code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
lowerCAmelCase_: Optional[Any] = "0.12" # assumed parallelism: 8
if is_torch_available():
import torch
def __a ( A , A , A=None ):
'''simple docstring'''
if rng is None:
lowercase__ = random.Random()
lowercase__ = 1
for dim in shape:
total_dims *= dim
lowercase__ = []
for _ in range(A ):
values.append(rng.randint(0 , vocab_size - 1 ) )
lowercase__ = np.array(A , dtype=jnp.intaa ).reshape(A )
return output
def __a ( A , A=None ):
'''simple docstring'''
lowercase__ = ids_tensor(A , vocab_size=2 , rng=A )
# make sure that at least one token is attended to for each batch
lowercase__ = 1
return attn_mask
@require_flax
class a__ :
snake_case_ = None
snake_case_ = ()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
lowercase__ = 2
lowercase__ = inputs["input_ids"].shape[-1] // 2
lowercase__ = inputs["input_ids"][:max_batch_size, :sequence_length]
lowercase__ = jnp.ones_like(_UpperCAmelCase )
lowercase__ = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
lowercase__ = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
lowercase__ = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
lowercase__ = False
lowercase__ = max_length
lowercase__ = 0
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowercase__ = getattr(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = pt_model_class(_UpperCAmelCase ).eval()
lowercase__ = load_flax_weights_in_pytorch_model(_UpperCAmelCase, flax_model.params )
lowercase__ = flax_model.generate(_UpperCAmelCase ).sequences
lowercase__ = pt_model.generate(torch.tensor(_UpperCAmelCase, dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
lowercase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
lowercase__ = False
lowercase__ = max_length
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
lowercase__ = True
lowercase__ = max_length
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
lowercase__ = False
lowercase__ = max_length
lowercase__ = 2
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
lowercase__ = False
lowercase__ = max_length
lowercase__ = 2
lowercase__ = 2
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
lowercase__ = True
lowercase__ = max_length
lowercase__ = 0.8
lowercase__ = 10
lowercase__ = 0.3
lowercase__ = 1
lowercase__ = 8
lowercase__ = 9
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
lowercase__ = max_length
lowercase__ = 1
lowercase__ = 8
lowercase__ = 9
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
lowercase__ = max_length
lowercase__ = 2
lowercase__ = 1
lowercase__ = 8
lowercase__ = 9
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowercase__ = attention_mask.at[(0, 0)].set(0 )
lowercase__ = False
lowercase__ = max_length
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowercase__ = attention_mask.at[(0, 0)].set(0 )
lowercase__ = True
lowercase__ = max_length
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ , lowercase__ = self._get_input_ids_and_config()
# pad attention mask on the left
lowercase__ = attention_mask.at[(0, 0)].set(0 )
lowercase__ = 2
lowercase__ = max_length
for model_class in self.all_generative_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase )
lowercase__ = jit(model.generate )
lowercase__ = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() )
@require_flax
class a__ ( unittest.TestCase ):
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" )
lowercase__ = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" )
lowercase__ = "Hello world"
lowercase__ = tokenizer(_UpperCAmelCase, return_tensors="np" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(_UpperCAmelCase, "do_samples" ):
model.generate(_UpperCAmelCase, do_samples=_UpperCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(_UpperCAmelCase, "foo" ):
lowercase__ = {"foo": "bar"}
model.generate(_UpperCAmelCase, **_UpperCAmelCase )
| 668 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _a ):
snake_case_ = (IPNDMScheduler,)
snake_case_ = (("num_inference_steps", 50),)
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {"num_train_timesteps": 1000}
config.update(**_UpperCAmelCase )
return config
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
return sample
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.timesteps[5]
lowercase__ = scheduler.timesteps[6]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def snake_case__ ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 668 | 1 |
"""simple docstring"""
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
lowerCAmelCase_: Optional[int] = random.Random()
def __a ( A , A=1.0 , A=None , A=None ):
'''simple docstring'''
if rng is None:
lowercase__ = global_rng
lowercase__ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class a__ ( unittest.TestCase ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase=7, _UpperCAmelCase=400, _UpperCAmelCase=2000, _UpperCAmelCase=2048, _UpperCAmelCase=128, _UpperCAmelCase=1, _UpperCAmelCase=512, _UpperCAmelCase=30, _UpperCAmelCase=4_4100, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = min_seq_length
lowercase__ = max_seq_length
lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowercase__ = spectrogram_length
lowercase__ = feature_size
lowercase__ = num_audio_channels
lowercase__ = hop_length
lowercase__ = chunk_length
lowercase__ = sampling_rate
def snake_case__ ( self ):
'''simple docstring'''
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def snake_case__ ( self, _UpperCAmelCase=False, _UpperCAmelCase=False ):
'''simple docstring'''
def _flatten(_UpperCAmelCase ):
return list(itertools.chain(*_UpperCAmelCase ) )
if equal_length:
lowercase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
lowercase__ = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
lowercase__ = [np.asarray(_UpperCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class a__ ( _a , unittest.TestCase ):
snake_case_ = TvltFeatureExtractor
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = TvltFeatureExtractionTester(self )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(_UpperCAmelCase, "spectrogram_length" ) )
self.assertTrue(hasattr(_UpperCAmelCase, "feature_size" ) )
self.assertTrue(hasattr(_UpperCAmelCase, "num_audio_channels" ) )
self.assertTrue(hasattr(_UpperCAmelCase, "hop_length" ) )
self.assertTrue(hasattr(_UpperCAmelCase, "chunk_length" ) )
self.assertTrue(hasattr(_UpperCAmelCase, "sampling_rate" ) )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase__ = feat_extract_first.save_pretrained(_UpperCAmelCase )[0]
check_json_file_has_correct_format(_UpperCAmelCase )
lowercase__ = self.feature_extraction_class.from_pretrained(_UpperCAmelCase )
lowercase__ = feat_extract_first.to_dict()
lowercase__ = feat_extract_second.to_dict()
lowercase__ = dict_first.pop("mel_filters" )
lowercase__ = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(_UpperCAmelCase, _UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase__ = os.path.join(_UpperCAmelCase, "feat_extract.json" )
feat_extract_first.to_json_file(_UpperCAmelCase )
lowercase__ = self.feature_extraction_class.from_json_file(_UpperCAmelCase )
lowercase__ = feat_extract_first.to_dict()
lowercase__ = feat_extract_second.to_dict()
lowercase__ = dict_first.pop("mel_filters" )
lowercase__ = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(_UpperCAmelCase, _UpperCAmelCase ) )
self.assertEqual(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
lowercase__ = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs]
# Test not batched input
lowercase__ = feature_extractor(np_speech_inputs[0], return_tensors="np", sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
lowercase__ = feature_extractor(_UpperCAmelCase, return_tensors="np", sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
lowercase__ = feature_extractor(
_UpperCAmelCase, return_tensors="np", sampling_rate=4_4100, mask_audio=_UpperCAmelCase ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
lowercase__ = np.asarray(_UpperCAmelCase )
lowercase__ = feature_extractor(_UpperCAmelCase, return_tensors="np", sampling_rate=4_4100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" )
# automatic decoding with librispeech
lowercase__ = ds.sort("id" ).select(range(_UpperCAmelCase ) )[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self._load_datasamples(1 )
lowercase__ = TvltFeatureExtractor()
lowercase__ = feature_extractor(_UpperCAmelCase, return_tensors="pt" ).audio_values
self.assertEquals(audio_values.shape, (1, 1, 192, 128) )
lowercase__ = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2], _UpperCAmelCase, atol=1E-4 ) )
| 668 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( _a , unittest.TestCase ):
snake_case_ = MgpstrTokenizer
snake_case_ = False
snake_case_ = {}
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file, "w", encoding="utf-8" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + "\n" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = "tester"
lowercase__ = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ), 1 )
lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase )
lowercase__ = tokenizer.tokenize(_UpperCAmelCase )
lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ), 0 )
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def snake_case__ ( self ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
def __a ( A , A ):
'''simple docstring'''
return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2
def __a ( A , A=0 ):
'''simple docstring'''
return sorted(A , key=lambda A : x[column] )
def __a ( A , A , A=float("inf" ) ):
'''simple docstring'''
for i in range(points_counts - 1 ):
for j in range(i + 1 , A ):
lowercase__ = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
lowercase__ = current_dis
return min_dis
def __a ( A , A , A=float("inf" ) ):
'''simple docstring'''
for i in range(min(6 , points_counts - 1 ) , A ):
for j in range(max(0 , i - 6 ) , A ):
lowercase__ = euclidean_distance_sqr(points[i] , points[j] )
if current_dis < min_dis:
lowercase__ = current_dis
return min_dis
def __a ( A , A , A ):
'''simple docstring'''
if points_counts <= 3:
return dis_between_closest_pair(A , A )
# recursion
lowercase__ = points_counts // 2
lowercase__ = closest_pair_of_points_sqr(
A , points_sorted_on_y[:mid] , A )
lowercase__ = closest_pair_of_points_sqr(
A , points_sorted_on_y[mid:] , points_counts - mid )
lowercase__ = min(A , A )
lowercase__ = []
for point in points_sorted_on_x:
if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis:
cross_strip.append(A )
lowercase__ = dis_between_closest_in_strip(
A , len(A ) , A )
return min(A , A )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = column_based_sort(A , column=0 )
lowercase__ = column_based_sort(A , column=1 )
return (
closest_pair_of_points_sqr(
A , A , A )
) ** 0.5
if __name__ == "__main__":
lowerCAmelCase_: Tuple = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)]
print("Distance:", closest_pair_of_points(points, len(points)))
| 668 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 668 | 1 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class a__ ( nn.Module ):
def __init__( self, _UpperCAmelCase = 16, _UpperCAmelCase = 88, _UpperCAmelCase = None, _UpperCAmelCase = 1, _UpperCAmelCase = 0.0, _UpperCAmelCase = 32, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = "geglu", _UpperCAmelCase = None, ):
