]: '''simple docstring''' # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(UpperCamelCase__ )) ) print((""" - - Shape: Teach_Data """, np.shape(UpperCamelCase__ )) ) A_ = 0 A_ = [] A_ = 10000 while rp < n_repeat and mse >= error_accuracy: A_ = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(UpperCamelCase__ ) ): # print('------------Learning Image: %d--------------'%p) A_ = np.asmatrix(datas_train[p] ) A_ = np.asarray(datas_teach[p] ) A_ , A_ = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ = self.pooling(UpperCamelCase__ , self.size_poolinga ) A_ = np.shape(UpperCamelCase__ ) A_ = self._expand(UpperCamelCase__ ) A_ = data_bp_input A_ = np.dot(UpperCamelCase__ , self.vji.T ) - self.thre_bpa A_ = self.sig(UpperCamelCase__ ) A_ = np.dot(UpperCamelCase__ , self.wkj.T ) - self.thre_bpa A_ = self.sig(UpperCamelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- A_ = np.multiply( (data_teach - bp_outa) , np.multiply(UpperCamelCase__ , (1 - bp_outa) ) ) A_ = np.multiply( np.dot(UpperCamelCase__ , self.wkj ) , np.multiply(UpperCamelCase__ , (1 - bp_outa) ) ) A_ = np.dot(UpperCamelCase__ , self.vji ) A_ = pd_i_all / (self.size_poolinga * self.size_poolinga) A_ = pd_conva_pooled.T.getA().tolist() A_ = self._calculate_gradient_from_pool( UpperCamelCase__ , UpperCamelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): A_ = self._expand_mat(pd_conva_all[k_conv] ) A_ = self.rate_weight * np.dot(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) A_ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer A_ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight A_ = self.vji + pd_j_all.T * bp_outa * self.rate_weight A_ = self.thre_bpa - pd_k_all * self.rate_thre A_ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image A_ = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) A_ = rp + 1 A_ = error_count / patterns all_mse.append(UpperCamelCase__ ) def draw_error(): A_ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(UpperCamelCase__ , """+-""" ) plt.plot(UpperCamelCase__ , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(UpperCamelCase__ , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def snake_case_ ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' # model predict A_ = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(UpperCamelCase__ )) ) for p in range(len(UpperCamelCase__ ) ): A_ = np.asmatrix(datas_test[p] ) A_ , A_ = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ = self.pooling(UpperCamelCase__ , self.size_poolinga ) A_ = self._expand(UpperCamelCase__ ) A_ = data_bp_input A_ = bp_outa * self.vji.T - self.thre_bpa A_ = self.sig(UpperCamelCase__ ) A_ = bp_outa * self.wkj.T - self.thre_bpa A_ = self.sig(UpperCamelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) A_ = [list(map(self.do_round , UpperCamelCase__ ) ) for each in produce_out] return np.asarray(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' # return the data of image after convoluting process so we can check it out A_ = np.asmatrix(UpperCamelCase__ ) A_ , A_ = self.convolute( UpperCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A_ = self.pooling(UpperCamelCase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''nielsr/canine-s''': 2048, } # Unicode defines 1,114,112 total “codepoints” __lowerCamelCase = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __lowerCamelCase = 0 __lowerCamelCase = 0Xe000 __lowerCamelCase = 0Xe001 __lowerCamelCase = 0Xe002 __lowerCamelCase = 0Xe003 __lowerCamelCase = 0Xe004 # Maps special codepoints to human-readable names. __lowerCamelCase = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A__ ( _snake_case ): lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=chr(UpperCamelCase__ ) , UpperCamelCase__=False , UpperCamelCase__=2048 , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , model_max_length=UpperCamelCase__ , **UpperCamelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. A_ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): A_ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. A_ = { codepoint: name for name, codepoint in self._special_codepoints.items() } A_ = UNICODE_VOCAB_SIZE A_ = len(self._special_codepoints ) @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._unicode_vocab_size def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return list(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> int: '''simple docstring''' try: return ord(UpperCamelCase__ ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase__ ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' return "".join(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] A_ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) A_ = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase__ )) + [1] return result def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] A_ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple: '''simple docstring''' return ()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = np.full((len(UpperCAmelCase__ ), sequence_length, 2), UpperCAmelCase__ ) else: A_ = np.full((len(UpperCAmelCase__ ), sequence_length), UpperCAmelCase__ ) for i, tensor in enumerate(UpperCAmelCase__ ): if padding_side == "right": if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = tensor[:sequence_length] else: A_ = tensor[:sequence_length] else: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): A_ = tensor[:sequence_length] else: A_ = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: A_ = ord(UpperCAmelCase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True A_ = unicodedata.category(UpperCAmelCase__ ) if cat.startswith("""P""" ): return True return False @dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = True lowercase = None lowercase = None lowercase = -100 lowercase = "pt" def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' import torch A_ = """label""" if """label""" in features[0].keys() else """labels""" A_ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None A_ = self.tokenizer.pad( UpperCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch A_ = torch.tensor(batch["""entity_ids"""] ).shape[1] A_ = self.tokenizer.padding_side if padding_side == "right": A_ = [ list(UpperCamelCase__ ) + [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase__ )) for label in labels ] else: A_ = [ [self.label_pad_token_id] * (sequence_length - len(UpperCamelCase__ )) + list(UpperCamelCase__ ) for label in labels ] A_ = [feature["""ner_tags"""] for feature in features] A_ = padding_tensor(UpperCamelCase__ , -1 , UpperCamelCase__ , UpperCamelCase__ ) A_ = [feature["""original_entity_spans"""] for feature in features] A_ = padding_tensor(UpperCamelCase__ , (-1, -1) , UpperCamelCase__ , UpperCamelCase__ ) A_ = {k: torch.tensor(UpperCamelCase__ , dtype=torch.intaa ) for k, v in batch.items()} return batch
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from collections import deque def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: A_ = len(UpperCAmelCase__ ) A_ = deque() A_ = [False for _ in range(UpperCAmelCase__ )] A_ = [-1 for _ in range(UpperCAmelCase__ )] A_ = index_of[:] def strong_connect(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): A_ = index # the number when this node is seen A_ = index # lowest rank node reachable from here index += 1 stack.append(UpperCAmelCase__ ) A_ = True for w in g[v]: if index_of[w] == -1: A_ = strong_connect(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A_ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A_ = [] A_ = stack.pop() A_ = False component.append(UpperCAmelCase__ ) while w != v: A_ = stack.pop() A_ = False component.append(UpperCAmelCase__ ) components.append(UpperCAmelCase__ ) return index A_ = [] for v in range(UpperCAmelCase__ ): if index_of[v] == -1: strong_connect(UpperCAmelCase__, 0, UpperCAmelCase__ ) return components def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = [[] for _ in range(UpperCAmelCase__ )] for u, v in edges: g[u].append(UpperCAmelCase__ ) return g if __name__ == "__main__": # Test __lowerCamelCase = 7 __lowerCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] __lowerCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] __lowerCamelCase = [(u, v) for u, v in zip(source, target)] __lowerCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
667
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
1
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' __lowerCamelCase = 8.314462 # Unit - J mol-1 K-1 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
667