'''simple docstring'''
super().__init__()
lowercase__ = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=_UpperCAmelCase, attention_head_dim=_UpperCAmelCase, in_channels=_UpperCAmelCase, num_layers=_UpperCAmelCase, dropout=_UpperCAmelCase, norm_num_groups=_UpperCAmelCase, cross_attention_dim=_UpperCAmelCase, attention_bias=_UpperCAmelCase, sample_size=_UpperCAmelCase, num_vector_embeds=_UpperCAmelCase, activation_fn=_UpperCAmelCase, num_embeds_ada_norm=_UpperCAmelCase, )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
lowercase__ = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
lowercase__ = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
lowercase__ = [1, 0]
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase = True, ):
'''simple docstring'''
lowercase__ = hidden_states
lowercase__ = []
lowercase__ = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
lowercase__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
lowercase__ = self.transformer_index_for_condition[i]
lowercase__ = self.transformers[transformer_index](
_UpperCAmelCase, encoder_hidden_states=_UpperCAmelCase, timestep=_UpperCAmelCase, cross_attention_kwargs=_UpperCAmelCase, return_dict=_UpperCAmelCase, )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
lowercase__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
lowercase__ = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=_UpperCAmelCase )
| 668 |
"""simple docstring"""
from typing import Any
import numpy as np
def __a ( A ):
'''simple docstring'''
return np.array_equal(A , matrix.conjugate().T )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = v.conjugate().T
lowercase__ = v_star.dot(A )
assert isinstance(A , np.ndarray )
return (v_star_dot.dot(A )) / (v_star.dot(A ))
def __a ( ):
'''simple docstring'''
lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
lowercase__ = np.array([[1], [2], [3]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
print(rayleigh_quotient(A , A ) )
lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
assert rayleigh_quotient(A , A ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 668 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a__ ( unittest.TestCase ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase=3, _UpperCAmelCase=32, _UpperCAmelCase=3, _UpperCAmelCase=10, _UpperCAmelCase=[10, 20, 30, 40], _UpperCAmelCase=[1, 1, 2, 1], _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase="relu", _UpperCAmelCase=3, _UpperCAmelCase=None, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = image_size
lowercase__ = num_channels
lowercase__ = embeddings_size
lowercase__ = hidden_sizes
lowercase__ = depths
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = hidden_act
lowercase__ = num_labels
lowercase__ = scope
lowercase__ = len(_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ = self.get_config()
return config, pixel_values
def snake_case__ ( self ):
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, image_size=self.image_size, )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = FlaxRegNetModel(config=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.num_labels
lowercase__ = FlaxRegNetForImageClassification(config=_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class a__ ( _a , unittest.TestCase ):
snake_case_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
snake_case_ = False
snake_case_ = False
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = FlaxRegNetModelTester(self )
lowercase__ = ConfigTester(self, config_class=_UpperCAmelCase, has_text_modality=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case__ ( self ):
'''simple docstring'''
return
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def snake_case__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["pixel_values"]
self.assertListEqual(arg_names[:1], _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
def check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) )
lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase__ = self.model_tester.num_stages
self.assertEqual(len(_UpperCAmelCase ), expected_num_stages + 1 )
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ = True
check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__ = True
check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = model_class(_UpperCAmelCase )
@jax.jit
def model_jitted(_UpperCAmelCase, **_UpperCAmelCase ):
return model(pixel_values=_UpperCAmelCase, **_UpperCAmelCase )
with self.subTest("JIT Enabled" ):
lowercase__ = model_jitted(**_UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
lowercase__ = model_jitted(**_UpperCAmelCase ).to_tuple()
self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ) )
for jitted_output, output in zip(_UpperCAmelCase, _UpperCAmelCase ):
self.assertEqual(jitted_output.shape, output.shape )
def __a ( ):
'''simple docstring'''
lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_flax
class a__ ( unittest.TestCase ):
@cached_property
def snake_case__ ( self ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None
@slow
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" )
lowercase__ = self.default_image_processor
lowercase__ = prepare_img()
lowercase__ = image_processor(images=_UpperCAmelCase, return_tensors="np" )
lowercase__ = model(**_UpperCAmelCase )
# verify the logits
lowercase__ = (1, 1000)
self.assertEqual(outputs.logits.shape, _UpperCAmelCase )
lowercase__ = jnp.array([-0.4_180, -1.5_051, -3.4_836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3], _UpperCAmelCase, atol=1E-4 ) )
| 668 |
"""simple docstring"""
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class a__ ( _a , unittest.TestCase ):
snake_case_ = PriorTransformer
snake_case_ = "hidden_states"
@property
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = {
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
lowercase__ = self.dummy_input
return init_dict, inputs_dict
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ), 0 )
model.to(_UpperCAmelCase )
lowercase__ = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common()
lowercase__ = self.model_class(**_UpperCAmelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2], _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" )
lowercase__ = model.to(_UpperCAmelCase )
if hasattr(_UpperCAmelCase, "set_default_attn_processor" ):
model.set_default_attn_processor()
lowercase__ = self.get_dummy_seed_input()
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
lowercase__ = output[0, :5].flatten().cpu()
print(_UpperCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] )
self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) )
@slow
class a__ ( unittest.TestCase ):
def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = batch_size
lowercase__ = embedding_dim
lowercase__ = num_embeddings
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]],
[37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]],
# fmt: on
] )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" )
model.to(_UpperCAmelCase )
lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase )
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
lowercase__ = sample[0, :8].flatten().cpu()
print(_UpperCAmelCase )
lowercase__ = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
| 668 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase_: Tuple = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Any = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Union[str, Any] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 |
"""simple docstring"""
lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(A )
lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data )
lowercase__ = len(A ) % 6 != 0
if padding_needed:
# The padding that will be added later
lowercase__ = b"=" * ((6 - len(A ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(A ) % 6)
else:
lowercase__ = b""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(A ) , 6 ) ).encode()
+ padding
)
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ) and not isinstance(A , A ):
lowercase__ = (
"argument should be a bytes-like object or ASCII string, "
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(A )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(A , A ):
try:
lowercase__ = encoded_data.decode("utf-8" )
except UnicodeDecodeError:
raise ValueError("base64 encoded data should only contain ASCII characters" )
lowercase__ = encoded_data.count("=" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
lowercase__ = encoded_data[:-padding]
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )
lowercase__ = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(A ) , 8 )
]
return bytes(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
lowerCAmelCase_: List[str] = {
"Pillow": "Pillow<10.0.0",
"accelerate": "accelerate>=0.20.3",
"av": "av==9.2.0",
"beautifulsoup4": "beautifulsoup4",
"black": "black~=23.1",
"codecarbon": "codecarbon==1.2.0",
"cookiecutter": "cookiecutter==1.7.3",
"dataclasses": "dataclasses",
"datasets": "datasets!=2.5.0",
"decord": "decord==0.6.0",
"deepspeed": "deepspeed>=0.9.3",
"diffusers": "diffusers",
"dill": "dill<0.3.5",
"evaluate": "evaluate>=0.2.0",
"fairscale": "fairscale>0.3",
"faiss-cpu": "faiss-cpu",
"fastapi": "fastapi",
"filelock": "filelock",
"flax": "flax>=0.4.1,<=0.7.0",
"ftfy": "ftfy",
"fugashi": "fugashi>=1.0",
"GitPython": "GitPython<3.1.19",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.14.1,<1.0",
"importlib_metadata": "importlib_metadata",
"ipadic": "ipadic>=1.0.0,<2.0",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2,<=0.4.13",
"jaxlib": "jaxlib>=0.1.65,<=0.4.13",
"jieba": "jieba",
"kenlm": "kenlm",
"keras-nlp": "keras-nlp>=0.3.1",
"librosa": "librosa",
"nltk": "nltk",
"natten": "natten>=0.14.6",
"numpy": "numpy>=1.17",
"onnxconverter-common": "onnxconverter-common",
"onnxruntime-tools": "onnxruntime-tools>=1.4.2",
"onnxruntime": "onnxruntime>=1.4.0",
"opencv-python": "opencv-python",
"optuna": "optuna",
"optax": "optax>=0.0.8,<=0.1.4",
"packaging": "packaging>=20.0",
"parameterized": "parameterized",
"phonemizer": "phonemizer",
"protobuf": "protobuf",
"psutil": "psutil",
"pyyaml": "pyyaml>=5.1",
"pydantic": "pydantic<2",
"pytest": "pytest>=7.2.0",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"python": "python>=3.8.0",
"ray[tune]": "ray[tune]",
"regex": "regex!=2019.12.17",
"requests": "requests",
"rhoknp": "rhoknp>=1.1.0,<1.3.1",
"rjieba": "rjieba",
"rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1",
"ruff": "ruff>=0.0.241,<=0.0.259",
"sacrebleu": "sacrebleu>=1.4.12,<2.0.0",
"sacremoses": "sacremoses",
"safetensors": "safetensors>=0.3.1",
"sagemaker": "sagemaker>=2.31.0",
"scikit-learn": "scikit-learn",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"sigopt": "sigopt",
"starlette": "starlette",
"sudachipy": "sudachipy>=0.6.6",
"sudachidict_core": "sudachidict_core>=20220729",
"tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14",
"tensorflow": "tensorflow>=2.6,<2.14",
"tensorflow-text": "tensorflow-text<2.14",
"tf2onnx": "tf2onnx",
"timeout-decorator": "timeout-decorator",
"timm": "timm",
"tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14",
"torch": "torch>=1.9,!=1.12.0",
"torchaudio": "torchaudio",
"torchvision": "torchvision",
"pyctcdecode": "pyctcdecode>=0.4.0",
"tqdm": "tqdm>=4.27",
"unidic": "unidic>=1.0.2",
"unidic_lite": "unidic_lite>=1.0.7",
"urllib3": "urllib3<2.0.0",
"uvicorn": "uvicorn",
}
| 668 |
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ):
'''simple docstring'''
lowercase__ = symbols(A )
lowercase__ = lambdify(A , A )
lowercase__ = lambdify(A , diff(A , A ) )
lowercase__ = starting_point
while True:
if diff_function(A ) != 0:
lowercase__ = prev_guess - multiplicity * func(A ) / diff_function(
A )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowercase__ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
# Find fourth Root of 5
print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}')
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F'{newton_raphson("log(y) - 1", 2, variable="y")}',
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}',
)
# Find root of cos(x)
print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
| 668 | 1 |
"""simple docstring"""
import numpy as np
def __a ( A , A , A , A , A ):
'''simple docstring'''
lowercase__ = int(np.ceil((x_end - xa) / h ) )
lowercase__ = np.zeros((n + 1,) )
lowercase__ = ya
lowercase__ = xa
for k in range(A ):
lowercase__ = f(A , y[k] )
lowercase__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
lowercase__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
lowercase__ = f(x + h , y[k] + h * ka )
lowercase__ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_: Union[str, Any] = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Any = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Tuple = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Optional[Any] = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _a ):
snake_case_ = (IPNDMScheduler,)
snake_case_ = (("num_inference_steps", 50),)
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {"num_train_timesteps": 1000}
config.update(**_UpperCAmelCase )
return config
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
return sample
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.timesteps[5]
lowercase__ = scheduler.timesteps[6]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def snake_case__ ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 668 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = ["audio_values", "audio_mask"]
def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = spectrogram_length
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = feature_size // self.patch_size[1]
lowercase__ = n_fft
lowercase__ = sampling_rate // hop_length_to_sampling_rate
lowercase__ = sampling_rate
lowercase__ = padding_value
lowercase__ = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = spectrogram(
_UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, )
lowercase__ = log_spec[:, :-1]
lowercase__ = log_spec - 20.0
lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
F''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowercase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ):
lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa )
elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowercase__ = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], _UpperCAmelCase ):
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowercase__ = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowercase__ = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa )
# convert into correct format for padding
lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowercase__ = padded_audio_features * self.padding_value
for i in range(len(_UpperCAmelCase ) ):
lowercase__ = audio_features[i]
lowercase__ = feature
# return as BatchFeature
if return_attention_mask:
lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
lowercase__ = {"audio_values": padded_audio_features}
lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
return encoded_inputs
| 668 | 1 |
"""simple docstring"""
from collections import deque
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = process_name # process name
lowercase__ = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
lowercase__ = arrival_time
lowercase__ = burst_time # remaining burst time
lowercase__ = 0 # total time of the process wait in ready queue
lowercase__ = 0 # time from arrival time to completion time
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = number_of_queues
# time slice of queues that round robin algorithm applied
lowercase__ = time_slices
# unfinished process is in this ready_queue
lowercase__ = queue
# current time
lowercase__ = current_time
# finished process is in this sequence queue
lowercase__ = deque()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return [q.burst_time for q in queue]
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of finished process
while len(_UpperCAmelCase ) != 0:
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_UpperCAmelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
lowercase__ = 0
# set the process's turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# set the completion time
lowercase__ = self.current_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_UpperCAmelCase ) ):
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_UpperCAmelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
lowercase__ = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_UpperCAmelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
lowercase__ = 0
# set the finish time
lowercase__ = self.current_time
# update the process' turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def snake_case__ ( self ):
'''simple docstring'''
for i in range(self.number_of_queues - 1 ):
lowercase__ , lowercase__ = self.round_robin(
self.ready_queue, self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3)
lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7)
lowerCAmelCase_: str = Process("P3", 0, 6_8)
lowerCAmelCase_: int = Process("P4", 0, 2_4)
lowerCAmelCase_: Dict = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])})
lowerCAmelCase_: Any = Process("P1", 0, 5_3)
lowerCAmelCase_: Tuple = Process("P2", 0, 1_7)
lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8)
lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4)
lowerCAmelCase_: Union[str, Any] = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa])
lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0)
lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print sequence of finished processes
print(
F'sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'
)
| 668 |
"""simple docstring"""
from __future__ import annotations
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
lowercase__ = []
for num in range(len(A ) ):
lowercase__ = 0
while 2 * i * i <= odd_composites[num]:
lowercase__ = odd_composites[num] - 2 * i * i
if is_prime(A ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(A ) == n:
return list_nums
return []
def __a ( ):
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase_: Dict = "pt"
elif is_tf_available():
lowerCAmelCase_: Dict = "tf"
else:
lowerCAmelCase_: str = "jax"
class a__ ( _a , unittest.TestCase ):
snake_case_ = ByTaTokenizer
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
lowercase__ = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def snake_case__ ( self ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("google/byt5-small" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
try:
lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) )
lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
lowercase__ = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
lowercase__ = toks + toks
# toks_str = [t[1] for t in toks]
lowercase__ = [t[0] for t in toks]
# Ensure consistency
lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
lowercase__ = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase )
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
lowercase__ = " " + output_txt
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] )
lowercase__ = tokenizer(["hi", "I went to the gym", ""] )
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = "Unicode €."
lowercase__ = tokenizer(_UpperCAmelCase )
lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" )
lowercase__ = tokenizer("e è é ê ë" )
lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
if FRAMEWORK != "jax":
lowercase__ = list(batch.input_ids.numpy()[0] )
else:
lowercase__ = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids", _UpperCAmelCase )
self.assertIn("attention_mask", _UpperCAmelCase )
self.assertNotIn("decoder_input_ids", _UpperCAmelCase )
self.assertNotIn("decoder_attention_mask", _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = [
"Summary of the text.",
"Another summary.",
]
lowercase__ = tokenizer(
text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertEqual(32, targets["input_ids"].shape[1] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization. </s>"]
lowercase__ = ["Summary of the text. </s>"]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] )
self.assertEqual(_UpperCAmelCase, batch["labels"][0] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
lowercase__ = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"] )
lowercase__ = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token" )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, )
self.assertIn(
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )]
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, )
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens )
self.assertEqual(
["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase )
self.assertTrue(tokenizer.decode([255] ) == "" )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"]
lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
lowercase__ = 0
lowercase__ = tokenizer.convert_ids_to_tokens(
_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
for attr in attributes_list:
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
| 668 |
"""simple docstring"""
import os
import sys
lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase_: Union[str, Any] = [
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoConfig.from_pretrained(*A , **A )
@add_start_docstrings(AutoTokenizer.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*A , **A )
@add_start_docstrings(AutoModel.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModel.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
| 668 | 1 |
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
lowerCAmelCase_: int = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def __a ( A ):
'''simple docstring'''
config.addinivalue_line(
"markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" )
config.addinivalue_line(
"markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" )
config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" )
config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" )
config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" )
config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" )
def __a ( A ):
'''simple docstring'''
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(A )
def __a ( A ):
'''simple docstring'''
from transformers.testing_utils import pytest_terminal_summary_main
lowercase__ = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(A , id=A )
def __a ( A , A ):
'''simple docstring'''
if exitstatus == 5:
lowercase__ = 0
# Doctest custom flag to ignore output.
lowerCAmelCase_: int = doctest.register_optionflag("IGNORE_RESULT")
lowerCAmelCase_: Optional[int] = doctest.OutputChecker
class a__ ( _a ):
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
lowerCAmelCase_: int = CustomOutputChecker
lowerCAmelCase_: Dict = HfDoctestModule
lowerCAmelCase_: Any = HfDocTestParser
| 668 |
"""simple docstring"""
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class a__ ( unittest.TestCase ):
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ):
lowercase__ = FlaxAutoModel.from_pretrained("bert-base" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 668 | 1 |
"""simple docstring"""
import os
import sys
lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase_: Union[str, Any] = [
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoConfig.from_pretrained(*A , **A )
@add_start_docstrings(AutoTokenizer.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*A , **A )
@add_start_docstrings(AutoModel.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModel.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
| 668 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_: str = logging.get_logger(__name__)
lowerCAmelCase_: List[Any] = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class a__ ( _a ):
snake_case_ = "data2vec-vision"
def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = use_mask_token
lowercase__ = use_absolute_position_embeddings
lowercase__ = use_relative_position_bias
lowercase__ = use_shared_relative_position_bias
lowercase__ = layer_scale_init_value
lowercase__ = drop_path_rate
lowercase__ = use_mean_pooling
# decode head attributes (semantic segmentation)
lowercase__ = out_indices
lowercase__ = pool_scales
# auxiliary head attributes (semantic segmentation)
lowercase__ = use_auxiliary_head
lowercase__ = auxiliary_loss_weight
lowercase__ = auxiliary_channels
lowercase__ = auxiliary_num_convs
lowercase__ = auxiliary_concat_input
lowercase__ = semantic_loss_ignore_index
class a__ ( _a ):
snake_case_ = version.parse("1.11" )
@property
def snake_case__ ( self ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def snake_case__ ( self ):
'''simple docstring'''
return 1E-4
| 668 | 1 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_: Tuple = logging.get_logger(__name__)
# TODO Update this
lowerCAmelCase_: Any = {
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class a__ ( _a ):
snake_case_ = "esm"
def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1026, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=None, _UpperCAmelCase=None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase, mask_token_id=_UpperCAmelCase, **_UpperCAmelCase )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = emb_layer_norm_before
lowercase__ = token_dropout
lowercase__ = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values." )
lowercase__ = EsmFoldConfig()
elif isinstance(_UpperCAmelCase, _UpperCAmelCase ):
lowercase__ = EsmFoldConfig(**_UpperCAmelCase )
lowercase__ = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" )
lowercase__ = get_default_vocab_list()
else:
lowercase__ = vocab_list
else:
lowercase__ = None
lowercase__ = None
if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", _UpperCAmelCase ):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = super().to_dict()
if isinstance(self.esmfold_config, _UpperCAmelCase ):
lowercase__ = self.esmfold_config.to_dict()
return output
@dataclass
class a__ :
snake_case_ = None
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = 0
snake_case_ = True
snake_case_ = False
snake_case_ = 128
snake_case_ = None
def snake_case__ ( self ):
'''simple docstring'''
if self.trunk is None:
lowercase__ = TrunkConfig()
elif isinstance(self.trunk, _UpperCAmelCase ):
lowercase__ = TrunkConfig(**self.trunk )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = asdict(self )
lowercase__ = self.trunk.to_dict()
return output
@dataclass
class a__ :
snake_case_ = 48
snake_case_ = 1024
snake_case_ = 128
snake_case_ = 32
snake_case_ = 32
snake_case_ = 32
snake_case_ = 0
snake_case_ = 0
snake_case_ = False
snake_case_ = 4
snake_case_ = 128
snake_case_ = None
def snake_case__ ( self ):
'''simple docstring'''
if self.structure_module is None:
lowercase__ = StructureModuleConfig()
elif isinstance(self.structure_module, _UpperCAmelCase ):
lowercase__ = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
lowercase__ = self.sequence_state_dim // self.sequence_head_width
lowercase__ = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = asdict(self )
lowercase__ = self.structure_module.to_dict()
return output
@dataclass
class a__ :
snake_case_ = 384
snake_case_ = 128
snake_case_ = 16
snake_case_ = 128
snake_case_ = 12
snake_case_ = 4
snake_case_ = 8
snake_case_ = 0.1
snake_case_ = 8
snake_case_ = 1
snake_case_ = 2
snake_case_ = 7
snake_case_ = 10
snake_case_ = 1e-8
snake_case_ = 1e5
def snake_case__ ( self ):
'''simple docstring'''
return asdict(self )
def __a ( ):
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 668 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: int = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class a__ ( _a ):
snake_case_ = "markuplm"
def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = classifier_dropout
# additional properties
lowercase__ = max_depth
lowercase__ = max_xpath_tag_unit_embeddings
lowercase__ = max_xpath_subs_unit_embeddings
lowercase__ = tag_pad_id
lowercase__ = subs_pad_id
lowercase__ = xpath_unit_hidden_size
| 668 | 1 |
"""simple docstring"""
def __a ( A ):
'''simple docstring'''
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(A , A ):
raise TypeError("Input value must be a 'int' type" )
return bin(A ).count("1" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 |
"""simple docstring"""
lowerCAmelCase_: Union[str, Any] = [
9_9_9,
8_0_0,
7_9_9,
6_0_0,
5_9_9,
5_0_0,
4_0_0,
3_9_9,
3_7_7,
3_5_5,
3_3_3,
3_1_1,
2_8_8,
2_6_6,
2_4_4,
2_2_2,
2_0_0,
1_9_9,
1_7_7,
1_5_5,
1_3_3,
1_1_1,
8_8,
6_6,
4_4,
2_2,
0,
]
lowerCAmelCase_: List[str] = [
9_9_9,
9_7_6,
9_5_2,
9_2_8,
9_0_5,
8_8_2,
8_5_8,
8_5_7,
8_1_0,
7_6_2,
7_1_5,
7_1_4,
5_7_2,
4_2_9,
4_2_8,
2_8_6,
2_8_5,
2_3_8,
1_9_0,
1_4_3,
1_4_2,
1_1_8,
9_5,
7_1,
4_7,
2_4,
0,
]
lowerCAmelCase_: List[str] = [
9_9_9,
9_8_8,
9_7_7,
9_6_6,
9_5_5,
9_4_4,
9_3_3,
9_2_2,
9_1_1,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_5_0,
3_0_0,
2_9_9,
2_6_6,
2_3_3,
2_0_0,
1_9_9,
1_7_9,
1_5_9,
1_4_0,
1_2_0,
1_0_0,
9_9,
8_8,
7_7,
6_6,
5_5,
4_4,
3_3,
2_2,
1_1,
0,
]
lowerCAmelCase_: Dict = [
9_9_9,
9_9_5,
9_9_2,
9_8_9,
9_8_5,
9_8_1,
9_7_8,
9_7_5,
9_7_1,
9_6_7,
9_6_4,
9_6_1,
9_5_7,
9_5_6,
9_5_1,
9_4_7,
9_4_2,
9_3_7,
9_3_3,
9_2_8,
9_2_3,
9_1_9,
9_1_4,
9_1_3,
9_0_8,
9_0_3,
8_9_7,
8_9_2,
8_8_7,
8_8_1,
8_7_6,
8_7_1,
8_7_0,
8_6_4,
8_5_8,
8_5_2,
8_4_6,
8_4_0,
8_3_4,
8_2_8,
8_2_7,
8_2_0,
8_1_3,
8_0_6,
7_9_9,
7_9_2,
7_8_5,
7_8_4,
7_7_7,
7_7_0,
7_6_3,
7_5_6,
7_4_9,
7_4_2,
7_4_1,
7_3_3,
7_2_4,
7_1_6,
7_0_7,
6_9_9,
6_9_8,
6_8_8,
6_7_7,
6_6_6,
6_5_6,
6_5_5,
6_4_5,
6_3_4,
6_2_3,
6_1_3,
6_1_2,
5_9_8,
5_8_4,
5_7_0,
5_6_9,
5_5_5,
5_4_1,
5_2_7,
5_2_6,
5_0_5,
4_8_4,
4_8_3,
4_6_2,
4_4_0,
4_3_9,
3_9_6,
3_9_5,
3_5_2,
3_5_1,
3_0_8,
3_0_7,
2_6_4,
2_6_3,
2_2_0,
2_1_9,
1_7_6,
1_3_2,
8_8,
4_4,
0,
]
lowerCAmelCase_: Optional[int] = [
9_9_9,
9_9_7,
9_9_5,
9_9_2,
9_9_0,
9_8_8,
9_8_6,
9_8_4,
9_8_1,
9_7_9,
9_7_7,
9_7_5,
9_7_2,
9_7_0,
9_6_8,
9_6_6,
9_6_4,
9_6_1,
9_5_9,
9_5_7,
9_5_6,
9_5_4,
9_5_1,
9_4_9,
9_4_6,
9_4_4,
9_4_1,
9_3_9,
9_3_6,
9_3_4,
9_3_1,
9_2_9,
9_2_6,
9_2_4,
9_2_1,
9_1_9,
9_1_6,
9_1_4,
9_1_3,
9_1_0,
9_0_7,
9_0_5,
9_0_2,
8_9_9,
8_9_6,
8_9_3,
8_9_1,
8_8_8,
8_8_5,
8_8_2,
8_7_9,
8_7_7,
8_7_4,
8_7_1,
8_7_0,
8_6_7,
8_6_4,
8_6_1,
8_5_8,
8_5_5,
8_5_2,
8_4_9,
8_4_6,
8_4_3,
8_4_0,
8_3_7,
8_3_4,
8_3_1,
8_2_8,
8_2_7,
8_2_4,
8_2_1,
8_1_7,
8_1_4,
8_1_1,
8_0_8,
8_0_4,
8_0_1,
7_9_8,
7_9_5,
7_9_1,
7_8_8,
7_8_5,
7_8_4,
7_8_0,
7_7_7,
7_7_4,
7_7_0,
7_6_6,
7_6_3,
7_6_0,
7_5_6,
7_5_2,
7_4_9,
7_4_6,
7_4_2,
7_4_1,
7_3_7,
7_3_3,
7_3_0,
7_2_6,
7_2_2,
7_1_8,
7_1_4,
7_1_0,
7_0_7,
7_0_3,
6_9_9,
6_9_8,
6_9_4,
6_9_0,
6_8_5,
6_8_1,
6_7_7,
6_7_3,
6_6_9,
6_6_4,
6_6_0,
6_5_6,
6_5_5,
6_5_0,
6_4_6,
6_4_1,
6_3_6,
6_3_2,
6_2_7,
6_2_2,
6_1_8,
6_1_3,
6_1_2,
6_0_7,
6_0_2,
5_9_6,
5_9_1,
5_8_6,
5_8_0,
5_7_5,
5_7_0,
5_6_9,
5_6_3,
5_5_7,
5_5_1,
5_4_5,
5_3_9,
5_3_3,
5_2_7,
5_2_6,
5_1_9,
5_1_2,
5_0_5,
4_9_8,
4_9_1,
4_8_4,
4_8_3,
4_7_4,
4_6_6,
4_5_7,
4_4_9,
4_4_0,
4_3_9,
4_2_8,
4_1_8,
4_0_7,
3_9_6,
3_9_5,
3_8_1,
3_6_6,
3_5_2,
3_5_1,
3_3_0,
3_0_8,
3_0_7,
2_8_6,
2_6_4,
2_6_3,
2_4_2,
2_2_0,
2_1_9,
1_7_6,
1_7_5,
1_3_2,
1_3_1,
8_8,
4_4,
0,
]
lowerCAmelCase_: Tuple = [
9_9_9,
9_9_1,
9_8_2,
9_7_4,
9_6_6,
9_5_8,
9_5_0,
9_4_1,
9_3_3,
9_2_5,
9_1_6,
9_0_8,
9_0_0,
8_9_9,
8_7_4,
8_5_0,
8_2_5,
8_0_0,
7_9_9,
7_0_0,
6_0_0,
5_0_0,
4_0_0,
3_0_0,
2_0_0,
1_0_0,
0,
]
lowerCAmelCase_: str = [
9_9_9,
9_9_2,
9_8_5,
9_7_8,
9_7_1,
9_6_4,
9_5_7,
9_4_9,
9_4_2,
9_3_5,
9_2_8,
9_2_1,
9_1_4,
9_0_7,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_0_0,
2_9_9,
2_0_0,
1_9_9,
1_0_0,
9_9,
0,
]
lowerCAmelCase_: int = [
9_9_9,