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( _snake_case , _snake_case ): @register_to_config def __init__( self , UpperCamelCase__ = 32 , UpperCamelCase__ = 64 , UpperCamelCase__ = 20 , UpperCamelCase__ = 768 , UpperCamelCase__=77 , UpperCamelCase__=4 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = "silu" , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "linear" , UpperCamelCase__ = "prd" , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , ) -> Optional[Any]: '''simple docstring''' super().__init__() A_ = num_attention_heads A_ = attention_head_dim A_ = num_attention_heads * attention_head_dim A_ = additional_embeddings A_ = time_embed_dim or inner_dim A_ = embedding_proj_dim or embedding_dim A_ = clip_embed_dim or embedding_dim A_ = Timesteps(UpperCamelCase__ , UpperCamelCase__ , 0 ) A_ = TimestepEmbedding(UpperCamelCase__ , UpperCamelCase__ , out_dim=UpperCamelCase__ , act_fn=UpperCamelCase__ ) A_ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) if embedding_proj_norm_type is None: A_ = None elif embedding_proj_norm_type == "layer": A_ = nn.LayerNorm(UpperCamelCase__ ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) A_ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) if encoder_hid_proj_type is None: A_ = None elif encoder_hid_proj_type == "linear": A_ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) A_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase__ ) ) if added_emb_type == "prd": A_ = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase__ ) ) elif added_emb_type is None: A_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) A_ = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn="""gelu""" , attention_bias=UpperCamelCase__ , ) for d in range(UpperCamelCase__ ) ] ) if norm_in_type == "layer": A_ = nn.LayerNorm(UpperCamelCase__ ) elif norm_in_type is None: A_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) A_ = nn.LayerNorm(UpperCamelCase__ ) A_ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) A_ = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , UpperCamelCase__ , persistent=UpperCamelCase__ ) A_ = nn.Parameter(torch.zeros(1 , UpperCamelCase__ ) ) A_ = nn.Parameter(torch.zeros(1 , UpperCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' A_ = {} def fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if hasattr(UpperCamelCase__ , """set_processor""" ): A_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , UpperCamelCase__ , UpperCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return processors def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(UpperCamelCase__ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if hasattr(UpperCamelCase__ , """set_processor""" ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.set_processor(UpperCamelCase__ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , UpperCamelCase__ , UpperCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> int: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> List[Any]: '''simple docstring''' A_ = hidden_states.shape[0] A_ = timestep if not torch.is_tensor(UpperCamelCase__ ): A_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase__ ) and len(timesteps.shape ) == 0: A_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A_ = timesteps * torch.ones(UpperCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) A_ = self.time_proj(UpperCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. A_ = timesteps_projected.to(dtype=self.dtype ) A_ = self.time_embedding(UpperCamelCase__ ) if self.embedding_proj_norm is not None: A_ = self.embedding_proj_norm(UpperCamelCase__ ) A_ = self.embedding_proj(UpperCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: A_ = self.encoder_hidden_states_proj(UpperCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) A_ = self.proj_in(UpperCamelCase__ ) A_ = self.positional_embedding.to(hidden_states.dtype ) A_ = [] A_ = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: A_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: A_ = hidden_states[:, None, :] A_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: A_ = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase__ , -1 , -1 ) additional_embeds.append(UpperCamelCase__ ) A_ = torch.cat( UpperCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens A_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: A_ = F.pad( UpperCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) A_ = hidden_states + positional_embeddings if attention_mask is not None: A_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 A_ = F.pad(UpperCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) A_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) A_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: A_ = self.norm_in(UpperCamelCase__ ) for block in self.transformer_blocks: A_ = block(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = self.norm_out(UpperCamelCase__ ) if self.prd_embedding is not None: A_ = hidden_states[:, -1] else: A_ = hidden_states[:, additional_embeddings_len:] A_ = self.proj_to_clip_embeddings(UpperCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
667
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
1
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = len(UpperCAmelCase__ ) A_ = int(math.floor(math.sqrt(UpperCAmelCase__ ) ) ) A_ = 0 while arr[min(UpperCAmelCase__, UpperCAmelCase__ ) - 1] < x: A_ = step step += int(math.floor(math.sqrt(UpperCAmelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: A_ = prev + 1 if prev == min(UpperCAmelCase__, UpperCAmelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __lowerCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase = [int(item) for item in user_input.split(''',''')] __lowerCamelCase = int(input('''Enter the number to be searched:\n''')) __lowerCamelCase = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f"""Number {x} is at index {res}""")
667
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
1
'''simple docstring''' import operator as op def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: A_ = [] A_ = lambda UpperCAmelCase__, UpperCAmelCase__ : int(x / y ) # noqa: E731 integer division operation A_ = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ), """Action""".center(12 ), """Stack""", sep=""" | """ ) print("""-""" * (30 + len(UpperCAmelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(UpperCAmelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ), ("""push(""" + x + """)""").ljust(12 ), """,""".join(UpperCAmelCase__ ), sep=""" | """ ) else: A_ = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ), ("""pop(""" + b + """)""").ljust(12 ), """,""".join(UpperCAmelCase__ ), sep=""" | """ ) A_ = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ), ("""pop(""" + a + """)""").ljust(12 ), """,""".join(UpperCAmelCase__ ), sep=""" | """ ) stack.append( str(opr[x](int(UpperCAmelCase__ ), int(UpperCAmelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ("""push(""" + a + x + b + """)""").ljust(12 ), """,""".join(UpperCAmelCase__ ), sep=""" | """, ) return int(stack[0] ) if __name__ == "__main__": __lowerCamelCase = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
667
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
1
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = VQModel lowercase = "sample" @property def snake_case_ ( self , UpperCamelCase__=(32, 32) ) -> Optional[int]: '''simple docstring''' A_ = 4 A_ = 3 A_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) return {"sample": image} @property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return (3, 32, 32) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' return (3, 32, 32) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } A_ = self.dummy_input return init_dict, inputs_dict def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ , A_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(UpperCamelCase__ ) A_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(UpperCamelCase__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) A_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) A_ = image.to(UpperCamelCase__ ) with torch.no_grad(): A_ = model(UpperCamelCase__ ).sample A_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A_ = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) )
667