9_9_6,
9_9_2,
9_8_9,
9_8_5,
9_8_2,
9_7_9,
9_7_5,
9_7_2,
9_6_8,
9_6_5,
9_6_1,
9_5_8,
9_5_5,
9_5_1,
9_4_8,
9_4_4,
9_4_1,
9_3_8,
9_3_4,
9_3_1,
9_2_7,
9_2_4,
9_2_0,
9_1_7,
9_1_4,
9_1_0,
9_0_7,
9_0_3,
9_0_0,
8_9_9,
8_9_1,
8_8_4,
8_7_6,
8_6_9,
8_6_1,
8_5_3,
8_4_6,
8_3_8,
8_3_0,
8_2_3,
8_1_5,
8_0_8,
8_0_0,
7_9_9,
7_8_8,
7_7_7,
7_6_6,
7_5_5,
7_4_4,
7_3_3,
7_2_2,
7_1_1,
7_0_0,
6_9_9,
6_8_8,
6_7_7,
6_6_6,
6_5_5,
6_4_4,
6_3_3,
6_2_2,
6_1_1,
6_0_0,
5_9_9,
5_8_5,
5_7_1,
5_5_7,
5_4_2,
5_2_8,
5_1_4,
5_0_0,
4_9_9,
4_8_5,
4_7_1,
4_5_7,
4_4_2,
4_2_8,
4_1_4,
4_0_0,
3_9_9,
3_7_9,
3_5_9,
3_4_0,
3_2_0,
3_0_0,
2_9_9,
2_7_9,
2_5_9,
2_4_0,
2_2_0,
2_0_0,
1_9_9,
1_6_6,
1_3_3,
1_0_0,
9_9,
6_6,
3_3,
0,
]
| 668 | 1 |
"""simple docstring"""
import time
import warnings
from abc import ABC
from copy import deepcopy
from typing import Optional
import torch
from ..utils import add_start_docstrings, logging
lowerCAmelCase_: Optional[int] = logging.get_logger(__name__)
lowerCAmelCase_: Union[str, Any] = R"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n"
class a__ ( _a ):
@add_start_docstrings(_UpperCAmelCase )
def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
raise NotImplementedError("StoppingCriteria needs to be subclassed" )
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = max_length
lowercase__ = max_position_embeddings
@add_start_docstrings(_UpperCAmelCase )
def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = input_ids.shape[-1]
lowercase__ = cur_len >= self.max_length
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
logger.warning_once(
"This is a friendly reminder - the current text generation call will exceed the model's predefined "
F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe '''
"exceptions, performance degradation, or nothing at all." )
return is_done
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
warnings.warn(
"The class `MaxNewTokensCriteria` is deprecated. "
F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` '''
"with `max_length = start_length + max_new_tokens` instead.", _UpperCAmelCase, )
lowercase__ = start_length
lowercase__ = max_new_tokens
lowercase__ = start_length + max_new_tokens
@add_start_docstrings(_UpperCAmelCase )
def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return input_ids.shape[-1] >= self.max_length
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = max_time
lowercase__ = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(_UpperCAmelCase )
def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return time.time() - self.initial_timestamp > self.max_time
class a__ ( _a ):
@add_start_docstrings(_UpperCAmelCase )
def __call__( self, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return any(criteria(_UpperCAmelCase, _UpperCAmelCase ) for criteria in self )
@property
def snake_case__ ( self ):
'''simple docstring'''
for stopping_criterium in self:
if isinstance(_UpperCAmelCase, _UpperCAmelCase ):
return stopping_criterium.max_length
elif isinstance(_UpperCAmelCase, _UpperCAmelCase ):
return stopping_criterium.max_length
return None
def __a ( A , A ):
'''simple docstring'''
lowercase__ = stopping_criteria.max_length
lowercase__ = deepcopy(A )
if stopping_max_length is not None and stopping_max_length != max_length:
warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , A )
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=A ) )
return new_stopping_criteria
| 668 |
"""simple docstring"""
from __future__ import annotations
def __a ( A , A ):
'''simple docstring'''
if partitions <= 0:
raise ValueError("partitions must be a positive number!" )
if partitions > number_of_bytes:
raise ValueError("partitions can not > number_of_bytes!" )
lowercase__ = number_of_bytes // partitions
lowercase__ = []
for i in range(A ):
lowercase__ = i * bytes_per_partition + 1
lowercase__ = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(A )
lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data )
lowercase__ = len(A ) % 6 != 0
if padding_needed:
# The padding that will be added later
lowercase__ = b"=" * ((6 - len(A ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(A ) % 6)
else:
lowercase__ = b""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(A ) , 6 ) ).encode()
+ padding
)
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ) and not isinstance(A , A ):
lowercase__ = (
"argument should be a bytes-like object or ASCII string, "
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(A )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(A , A ):
try:
lowercase__ = encoded_data.decode("utf-8" )
except UnicodeDecodeError:
raise ValueError("base64 encoded data should only contain ASCII characters" )
lowercase__ = encoded_data.count("=" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
lowercase__ = encoded_data[:-padding]
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )
lowercase__ = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(A ) , 8 )
]
return bytes(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 |
"""simple docstring"""
from collections import deque
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = process_name # process name
lowercase__ = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
lowercase__ = arrival_time
lowercase__ = burst_time # remaining burst time
lowercase__ = 0 # total time of the process wait in ready queue
lowercase__ = 0 # time from arrival time to completion time
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = number_of_queues
# time slice of queues that round robin algorithm applied
lowercase__ = time_slices
# unfinished process is in this ready_queue
lowercase__ = queue
# current time
lowercase__ = current_time
# finished process is in this sequence queue
lowercase__ = deque()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return [q.burst_time for q in queue]
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of finished process
while len(_UpperCAmelCase ) != 0:
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_UpperCAmelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
lowercase__ = 0
# set the process's turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# set the completion time
lowercase__ = self.current_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_UpperCAmelCase ) ):
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_UpperCAmelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
lowercase__ = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_UpperCAmelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
lowercase__ = 0
# set the finish time
lowercase__ = self.current_time
# update the process' turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def snake_case__ ( self ):
'''simple docstring'''
for i in range(self.number_of_queues - 1 ):
lowercase__ , lowercase__ = self.round_robin(
self.ready_queue, self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3)
lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7)
lowerCAmelCase_: str = Process("P3", 0, 6_8)
lowerCAmelCase_: int = Process("P4", 0, 2_4)
lowerCAmelCase_: Dict = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])})
lowerCAmelCase_: Any = Process("P1", 0, 5_3)
lowerCAmelCase_: Tuple = Process("P2", 0, 1_7)
lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8)
lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4)
lowerCAmelCase_: Union[str, Any] = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa])
lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0)
lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print sequence of finished processes
print(
F'sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'
)
| 668 | 1 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_: Dict = logging.get_logger(__name__)
lowerCAmelCase_: Tuple = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
}
lowerCAmelCase_: Dict = {
"vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"},
"merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"},
}
lowerCAmelCase_: List[str] = {
"ctrl": 2_5_6,
}
lowerCAmelCase_: Tuple = {
"Pregnancy": 1_6_8_6_2_9,
"Christianity": 7_6_7_5,
"Explain": 1_0_6_4_2_3,
"Fitness": 6_3_4_4_0,
"Saving": 6_3_1_6_3,
"Ask": 2_7_1_7_1,
"Ass": 9_5_9_8_5,
"Joke": 1_6_3_5_0_9,
"Questions": 4_5_6_2_2,
"Thoughts": 4_9_6_0_5,
"Retail": 5_2_3_4_2,
"Feminism": 1_6_4_3_3_8,
"Writing": 1_1_9_9_2,
"Atheism": 1_9_2_2_6_3,
"Netflix": 4_8_6_1_6,
"Computing": 3_9_6_3_9,
"Opinion": 4_3_2_1_3,
"Alone": 4_4_9_6_7,
"Funny": 5_8_9_1_7,
"Gaming": 4_0_3_5_8,
"Human": 4_0_8_8,
"India": 1_3_3_1,
"Joker": 7_7_1_3_8,
"Diet": 3_6_2_0_6,
"Legal": 1_1_8_5_9,
"Norman": 4_9_3_9,
"Tip": 7_2_6_8_9,
"Weight": 5_2_3_4_3,
"Movies": 4_6_2_7_3,
"Running": 2_3_4_2_5,
"Science": 2_0_9_0,
"Horror": 3_7_7_9_3,
"Confession": 6_0_5_7_2,
"Finance": 1_2_2_5_0,
"Politics": 1_6_3_6_0,
"Scary": 1_9_1_9_8_5,
"Support": 1_2_6_5_4,
"Technologies": 3_2_5_1_6,
"Teenage": 6_6_1_6_0,
"Event": 3_2_7_6_9,
"Learned": 6_7_4_6_0,
"Notion": 1_8_2_7_7_0,
"Wikipedia": 3_7_5_8_3,
"Books": 6_6_6_5,
"Extract": 7_6_0_5_0,
"Confessions": 1_0_2_7_0_1,
"Conspiracy": 7_5_9_3_2,