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED __lowerCamelCase = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __lowerCamelCase = { '''allenai/led-base-16384''': 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) A_ = bs[:] A_ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase__ ) cs.append(2**8 + n ) n += 1 A_ = [chr(UpperCAmelCase__ ) for n in cs] return dict(zip(UpperCAmelCase__, UpperCAmelCase__ ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: A_ = set() A_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A_ = char return pairs class A__ ( _snake_case ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding="""utf-8""" ) as vocab_handle: A_ = json.load(UpperCamelCase__ ) A_ = {v: k for k, v in self.encoder.items()} A_ = errors # how to handle errors in decoding A_ = bytes_to_unicode() A_ = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding="""utf-8""" ) as merges_handle: A_ = merges_handle.read().split("""\n""" )[1:-1] A_ = [tuple(merge.split() ) for merge in bpe_merges] A_ = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A_ = {} A_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A_ = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def snake_case_ ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] A_ = tuple(UpperCamelCase__ ) A_ = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A_ = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A_ , A_ = bigram A_ = [] A_ = 0 while i < len(UpperCamelCase__ ): try: A_ = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A_ = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A_ = tuple(UpperCamelCase__ ) A_ = new_word if len(UpperCamelCase__ ) == 1: break else: A_ = get_pairs(UpperCamelCase__ ) A_ = """ """.join(UpperCamelCase__ ) A_ = word return word def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = [] for token in re.findall(self.pat , UpperCamelCase__ ): A_ = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(""" """ ) ) return bpe_tokens def snake_case_ ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = """""".join(UpperCamelCase__ ) A_ = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + """\n""" ) A_ = 0 with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) A_ = token_index writer.write(""" """.join(UpperCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ = [self.cls_token_id] A_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): A_ = """ """ + text return (text, kwargs) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ = None , UpperCamelCase__ = None , ) -> dict: '''simple docstring''' A_ = super()._pad( encoded_inputs=UpperCamelCase__ , max_length=UpperCamelCase__ , padding_strategy=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) # Load from model defaults if return_attention_mask is None: A_ = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: A_ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. A_ = len(encoded_inputs["""global_attention_mask"""] ) != len(UpperCamelCase__ ) if needs_to_be_padded: A_ = len(UpperCamelCase__ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` A_ = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": A_ = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' import cmath import math def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> complex: A_ = math.radians(UpperCAmelCase__ ) A_ = math.radians(UpperCAmelCase__ ) # Convert voltage and current to rectangular form A_ = cmath.rect(UpperCAmelCase__, UpperCAmelCase__ ) A_ = cmath.rect(UpperCAmelCase__, UpperCAmelCase__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( _snake_case ): @staticmethod @abstractmethod def snake_case_ ( UpperCamelCase__ ) -> List[Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError()
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
1
'''simple docstring''' import requests __lowerCamelCase = '''''' # <-- Put your OpenWeatherMap appid here! __lowerCamelCase = '''https://api.openweathermap.org/data/2.5/''' def UpperCAmelCase__ ( UpperCAmelCase__ = "Chicago", UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """weather""", params=locals() ).json() def UpperCAmelCase__ ( UpperCAmelCase__ = "Kolkata, India", UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """forecast""", params=locals() ).json() def UpperCAmelCase__ ( UpperCAmelCase__ = 55.68, UpperCAmelCase__ = 12.57, UpperCAmelCase__ = APPID ) -> dict: return requests.get(URL_BASE + """onecall""", params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowerCamelCase = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 A_ = 1 A_ = 1 while repunit: A_ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00_00 ) -> int: A_ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(UpperCAmelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ = 0, UpperCAmelCase__ = 0 ) -> int: A_ = right or len(UpperCAmelCase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase__, UpperCAmelCase__, left + 1, right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import math __lowerCamelCase = 10 __lowerCamelCase = 7 __lowerCamelCase = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase__ ( UpperCAmelCase__ = 20 ) -> str: A_ = math.comb(UpperCAmelCase__, UpperCAmelCase__ ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR, UpperCAmelCase__ ) A_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
667
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = FileLock(str(tmpdir / """foo.lock""" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): A_ = time.time() locka.acquire(UpperCAmelCase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Dict: A_ = """a""" * 10_00 + """.lock""" A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase__ ): locka.acquire(0 )
667
1
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A__ ( _snake_case ): lowercase = 42 lowercase = 42 class A__ ( _snake_case , _snake_case ): lowercase = 1 @register_to_config def __init__( self , UpperCamelCase__ = 2000 , UpperCamelCase__ = 0.15 , UpperCamelCase__ = 0.01 , UpperCamelCase__ = 1348.0 , UpperCamelCase__ = 1e-5 , UpperCamelCase__ = 1 , ) -> List[Any]: '''simple docstring''' # standard deviation of the initial noise distribution A_ = sigma_max # setable values A_ = None self.set_sigmas(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' return sample def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> Union[str, Any]: '''simple docstring''' A_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps A_ = torch.linspace(1 , UpperCamelCase__ , UpperCamelCase__ , device=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> Optional[int]: '''simple docstring''' A_ = sigma_min if sigma_min is not None else self.config.sigma_min A_ = sigma_max if sigma_max is not None else self.config.sigma_max A_ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(UpperCamelCase__ , UpperCamelCase__ ) A_ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) A_ = torch.exp(torch.linspace(math.log(UpperCamelCase__ ) , math.log(UpperCamelCase__ ) , UpperCamelCase__ ) ) A_ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) A_ = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) A_ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda A_ = timesteps.to(self.discrete_sigmas.device ) A_ = self.discrete_sigmas[timesteps].to(sample.device ) A_ = self.get_adjacent_sigma(UpperCamelCase__ , UpperCamelCase__ ).to(sample.device ) A_ = torch.zeros_like(UpperCamelCase__ ) A_ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods A_ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): A_ = diffusion.unsqueeze(-1 ) A_ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of A_ = randn_tensor( sample.shape , layout=sample.layout , generator=UpperCamelCase__ , device=sample.device , dtype=sample.dtype ) A_ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? A_ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=UpperCamelCase__ , prev_sample_mean=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction A_ = randn_tensor(sample.shape , layout=sample.layout , generator=UpperCamelCase__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr A_ = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() A_ = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() A_ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 A_ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term A_ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): A_ = step_size.unsqueeze(-1 ) A_ = sample + step_size * model_output A_ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> torch.FloatTensor: '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples A_ = timesteps.to(original_samples.device ) A_ = self.discrete_sigmas.to(original_samples.device )[timesteps] A_ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(UpperCamelCase__ ) * sigmas[:, None, None, None] ) A_ = noise + original_samples return noisy_samples def __len__( self ) -> int: '''simple docstring''' return self.config.num_train_timesteps
667
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
1
'''simple docstring''' import sys __lowerCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase__ ( UpperCAmelCase__ = N ) -> int: A_ = -sys.maxsize - 1 for i in range(len(UpperCAmelCase__ ) - 12 ): A_ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: A_ = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
667
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: A_ = json.load(UpperCAmelCase__ ) A_ = LukeConfig(use_entity_aware_attention=UpperCAmelCase__, **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] A_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ = AddedToken("""<ent>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) A_ = AddedToken("""<ent2>""", lstrip=UpperCAmelCase__, rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """r""" ) as f: A_ = json.load(UpperCAmelCase__ ) A_ = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__, """tokenizer_config.json""" ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__, MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ), """w""" ) as f: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens A_ = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ = state_dict["""embeddings.word_embeddings.weight"""] A_ = word_emb[ent_init_index].unsqueeze(0 ) A_ = word_emb[enta_init_index].unsqueeze(0 ) A_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ = state_dict[bias_name] A_ = decoder_bias[ent_init_index].unsqueeze(0 ) A_ = decoder_bias[enta_init_index].unsqueeze(0 ) A_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ = F'''encoder.layer.{layer_index}.attention.self.''' A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] A_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ = state_dict["""entity_predictions.bias"""] A_ = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ = state_dict[key] else: A_ = state_dict[key] A_ , A_ = model.load_state_dict(UpperCAmelCase__, strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__, task="""entity_classification""" ) A_ = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ = (0, 9) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 33, 7_68) ) A_ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ = torch.Size((1, 1, 7_68) ) A_ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], UpperCAmelCase__, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction A_ = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) A_ = """Tokyo is the capital of <mask>.""" A_ = (24, 30) A_ = tokenizer(UpperCAmelCase__, entity_spans=[span], return_tensors="""pt""" ) A_ = model(**UpperCAmelCase__ ) A_ = encoding["""input_ids"""][0].tolist() A_ = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) A_ = outputs.entity_logits[0][0].argmax().item() A_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] A_ = {} for entry in data: A_ = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ = entity_id break A_ = F'''{language}:{entity_name}''' A_ = entity_id return new_mapping if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowerCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
667
1
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __lowerCamelCase = 10 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: for i in range(UpperCAmelCase__, UpperCAmelCase__ ): if array[i] == target: return i return -1 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = 0 A_ = len(UpperCAmelCase__ ) while left <= right: if right - left < precision: return lin_search(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = (left + right) // 3 + 1 A_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: A_ = one_third - 1 elif array[two_third] < target: A_ = two_third + 1 else: A_ = one_third + 1 A_ = two_third - 1 else: return -1 def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if left < right: if right - left < precision: return lin_search(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A_ = (left + right) // 3 + 1 A_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(UpperCAmelCase__, one_third - 1, UpperCAmelCase__, UpperCAmelCase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: return rec_ternary_search(one_third + 1, two_third - 1, UpperCAmelCase__, UpperCAmelCase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase = input('''Enter numbers separated by comma:\n''').strip() __lowerCamelCase = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." __lowerCamelCase = int(input('''Enter the number to be found in the list:\n''').strip()) __lowerCamelCase = ite_ternary_search(collection, target) __lowerCamelCase = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print('''Not found''')
667
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( _snake_case ): lowercase = "ClapFeatureExtractor" lowercase = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = kwargs.pop("""sampling_rate""" , UpperCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: A_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if audios is not None: A_ = self.feature_extractor( UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and audios is not None: A_ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.tokenizer.model_input_names A_ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
667
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class A__ ( _snake_case ): def __init__( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase__ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(UpperCamelCase__ ) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' A_ = {} A_ = {} A_ = {} # preprocess args if "points_per_batch" in kwargs: A_ = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: A_ = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: A_ = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: A_ = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: A_ = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: A_ = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: A_ = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: A_ = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: A_ = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: A_ = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: A_ = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: A_ = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , UpperCamelCase__ , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return super().__call__(UpperCamelCase__ , *UpperCamelCase__ , num_workers=UpperCamelCase__ , batch_size=UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=64 , UpperCamelCase__ = 0 , UpperCamelCase__ = 512 / 1500 , UpperCamelCase__ = 32 , UpperCamelCase__ = 1 , ) -> List[Any]: '''simple docstring''' A_ = load_image(UpperCamelCase__ ) A_ = self.image_processor.size["""longest_edge"""] A_ , A_ , A_ , A_ = self.image_processor.generate_crop_boxes( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = self.image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": A_ = self.get_inference_context() with inference_context(): A_ = self._ensure_tensor_on_device(UpperCamelCase__ , device=self.device ) A_ = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) A_ = image_embeddings A_ = grid_points.shape[1] A_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , UpperCamelCase__ , UpperCamelCase__ ): A_ = grid_points[:, i : i + points_per_batch, :, :] A_ = input_labels[:, i : i + points_per_batch] A_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0.88 , UpperCamelCase__=0.95 , UpperCamelCase__=0 , UpperCamelCase__=1 , ) -> Optional[Any]: '''simple docstring''' A_ = model_inputs.pop("""input_boxes""" ) A_ = model_inputs.pop("""is_last""" ) A_ = model_inputs.pop("""original_sizes""" ).tolist() A_ = model_inputs.pop("""reshaped_input_sizes""" ).tolist() A_ = self.model(**UpperCamelCase__ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks A_ = model_outputs["""pred_masks"""] A_ = self.image_processor.post_process_masks( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , binarize=UpperCamelCase__ ) A_ = model_outputs["""iou_scores"""] A_ , A_ , A_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=0.7 , ) -> str: '''simple docstring''' A_ = [] A_ = [] A_ = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) A_ = torch.cat(UpperCamelCase__ ) A_ = torch.cat(UpperCamelCase__ ) A_ , A_ , A_ , A_ = self.image_processor.post_process_for_mask_generation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ = defaultdict(UpperCamelCase__ ) for output in model_outputs: for k, v in output.items(): extra[k].append(UpperCamelCase__ ) A_ = {} if output_rle_mask: A_ = rle_mask if output_bboxes_mask: A_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
667