"Links": 6_3_6_7_4,
"Narcissus": 1_5_0_4_2_5,
"Relationship": 5_4_7_6_6,
"Relationships": 1_3_4_7_9_6,
"Reviews": 4_1_6_7_1,
"News": 4_2_5_6,
"Translation": 2_6_8_2_0,
"multilingual": 1_2_8_4_0_6,
}
def __a ( A ):
'''simple docstring'''
lowercase__ = set()
lowercase__ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase__ = char
lowercase__ = set(A )
return pairs
class a__ ( _a ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = CONTROL_CODES
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="<unk>", **_UpperCAmelCase ):
'''simple docstring'''
super().__init__(unk_token=_UpperCAmelCase, **_UpperCAmelCase )
with open(_UpperCAmelCase, encoding="utf-8" ) as vocab_handle:
lowercase__ = json.load(_UpperCAmelCase )
lowercase__ = {v: k for k, v in self.encoder.items()}
with open(_UpperCAmelCase, encoding="utf-8" ) as merges_handle:
lowercase__ = merges_handle.read().split("\n" )[1:-1]
lowercase__ = [tuple(merge.split() ) for merge in merges]
lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) )
lowercase__ = {}
@property
def snake_case__ ( self ):
'''simple docstring'''
return len(self.encoder )
def snake_case__ ( self ):
'''simple docstring'''
return dict(self.encoder, **self.added_tokens_encoder )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowercase__ = tuple(_UpperCAmelCase )
lowercase__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
lowercase__ = get_pairs(_UpperCAmelCase )
if not pairs:
return token
while True:
lowercase__ = min(_UpperCAmelCase, key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase, float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowercase__ , lowercase__ = bigram
lowercase__ = []
lowercase__ = 0
while i < len(_UpperCAmelCase ):
try:
lowercase__ = word.index(_UpperCAmelCase, _UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase__ = j
if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase__ = tuple(_UpperCAmelCase )
lowercase__ = new_word
if len(_UpperCAmelCase ) == 1:
break
else:
lowercase__ = get_pairs(_UpperCAmelCase )
lowercase__ = "@@ ".join(_UpperCAmelCase )
lowercase__ = word[:-4]
lowercase__ = word
return word
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
lowercase__ = re.findall(R"\S+\n?", _UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(" " ) ) )
return split_tokens
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.encoder.get(_UpperCAmelCase, self.encoder.get(self.unk_token ) )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.decoder.get(_UpperCAmelCase, self.unk_token )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = " ".join(_UpperCAmelCase ).replace("@@ ", "" ).strip()
return out_string
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowercase__ = os.path.join(
_UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=_UpperCAmelCase, ensure_ascii=_UpperCAmelCase ) + "\n" )
lowercase__ = 0
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda _UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
lowercase__ = token_index
writer.write(" ".join(_UpperCAmelCase ) + "\n" )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 668 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase_: Dict = "pt"
elif is_tf_available():
lowerCAmelCase_: Dict = "tf"
else:
lowerCAmelCase_: str = "jax"
class a__ ( _a , unittest.TestCase ):
snake_case_ = ByTaTokenizer
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
lowercase__ = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def snake_case__ ( self ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("google/byt5-small" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
try:
lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) )
lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
lowercase__ = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
lowercase__ = toks + toks
# toks_str = [t[1] for t in toks]
lowercase__ = [t[0] for t in toks]
# Ensure consistency
lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
lowercase__ = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase )
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
lowercase__ = " " + output_txt
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] )
lowercase__ = tokenizer(["hi", "I went to the gym", ""] )
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = "Unicode €."
lowercase__ = tokenizer(_UpperCAmelCase )
lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" )
lowercase__ = tokenizer("e è é ê ë" )
lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
if FRAMEWORK != "jax":
lowercase__ = list(batch.input_ids.numpy()[0] )
else:
lowercase__ = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids", _UpperCAmelCase )
self.assertIn("attention_mask", _UpperCAmelCase )
self.assertNotIn("decoder_input_ids", _UpperCAmelCase )
self.assertNotIn("decoder_attention_mask", _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = [
"Summary of the text.",
"Another summary.",
]
lowercase__ = tokenizer(
text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertEqual(32, targets["input_ids"].shape[1] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization. </s>"]
lowercase__ = ["Summary of the text. </s>"]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] )
self.assertEqual(_UpperCAmelCase, batch["labels"][0] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
lowercase__ = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"] )
lowercase__ = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token" )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, )
self.assertIn(
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )]
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, )
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens )
self.assertEqual(
["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase )
self.assertTrue(tokenizer.decode([255] ) == "" )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"]
lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
lowercase__ = 0
lowercase__ = tokenizer.convert_ids_to_tokens(
_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
for attr in attributes_list:
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
| 668 | 1 |
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __a ( A ):
'''simple docstring'''
return (data["data"], data["target"])
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(A , A )
# Predict target for test data
lowercase__ = xgb.predict(A )
lowercase__ = predictions.reshape(len(A ) , 1 )
return predictions
def __a ( ):
'''simple docstring'''
lowercase__ = fetch_california_housing()
lowercase__ , lowercase__ = data_handling(A )
lowercase__ , lowercase__ , lowercase__ , lowercase__ = train_test_split(
A , A , test_size=0.25 , random_state=1 )
lowercase__ = xgboost(A , A , A )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(A , A )}''' )
print(f'''Mean Square Error : {mean_squared_error(A , A )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 668 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class a__ ( unittest.TestCase ):
snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = hf_hub_download(
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 )
lowercase__ = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase, [
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
], )
@require_torch
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
lowercase__ = VideoMAEFeatureExtractor(
size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} )
lowercase__ = pipeline(
"video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
], top_k=2, )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
], )
@require_tf
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
lowerCAmelCase_: Dict = (3, 9, -1_1, 0, 7, 5, 1, -1)
lowerCAmelCase_: Optional[int] = (4, 6, 2, 0, 8, 1_0, 3, -2)
@dataclass
class a__ :
snake_case_ = 42
snake_case_ = 42
class a__ :
def __init__( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = None
for i in sorted(_UpperCAmelCase, reverse=_UpperCAmelCase ):
lowercase__ = Node(_UpperCAmelCase, self.head )
def __iter__( self ):
'''simple docstring'''
lowercase__ = self.head
while node:
yield node.data
lowercase__ = node.next_node
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __str__( self ):
'''simple docstring'''
return " -> ".join([str(_UpperCAmelCase ) for node in self] )
def __a ( A , A ):
'''simple docstring'''
return SortedLinkedList(list(A ) + list(A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_: List[Any] = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
| 668 |
"""simple docstring"""
import itertools
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __a ( ):
'''simple docstring'''
lowercase__ = 2
while True:
if is_prime(A ):
yield num
num += 1
def __a ( A = 1_00_01 ):
'''simple docstring'''
return next(itertools.islice(prime_generator() , nth - 1 , A ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
import numpy as np
# Parrameters
lowerCAmelCase_: Tuple = (7_2_0, 1_2_8_0) # Height, Width
lowerCAmelCase_: List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it.