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCamelCase = imread(r'''digital_image_processing/image_data/lena_small.jpg''') __lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) def UpperCAmelCase__ ( ) -> Dict: A_ = cn.convert_to_negative(UpperCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def UpperCAmelCase__ ( ) -> List[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase__, 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCAmelCase__ ( ) -> str: A_ = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCAmelCase__ ( ) -> Union[str, Any]: A_ = imread("""digital_image_processing/image_data/lena_small.jpg""", 0 ) # assert ambiguous array for all == True assert canny_img.all() A_ = canny.canny(UpperCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def UpperCAmelCase__ ( ) -> Dict: assert gg.gaussian_filter(UpperCAmelCase__, 5, sigma=0.9 ).all() def UpperCAmelCase__ ( ) -> int: # laplace diagonals A_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) A_ = conv.img_convolve(UpperCAmelCase__, UpperCAmelCase__ ).astype(UpperCAmelCase__ ) assert res.any() def UpperCAmelCase__ ( ) -> List[Any]: assert med.median_filter(UpperCAmelCase__, 3 ).any() def UpperCAmelCase__ ( ) -> List[Any]: A_ , A_ = sob.sobel_filter(UpperCAmelCase__ ) assert grad.any() and theta.any() def UpperCAmelCase__ ( ) -> List[str]: A_ = sp.make_sepia(UpperCAmelCase__, 20 ) assert sepia.all() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: A_ = bs.Burkes(imread(UpperCAmelCase__, 1 ), 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCAmelCase__ ( UpperCAmelCase__ = "digital_image_processing/image_data/lena_small.jpg", ) -> Optional[int]: A_ = rs.NearestNeighbour(imread(UpperCAmelCase__, 1 ), 4_00, 2_00 ) nn.process() assert nn.output.any() def UpperCAmelCase__ ( ) -> Optional[int]: A_ = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. A_ = imread(UpperCAmelCase__, 0 ) # Test for get_neighbors_pixel function() return not None A_ = 0 A_ = 0 A_ = image[x_coordinate][y_coordinate] A_ = lbp.get_neighbors_pixel( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image A_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): A_ = lbp.local_binary_value(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) assert lbp_image.any()
667
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase__ ) -> None: if point: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): for item in point: if not isinstance(UpperCAmelCase__, (int, float) ): A_ = ( """Expected a list of numbers as input, found """ F'''{type(UpperCAmelCase__ ).__name__}''' ) raise TypeError(UpperCAmelCase__ ) else: A_ = F'''Expected a list of numbers as input, found {type(UpperCAmelCase__ ).__name__}''' raise TypeError(UpperCAmelCase__ ) else: raise ValueError("""Missing an input""" ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: _validate_point(UpperCAmelCase__ ) _validate_point(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( _snake_case ): lowercase = ["image_processor", "tokenizer"] lowercase = "LayoutLMv3ImageProcessor" lowercase = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' A_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase__ , ) A_ = kwargs.pop("""feature_extractor""" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> BatchEncoding: '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor A_ = self.image_processor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = [text] # add batch dimension (as the image processor always adds a batch dimension) A_ = features["""words"""] A_ = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel values A_ = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: A_ = self.get_overflowing_images(UpperCamelCase__ , encoded_inputs["""overflow_to_sample_mapping"""] ) A_ = images return encoded_inputs def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image A_ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(UpperCamelCase__ )} and {len(UpperCamelCase__ )}''' ) return images_with_overflow def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def snake_case_ ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def snake_case_ ( self ) -> Dict: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase__ , ) return self.image_processor_class @property def snake_case_ ( self ) -> Dict: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase__ , ) return self.image_processor
667
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
667
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class A__ ( _snake_case ): lowercase = DistilBertTokenizer lowercase = DistilBertTokenizerFast lowercase = True @slow def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) A_ = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
667
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if num < 0: return False A_ = num A_ = 0 while num > 0: A_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
667
1
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowerCamelCase = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): lowercase = "mask2former" lowercase = ["swin"] lowercase = {"hidden_size": "hidden_dim"} def __init__( self , UpperCamelCase__ = None , UpperCamelCase__ = 256 , UpperCamelCase__ = 256 , UpperCamelCase__ = 256 , UpperCamelCase__ = 1024 , UpperCamelCase__ = "relu" , UpperCamelCase__ = 6 , UpperCamelCase__ = 10 , UpperCamelCase__ = 8 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 2048 , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = 4 , UpperCamelCase__ = 255 , UpperCamelCase__ = 100 , UpperCamelCase__ = 0.1 , UpperCamelCase__ = 2.0 , UpperCamelCase__ = 5.0 , UpperCamelCase__ = 5.0 , UpperCamelCase__ = 12544 , UpperCamelCase__ = 3.0 , UpperCamelCase__ = 0.75 , UpperCamelCase__ = 0.02 , UpperCamelCase__ = 1.0 , UpperCamelCase__ = True , UpperCamelCase__ = [4, 8, 16, 32] , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) A_ = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ = backbone_config.pop("""model_type""" ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(UpperCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) A_ = backbone_config A_ = feature_size A_ = mask_feature_size A_ = hidden_dim A_ = encoder_feedforward_dim A_ = activation_function A_ = encoder_layers A_ = decoder_layers A_ = num_attention_heads A_ = dropout A_ = dim_feedforward A_ = pre_norm A_ = enforce_input_projection A_ = common_stride A_ = ignore_value A_ = num_queries A_ = no_object_weight A_ = class_weight A_ = mask_weight A_ = dice_weight A_ = train_num_points A_ = oversample_ratio A_ = importance_sample_ratio A_ = init_std A_ = init_xavier_std A_ = use_auxiliary_loss A_ = feature_strides A_ = output_auxiliary_logits A_ = decoder_layers super().__init__(**UpperCamelCase__ ) @classmethod def snake_case_ ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return cls( backbone_config=UpperCamelCase__ , **UpperCamelCase__ , ) def snake_case_ ( self ) -> Dict[str, any]: '''simple docstring''' A_ = copy.deepcopy(self.__dict__ ) A_ = self.backbone_config.to_dict() A_ = self.__class__.model_type return output
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> int: '''simple docstring''' A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 32 A_ = 2 A_ = 4 A_ = 37 A_ = """gelu""" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = None def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = TFRoFormerModel(config=A__ ) A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A_ = [input_ids, input_mask] A_ = model(A__ ) A_ = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = True A_ = TFRoFormerForCausalLM(config=A__ ) A_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A_ = model(A__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = TFRoFormerForMaskedLM(config=A__ ) A_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A_ = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = self.num_labels A_ = TFRoFormerForSequenceClassification(config=A__ ) A_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A_ = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = self.num_choices A_ = TFRoFormerForMultipleChoice(config=A__ ) A_ = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) A_ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A_ = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = self.num_labels A_ = TFRoFormerForTokenClassification(config=A__ ) A_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A_ = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = TFRoFormerForQuestionAnswering(config=A__ ) A_ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } A_ = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) snake_case = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) snake_case = False snake_case = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = TFRoFormerModelTester(self ) A_ = ConfigTester(self , config_class=A__ , hidden_size=37 ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def snake_case_ ( self ) -> str: '''simple docstring''' A_ = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A__ ) @require_tf class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(A__ )[0] # TODO Replace vocab size A_ = 50000 A_ = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. A_ = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1e-4 ) @require_tf class A__ ( unittest.TestCase ): snake_case = 1e-4 def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = tf.constant([[4, 10]] ) A_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) A_ = emba(input_ids.shape ) A_ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) A_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) A_ = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class A__ ( unittest.TestCase ): snake_case = 1e-4 def snake_case_ ( self ) -> int: '''simple docstring''' # 2,12,16,64 A_ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 A_ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 A_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) A_ = embed_positions([2, 16, 768] )[None, None, :, :] A_ , A_ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) A_ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) A_ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
700
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1 , UpperCamelCase__=False , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_weight""" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCamelCase__ ) else: self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCamelCase__ ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=UpperCamelCase__ , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCamelCase__ ) @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[Any]: '''simple docstring''' A_ = x if proj is not None: A_ = tf.einsum("""ibd,ed->ibe""" , UpperCamelCase__ , UpperCamelCase__ ) return tf.einsum("""ibd,nd->ibn""" , UpperCamelCase__ , UpperCamelCase__ ) + b @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = shape_list(UpperCamelCase__ ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCamelCase__ , logits=UpperCamelCase__ ) A_ = tf.nn.log_softmax(UpperCamelCase__ , axis=-1 ) else: A_ = shape_list(UpperCamelCase__ ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) else: A_ = self._logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCamelCase__ ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCamelCase__ ) if target is not None: A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = tf.boolean_mask(UpperCamelCase__ , UpperCamelCase__ ) A_ = self._gather_logprob(UpperCamelCase__ , UpperCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCamelCase__ , -cur_logprob , shape_list(UpperCamelCase__ ) ) A_ = tf.concat(UpperCamelCase__ , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCamelCase__ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
667
0
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""", [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""", ["""default""", 0, 1_00 * 2**20, 9_00 * 2**20] ) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> List[str]: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config, """IN_MEMORY_MAX_SIZE""", __A ) A_ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A_ = dataset_size < in_memory_max_size else: A_ = False A_ = is_small_dataset(__A ) assert result == expected
701
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue A_ = cst_fwd.get(UpperCAmelCase__, np.inf ) A_ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) A_ = new_cost_f A_ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: A_ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: A_ = -1 A_ = set() A_ = set() A_ = {source: 0} A_ = {destination: 0} A_ = {source: None} A_ = {destination: None} A_ = PriorityQueue() A_ = PriorityQueue() A_ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): A_ , A_ = queue_forward.get() visited_forward.add(UpperCAmelCase__ ) A_ , A_ = queue_backward.get() visited_backward.add(UpperCAmelCase__ ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) A_ = pass_and_relaxation( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: A_ = shortest_distance return shortest_path_distance __lowerCamelCase = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } __lowerCamelCase = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __lowerCamelCase = data_utils.TransfoXLTokenizer __lowerCamelCase = data_utils.TransfoXLCorpus __lowerCamelCase = data_utils __lowerCamelCase = data_utils def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_SCREAMING_SNAKE_CASE, """rb""" ) as fp: A_ = pickle.load(_SCREAMING_SNAKE_CASE, encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) A_ = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) A_ = corpus.vocab.__dict__ torch.save(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) A_ = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""", _SCREAMING_SNAKE_CASE ) A_ = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model A_ = os.path.abspath(_SCREAMING_SNAKE_CASE ) A_ = os.path.abspath(_SCREAMING_SNAKE_CASE ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": A_ = TransfoXLConfig() else: A_ = TransfoXLConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F'''Building PyTorch model from configuration: {config}''' ) A_ = TransfoXLLMHeadModel(_SCREAMING_SNAKE_CASE ) A_ = load_tf_weights_in_transfo_xl(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) # Save pytorch-model A_ = os.path.join(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) A_ = os.path.join(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) print(F'''Save PyTorch model to {os.path.abspath(_SCREAMING_SNAKE_CASE )}''' ) torch.save(model.state_dict(), _SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {os.path.abspath(_SCREAMING_SNAKE_CASE )}''' ) with open(_SCREAMING_SNAKE_CASE, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) __lowerCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
702
'''simple docstring''' import os __lowerCamelCase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = 0 A_ = 0 while index < len(UpperCAmelCase__ ) - 1: A_ = SYMBOLS[numerals[index]] A_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCAmelCase__ ( UpperCAmelCase__ ) -> str: A_ = """""" A_ = num // 10_00 numerals += m_count * "M" num %= 10_00 A_ = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 A_ = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCAmelCase__ ( UpperCAmelCase__ = "/p089_roman.txt" ) -> int: A_ = 0 with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea: A_ = filea.readlines() for line in lines: A_ = line.strip() A_ = parse_roman_numerals(UpperCAmelCase__ ) A_ = generate_roman_numerals(UpperCAmelCase__ ) savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) return savings if __name__ == "__main__": print(f"""{solution() = }""")
667
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = mock.Mock() A_ = 500 A_ = {} A_ = HTTPError A_ = {} # Download this model to make sure it's in the cache. A_ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=A_ ) as mock_head: A_ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = mock.Mock() A_ = 500 A_ = {} A_ = HTTPError A_ = {} # Download this model to make sure it's in the cache. A_ = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=A_ ) as mock_head: A_ = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 try: A_ = tempfile.mktemp() with open(A_ , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , A_ ) A_ = AlbertTokenizer.from_pretrained(A_ ) finally: os.remove(A_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , A_ ) A_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class A__ ( unittest.TestCase ): lowercase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def snake_case_ ( cls ) -> Tuple: '''simple docstring''' A_ = TOKEN HfFolder.save_token(A_ ) @classmethod def snake_case_ ( cls ) -> Optional[int]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def snake_case_ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(A_ , """vocab.txt""" ) with open(A_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) A_ = BertTokenizer(A_ ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) A_ = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A_ , repo_id="""test-tokenizer""" , push_to_hub=A_ , use_auth_token=self._token ) A_ = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def snake_case_ ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(A_ , """vocab.txt""" ) with open(A_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) A_ = BertTokenizer(A_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) A_ = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A_ , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=A_ , use_auth_token=self._token ) A_ = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def snake_case_ ( self ) -> Dict: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(A_ , """vocab.txt""" ) with open(A_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) A_ = CustomTokenizer(A_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) A_ = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(A_ , """vocab.txt""" ) with open(A_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) A_ = BertTokenizerFast.from_pretrained(A_ ) bert_tokenizer.save_pretrained(A_ ) A_ = CustomTokenizerFast.from_pretrained(A_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) A_ = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) A_ = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = Trie() A_ = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A_ , ["""AB""", """C"""] )