lowerCAmelCase_: List[Any] = 1 / 1_0_0
lowerCAmelCase_: List[str] = ""
lowerCAmelCase_: List[str] = ""
lowerCAmelCase_: Optional[int] = ""
lowerCAmelCase_: List[str] = 2_5_0
def __a ( ):
'''simple docstring'''
lowercase__ , lowercase__ = get_dataset(A , A )
for index in range(A ):
lowercase__ = random.sample(range(len(A ) ) , 4 )
lowercase__ , lowercase__ , lowercase__ = update_image_and_anno(
A , A , A , A , A , filter_scale=A , )
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowercase__ = random_chars(32 )
lowercase__ = path.split(os.sep )[-1].rsplit("." , 1 )[0]
lowercase__ = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}'''
cva.imwrite(f'''{file_root}.jpg''' , A , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' )
lowercase__ = []
for anno in new_annos:
lowercase__ = anno[3] - anno[1]
lowercase__ = anno[4] - anno[2]
lowercase__ = anno[1] + width / 2
lowercase__ = anno[2] + height / 2
lowercase__ = f'''{anno[0]} {x_center} {y_center} {width} {height}'''
annos_list.append(A )
with open(f'''{file_root}.txt''' , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = []
lowercase__ = []
for label_file in glob.glob(os.path.join(A , "*.txt" ) ):
lowercase__ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(A ) as in_file:
lowercase__ = in_file.readlines()
lowercase__ = os.path.join(A , f'''{label_name}.jpg''' )
lowercase__ = []
for obj_list in obj_lists:
lowercase__ = obj_list.rstrip("\n" ).split(" " )
lowercase__ = float(obj[1] ) - float(obj[3] ) / 2
lowercase__ = float(obj[2] ) - float(obj[4] ) / 2
lowercase__ = float(obj[1] ) + float(obj[3] ) / 2
lowercase__ = float(obj[2] ) + float(obj[4] ) / 2
boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] )
if not boxes:
continue
img_paths.append(A )
labels.append(A )
return img_paths, labels
def __a ( A , A , A , A , A , A = 0.0 , ):
'''simple docstring'''
lowercase__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta )
lowercase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowercase__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
lowercase__ = int(scale_x * output_size[1] )
lowercase__ = int(scale_y * output_size[0] )
lowercase__ = []
lowercase__ = []
for i, index in enumerate(A ):
lowercase__ = all_img_list[index]
path_list.append(A )
lowercase__ = all_annos[index]
lowercase__ = cva.imread(A )
if i == 0: # top-left
lowercase__ = cva.resize(A , (divid_point_x, divid_point_y) )
lowercase__ = img
for bbox in img_annos:
lowercase__ = bbox[1] * scale_x
lowercase__ = bbox[2] * scale_y
lowercase__ = bbox[3] * scale_x
lowercase__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 1: # top-right
lowercase__ = cva.resize(A , (output_size[1] - divid_point_x, divid_point_y) )
lowercase__ = img
for bbox in img_annos:
lowercase__ = scale_x + bbox[1] * (1 - scale_x)
lowercase__ = bbox[2] * scale_y
lowercase__ = scale_x + bbox[3] * (1 - scale_x)
lowercase__ = bbox[4] * scale_y
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
elif i == 2: # bottom-left
lowercase__ = cva.resize(A , (divid_point_x, output_size[0] - divid_point_y) )
lowercase__ = img
for bbox in img_annos:
lowercase__ = bbox[1] * scale_x
lowercase__ = scale_y + bbox[2] * (1 - scale_y)
lowercase__ = bbox[3] * scale_x
lowercase__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
else: # bottom-right
lowercase__ = cva.resize(
A , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) )
lowercase__ = img
for bbox in img_annos:
lowercase__ = scale_x + bbox[1] * (1 - scale_x)
lowercase__ = scale_y + bbox[2] * (1 - scale_y)
lowercase__ = scale_x + bbox[3] * (1 - scale_x)
lowercase__ = scale_y + bbox[4] * (1 - scale_y)
new_anno.append([bbox[0], xmin, ymin, xmax, ymax] )
# Remove bounding box small than scale of filter
if filter_scale > 0:
lowercase__ = [
anno
for anno in new_anno
if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2])
]
return output_img, new_anno, path_list[0]
def __a ( A ):
'''simple docstring'''
assert number_char > 1, "The number of character should greater than 1"
lowercase__ = ascii_lowercase + digits
return "".join(random.choice(A ) for _ in range(A ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 668 |
"""simple docstring"""
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
_UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, )
def snake_case__ ( self ):
'''simple docstring'''
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, )
lowercase__ = self.builder.as_dataset(
split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory )
return dataset
| 668 | 1 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 668 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowerCAmelCase_: List[str] = 1_6
lowerCAmelCase_: Optional[Any] = 3_2
def __a ( A , A = 16 , A = "bert-base-cased" ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained(A )
lowercase__ = load_dataset("glue" , "mrpc" )
def tokenize_function(A ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowercase__ = datasets.map(
A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" )
return tokenizer.pad(A , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A )
lowercase__ = DataLoader(
tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A )
return train_dataloader, eval_dataloader
def __a ( A , A ):
'''simple docstring'''
lowercase__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["lr"]
lowercase__ = int(config["num_epochs"] )
lowercase__ = int(config["seed"] )
lowercase__ = int(config["batch_size"] )
lowercase__ = args.model_name_or_path
set_seed(A )
lowercase__ , lowercase__ = get_dataloaders(A , A , A )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A )
# Instantiate optimizer
lowercase__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowercase__ = optimizer_cls(params=model.parameters() , lr=A )
if accelerator.state.deepspeed_plugin is not None:
lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
lowercase__ = 1
lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowercase__ = get_linear_schedule_with_warmup(
optimizer=A , num_warmup_steps=0 , num_training_steps=A , )
else:
lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
A , A , A , A , A )
# We need to keep track of how many total steps we have iterated over
lowercase__ = 0
# We also need to keep track of the stating epoch so files are named properly
lowercase__ = 0
# Now we train the model
lowercase__ = evaluate.load("glue" , "mrpc" )
lowercase__ = 0
lowercase__ = {}
for epoch in range(A , A ):
model.train()
for step, batch in enumerate(A ):
lowercase__ = model(**A )
lowercase__ = outputs.loss
lowercase__ = loss / gradient_accumulation_steps
accelerator.backward(A )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
lowercase__ = 0
for step, batch in enumerate(A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**A )
lowercase__ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
lowercase__ , lowercase__ = accelerator.gather(
(predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A ) - 1:
lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A , references=A , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , A )
lowercase__ = eval_metric["accuracy"]
if best_performance < eval_metric["accuracy"]:
lowercase__ = eval_metric["accuracy"]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f:
json.dump(A , A )
def __a ( ):
'''simple docstring'''
lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , )
parser.add_argument(
"--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , )
parser.add_argument(
"--num_epochs" , type=A , default=3 , help="Number of train epochs." , )
lowercase__ = parser.parse_args()
lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(A , A )
if __name__ == "__main__":
main()
| 668 | 1 |
"""simple docstring"""
from jiwer import compute_measures
import datasets
lowerCAmelCase_: List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
lowerCAmelCase_: int = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
lowerCAmelCase_: List[Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
def snake_case__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features(
{
"predictions": datasets.Value("string", id="sequence" ),
"references": datasets.Value("string", id="sequence" ),
} ), codebase_urls=["https://github.com/jitsi/jiwer/"], reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
], )
def snake_case__ ( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=False ):
'''simple docstring'''
if concatenate_texts:
return compute_measures(_UpperCAmelCase, _UpperCAmelCase )["wer"]
else:
lowercase__ = 0
lowercase__ = 0
for prediction, reference in zip(_UpperCAmelCase, _UpperCAmelCase ):
lowercase__ = compute_measures(_UpperCAmelCase, _UpperCAmelCase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 668 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _a ):
snake_case_ = (IPNDMScheduler,)
snake_case_ = (("num_inference_steps", 50),)
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {"num_train_timesteps": 1000}
config.update(**_UpperCAmelCase )
return config
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
return sample
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.timesteps[5]
lowercase__ = scheduler.timesteps[6]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def snake_case__ ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 668 | 1 |
"""simple docstring"""
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = OmegaConf.load(A )
lowercase__ = torch.load(A , map_location="cpu" )["model"]
lowercase__ = list(state_dict.keys() )
# extract state_dict for VQVAE
lowercase__ = {}
lowercase__ = "first_stage_model."