703
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
667
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class A__ ( unittest.TestCase ): def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = [10, 20, 30, 40, 50, 60] A_ = [2, 4, 6, 8, 10, 12] A_ = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def snake_case_ ( self ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , """max_weight must greater than zero.""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , """Weight can not be negative.""" ) def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , """Profit can not be negative.""" ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , """max_weight must greater than zero.""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Union[str, Any]: A_ = 3_84 if "tiny" in model_name: A_ = [3, 3, 9, 3] A_ = [96, 1_92, 3_84, 7_68] if "small" in model_name: A_ = [3, 3, 27, 3] A_ = [96, 1_92, 3_84, 7_68] if "base" in model_name: A_ = [3, 3, 27, 3] A_ = [1_28, 2_56, 5_12, 10_24] A_ = 5_12 if "large" in model_name: A_ = [3, 3, 27, 3] A_ = [1_92, 3_84, 7_68, 15_36] A_ = 7_68 if "xlarge" in model_name: A_ = [3, 3, 27, 3] A_ = [2_56, 5_12, 10_24, 20_48] A_ = 10_24 # set label information A_ = 1_50 A_ = "huggingface/label-files" A_ = "ade20k-id2label.json" A_ = json.load(open(hf_hub_download(_A, _A, repo_type="""dataset""" ), """r""" ) ) A_ = {int(_A ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = ConvNextConfig( depths=_A, hidden_sizes=_A, out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) A_ = UperNetConfig( backbone_config=_A, auxiliary_in_channels=_A, num_labels=_A, idalabel=_A, labelaid=_A, ) return config def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: A_ = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = dct.pop(_A ) A_ = val def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Any: A_ = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } A_ = model_name_to_url[model_name] A_ = torch.hub.load_state_dict_from_url(_A, map_location="""cpu""" )["state_dict"] A_ = get_upernet_config(_A ) A_ = UperNetForSemanticSegmentation(_A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A_ = state_dict.pop(_A ) if "bn" in key: A_ = key.replace("""bn""", """batch_norm""" ) A_ = val # rename keys A_ = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A, _A, _A ) model.load_state_dict(_A ) # verify on image A_ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" A_ = Image.open(requests.get(_A, stream=_A ).raw ).convert("""RGB""" ) A_ = SegformerImageProcessor() A_ = processor(_A, return_tensors="""pt""" ).pixel_values with torch.no_grad(): A_ = model(_A ) if model_name == "upernet-convnext-tiny": A_ = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": A_ = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": A_ = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": A_ = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": A_ = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], _A, atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_A ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_A ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
705
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( _snake_case , unittest.TestCase ): lowercase = KandinskyVaaPriorPipeline lowercase = ["prompt"] lowercase = ["prompt", "negative_prompt"] lowercase = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowercase = False @property def snake_case_ ( self ) -> Any: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim @property def snake_case_ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def snake_case_ ( self ) -> int: '''simple docstring''' return 100 @property def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def snake_case_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) A_ = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } A_ = PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def snake_case_ ( self ) -> str: '''simple docstring''' A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) A_ = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=0 ) -> Optional[int]: '''simple docstring''' if str(UpperCamelCase__ ).startswith("""mps""" ): A_ = torch.manual_seed(UpperCamelCase__ ) else: A_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A_ = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """cpu""" A_ = self.get_dummy_components() A_ = self.pipeline_class(**UpperCamelCase__ ) A_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A_ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def snake_case_ ( self ) -> int: '''simple docstring''' A_ = torch_device == """cpu""" A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = torch_device == """cpu""" A_ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
667
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __lowerCamelCase = None __lowerCamelCase = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __lowerCamelCase = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class A__ : lowercase = True lowercase = None # Automatically constructed lowercase = "PIL.Image.Image" lowercase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowercase = field(default="Image" , init=__lowerCamelCase , repr=__lowerCamelCase ) def __call__( self ) -> Any: '''simple docstring''' return self.pa_type def snake_case_ ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install \'Pillow\'.""" ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): A_ = np.array(UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return {"path": value, "bytes": None} elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return {"path": None, "bytes": value} elif isinstance(UpperCAmelCase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(UpperCAmelCase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> List[str]: '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install \'Pillow\'.""" ) if token_per_repo_id is None: A_ = {} A_ = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(UpperCAmelCase_ ): A_ = PIL.Image.open(UpperCAmelCase_ ) else: A_ = path.split("""::""" )[-1] try: A_ = string_to_dict(UpperCAmelCase_ , config.HUB_DATASETS_URL )['repo_id'] A_ = token_per_repo_id.get(UpperCAmelCase_ ) except ValueError: A_ = None with xopen(UpperCAmelCase_ , """rb""" , use_auth_token=UpperCAmelCase_ ) as f: A_ = BytesIO(f.read() ) A_ = PIL.Image.open(bytes_ ) else: A_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case_ ( self ) -> int: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def snake_case_ ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if pa.types.is_string(storage.type ): A_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.binary() ) A_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() ) A_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: A_ = storage.field("""bytes""" ) else: A_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: A_ = storage.field("""path""" ) else: A_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() ) A_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): A_ = pa.array( [encode_np_array(np.array(UpperCAmelCase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) A_ = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() ) A_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase_ , self.pa_type ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(UpperCamelCase__ ): with xopen(UpperCAmelCase_ , """rb""" ) as f: A_ = f.read() return bytes_ A_ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A_ = pa.array( [os.path.basename(UpperCAmelCase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) A_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase_ , self.pa_type ) def UpperCAmelCase__ ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install \'Pillow\'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() A_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bytes: A_ = BytesIO() if image.format in list_image_compression_formats(): A_ = image.format else: A_ = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowerCamelCase_, format=lowerCamelCase_ ) return buffer.getvalue() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> dict: if hasattr(lowerCamelCase_, """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCamelCase_ )} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install \'Pillow\'.""" ) A_ = array.dtype A_ = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER A_ = dtype.kind A_ = dtype.itemsize A_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: A_ = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: A_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: A_ = dtype_byteorder + dtype_kind + str(lowerCamelCase_ ) A_ = np.dtype(lowerCamelCase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) A_ = PIL.Image.fromarray(array.astype(lowerCamelCase_ ) ) return {"path": None, "bytes": image_to_bytes(lowerCamelCase_ )} def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install \'Pillow\'.""" ) if objs: A_ = first_non_null_value(lowerCamelCase_ ) if isinstance(lowerCamelCase_, lowerCamelCase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCamelCase_, np.ndarray ): A_ = no_op_if_value_is_null(lowerCamelCase_ ) return [obj_to_image_dict_func(lowerCamelCase_ ) for obj in objs] elif isinstance(lowerCamelCase_, PIL.Image.Image ): A_ = no_op_if_value_is_null(lowerCamelCase_ ) return [obj_to_image_dict_func(lowerCamelCase_ ) for obj in objs] else: return objs else: return objs
706
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _snake_case ): lowercase = (IPNDMScheduler,) lowercase = (("num_inference_steps", 50),) def snake_case_ ( self , **UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = {"""num_train_timesteps""": 1000} config.update(**UpperCamelCase__ ) return config def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' pass def snake_case_ ( self , UpperCamelCase__=0 , **UpperCamelCase__ ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) A_ = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , **UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**UpperCamelCase__ ) A_ = scheduler_class(**UpperCamelCase__ ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(UpperCamelCase__ , UpperCamelCase__ ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**UpperCamelCase__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps""" ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps""" ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample A_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ) -> Any: '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Any: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["PoolFormerFeatureExtractor"] __lowerCamelCase = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
707
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
0
'''simple docstring''' from PIL import Image def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Image: def brightness(UpperCAmelCase__ ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__A ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 __lowerCamelCase = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
708
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: assert ( isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 A_ , A_ = 1, 1 for _ in range(number_of_steps - 1 ): A_ , A_ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
667
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowerCamelCase = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = dataset A_ = process A_ = params def __len__( self ) -> Any: '''simple docstring''' return len(self.dataset ) def __getitem__( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = self.dataset[i] A_ = self.process(UpperCamelCase_ , **self.params ) return processed class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> List[str]: '''simple docstring''' A_ = loader A_ = infer A_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether A_ = None A_ = loader_batch_size # Internal bookkeeping A_ = None A_ = None def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.loader ) def __iter__( self ) -> str: '''simple docstring''' A_ = iter(self.loader ) return self def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice A_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) A_ = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Convert ModelOutput to tuple first A_ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): A_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): A_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around A_ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A_ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A_ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. A_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 A_ = self._loader_batch_data.__class__(UpperCamelCase_ ) self._loader_batch_index += 1 return result def snake_case_ ( self ) -> List[str]: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch A_ = next(self.iterator ) A_ = self.infer(UpperCamelCase_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase_ , torch.Tensor ): A_ = processed else: A_ = list(processed.keys() )[0] A_ = processed[key] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): A_ = len(UpperCamelCase_ ) else: A_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A_ = observed_batch_size # Setting internal index to unwrap the batch A_ = processed A_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> Dict: '''simple docstring''' super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __iter__( self ) -> int: '''simple docstring''' A_ = iter(self.loader ) A_ = None return self def snake_case_ ( self ) -> Dict: '''simple docstring''' if self.subiterator is None: A_ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item A_ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators A_ = self.infer(next(self.iterator ) , **self.params ) A_ = next(self.subiterator ) return processed class A__ ( _snake_case ): def __iter__( self ) -> Dict: '''simple docstring''' A_ = iter(self.loader ) return self def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. A_ = False A_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: A_ = self.loader_batch_item() A_ = item.pop("""is_last""" ) accumulator.append(UpperCamelCase_ ) if is_last: return accumulator while not is_last: A_ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase_ , torch.Tensor ): A_ = processed else: A_ = list(processed.keys() )[0] A_ = processed[key] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): A_ = len(UpperCamelCase_ ) else: A_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A_ = observed_batch_size A_ = processed A_ = 0 while self._loader_batch_index < self.loader_batch_size: A_ = self.loader_batch_item() A_ = item.pop("""is_last""" ) accumulator.append(UpperCamelCase_ ) if is_last: return accumulator else: A_ = processed A_ = item.pop("""is_last""" ) accumulator.append(UpperCamelCase_ ) return accumulator class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' A_ = dataset A_ = key def __len__( self ) -> Optional[int]: '''simple docstring''' return len(self.dataset ) def __getitem__( self , UpperCamelCase__ ) -> int: '''simple docstring''' return self.dataset[i][self.key] class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: '''simple docstring''' A_ = dataset A_ = keya A_ = keya def __len__( self ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
710
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: A_ = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: A_ = set() for token in tokens: A_ = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) A_ = list(UpperCAmelCase__ ) return word_list def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: if not chinese_word_set: return bert_tokens A_ = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(UpperCAmelCase__ ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): A_ = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A_ = """##""" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Dict: A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=["""cws"""] ).cws A_ = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for i in range(0, len(UpperCAmelCase__ ), 1_00 ): A_ = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) A_ = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) A_ = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Optional[Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, """r""", encoding="""utf-8""" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, """w""", encoding="""utf-8""" ) as f: A_ = [json.dumps(UpperCAmelCase__ ) + """\n""" for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __lowerCamelCase = parser.parse_args() main(args)
667
0
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class A__ ( _snake_case ): lowercase = DistilBertTokenizer lowercase = DistilBertTokenizerFast lowercase = True @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) A_ = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) A_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) A_ = tokenizer.build_inputs_with_special_tokens(__A ) A_ = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
711
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
0