for key in keys:
if key.startswith(A ):
lowercase__ = state_dict[key]
# extract state_dict for UNetLDM
lowercase__ = {}
lowercase__ = "model.diffusion_model."
for key in keys:
if key.startswith(A ):
lowercase__ = state_dict[key]
lowercase__ = config.model.params.first_stage_config.params
lowercase__ = config.model.params.unet_config.params
lowercase__ = VQModel(**A ).eval()
vqvae.load_state_dict(A )
lowercase__ = UNetLDMModel(**A ).eval()
unet.load_state_dict(A )
lowercase__ = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , )
lowercase__ = LDMPipeline(A , A , A )
pipeline.save_pretrained(A )
if __name__ == "__main__":
lowerCAmelCase_: Optional[Any] = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str, required=True)
parser.add_argument("--config_path", type=str, required=True)
parser.add_argument("--output_path", type=str, required=True)
lowerCAmelCase_: Tuple = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 668 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( _a , unittest.TestCase ):
snake_case_ = MgpstrTokenizer
snake_case_ = False
snake_case_ = {}
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file, "w", encoding="utf-8" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + "\n" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = "tester"
lowercase__ = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ), 1 )
lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase )
lowercase__ = tokenizer.tokenize(_UpperCAmelCase )
lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ), 0 )
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def snake_case__ ( self ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
from typing import Any
import numpy as np
def __a ( A ):
'''simple docstring'''
return np.array_equal(A , matrix.conjugate().T )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = v.conjugate().T
lowercase__ = v_star.dot(A )
assert isinstance(A , np.ndarray )
return (v_star_dot.dot(A )) / (v_star.dot(A ))
def __a ( ):
'''simple docstring'''
lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
lowercase__ = np.array([[1], [2], [3]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
print(rayleigh_quotient(A , A ) )
lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
assert rayleigh_quotient(A , A ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 668 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 668 | 1 |
"""simple docstring"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def __a ( A ):
'''simple docstring'''
lowercase__ = 3_84
lowercase__ = 7
if "tiny" in model_name:
lowercase__ = 96
lowercase__ = (2, 2, 6, 2)
lowercase__ = (3, 6, 12, 24)
elif "small" in model_name:
lowercase__ = 96
lowercase__ = (2, 2, 18, 2)
lowercase__ = (3, 6, 12, 24)
elif "base" in model_name:
lowercase__ = 1_28
lowercase__ = (2, 2, 18, 2)
lowercase__ = (4, 8, 16, 32)
lowercase__ = 12
lowercase__ = 5_12
elif "large" in model_name:
lowercase__ = 1_92
lowercase__ = (2, 2, 18, 2)
lowercase__ = (6, 12, 24, 48)
lowercase__ = 12
lowercase__ = 7_68
# set label information
lowercase__ = 1_50
lowercase__ = "huggingface/label-files"
lowercase__ = "ade20k-id2label.json"
lowercase__ = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) )
lowercase__ = {int(A ): v for k, v in idalabel.items()}
lowercase__ = {v: k for k, v in idalabel.items()}
lowercase__ = SwinConfig(
embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , )
lowercase__ = UperNetConfig(
backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , )
return config
def __a ( A ):
'''simple docstring'''
lowercase__ = []
# fmt: off
# stem
rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") )
rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") )
rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") )
rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = dct.pop(A )
lowercase__ = val
def __a ( A , A ):
'''simple docstring'''
lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
lowercase__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
lowercase__ = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
lowercase__ = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
lowercase__ = in_proj_weight[:dim, :]
lowercase__ = in_proj_bias[: dim]
lowercase__ = in_proj_weight[
dim : dim * 2, :
]
lowercase__ = in_proj_bias[
dim : dim * 2
]
lowercase__ = in_proj_weight[
-dim :, :
]
lowercase__ = in_proj_bias[-dim :]
# fmt: on
def __a ( A ):
'''simple docstring'''
lowercase__ , lowercase__ = x.shape
lowercase__ = x.reshape(A , 4 , in_channel // 4 )
lowercase__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A )
return x
def __a ( A ):
'''simple docstring'''
lowercase__ , lowercase__ = x.shape
lowercase__ = x.reshape(A , in_channel // 4 , 4 )
lowercase__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A )
return x
def __a ( A ):
'''simple docstring'''
lowercase__ = x.shape[0]
lowercase__ = x.reshape(4 , in_channel // 4 )
lowercase__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A )
return x
def __a ( A ):
'''simple docstring'''
lowercase__ = x.shape[0]
lowercase__ = x.reshape(in_channel // 4 , 4 )
lowercase__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A )
return x
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = {
"upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth",
"upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth",
"upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth",
"upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth",
}
lowercase__ = model_name_to_url[model_name]
lowercase__ = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[
"state_dict"
]
for name, param in state_dict.items():
print(A , param.shape )
lowercase__ = get_upernet_config(A )
lowercase__ = UperNetForSemanticSegmentation(A )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
lowercase__ = state_dict.pop(A )
if "bn" in key:
lowercase__ = key.replace("bn" , "batch_norm" )
lowercase__ = val
# rename keys
lowercase__ = create_rename_keys(A )
for src, dest in rename_keys:
rename_key(A , A , A )
read_in_q_k_v(A , config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
lowercase__ = reverse_correct_unfold_reduction_order(A )
if "norm" in key:
lowercase__ = reverse_correct_unfold_norm_order(A )
model.load_state_dict(A )
# verify on image
lowercase__ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
lowercase__ = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" )
lowercase__ = SegformerImageProcessor()
lowercase__ = processor(A , return_tensors="pt" ).pixel_values
with torch.no_grad():
lowercase__ = model(A )
lowercase__ = outputs.logits
print(logits.shape )
print("First values of logits:" , logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
lowercase__ = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] )
elif model_name == "upernet-swin-small":
lowercase__ = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] )
elif model_name == "upernet-swin-base":
lowercase__ = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] )
elif model_name == "upernet-swin-large":
lowercase__ = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(A )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(A )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
lowerCAmelCase_: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[F'upernet-swin-{size}' for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
lowerCAmelCase_: int = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 668 |
"""simple docstring"""
from typing import Any
import numpy as np
def __a ( A ):
'''simple docstring'''
return np.array_equal(A , matrix.conjugate().T )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = v.conjugate().T
lowercase__ = v_star.dot(A )
assert isinstance(A , np.ndarray )
return (v_star_dot.dot(A )) / (v_star.dot(A ))
def __a ( ):
'''simple docstring'''
lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
lowercase__ = np.array([[1], [2], [3]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
print(rayleigh_quotient(A , A ) )
lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
assert rayleigh_quotient(A , A ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 668 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_a )
class a__ ( _a ):
snake_case_ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"text": Value("string" )} )
snake_case_ = Features({} )
snake_case_ = "text"
@property
def snake_case__ ( self ):
'''simple docstring'''
return {self.text_column: "text"}
| 668 |
"""simple docstring"""
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class a__ ( _a , unittest.TestCase ):
snake_case_ = PriorTransformer
snake_case_ = "hidden_states"
@property
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = {
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
lowercase__ = self.dummy_input
return init_dict, inputs_dict
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ), 0 )
model.to(_UpperCAmelCase )
lowercase__ = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common()
lowercase__ = self.model_class(**_UpperCAmelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2], _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" )
lowercase__ = model.to(_UpperCAmelCase )
if hasattr(_UpperCAmelCase, "set_default_attn_processor" ):
model.set_default_attn_processor()
lowercase__ = self.get_dummy_seed_input()
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
lowercase__ = output[0, :5].flatten().cpu()
print(_UpperCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] )
self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) )
@slow
class a__ ( unittest.TestCase ):
def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = batch_size
lowercase__ = embedding_dim
lowercase__ = num_embeddings
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]],
[37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]],
# fmt: on
] )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" )
model.to(_UpperCAmelCase )
lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase )
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
lowercase__ = sample[0, :8].flatten().cpu()
print(_UpperCAmelCase )
lowercase__ = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
| 668 | 1 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class a__ ( unittest.TestCase ):
snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = hf_hub_download(
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 )
lowercase__ = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase, [
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
], )
@require_torch
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
lowercase__ = VideoMAEFeatureExtractor(
size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} )
lowercase__ = pipeline(
"video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
], top_k=2, )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
], )
@require_tf
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 |
"""simple docstring"""
lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(A )
lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data )
lowercase__ = len(A ) % 6 != 0
if padding_needed:
# The padding that will be added later
lowercase__ = b"=" * ((6 - len(A ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(A ) % 6)
else:
lowercase__ = b""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(A ) , 6 ) ).encode()
+ padding
)
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ) and not isinstance(A , A ):
lowercase__ = (
"argument should be a bytes-like object or ASCII string, "
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(A )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(A , A ):
try:
lowercase__ = encoded_data.decode("utf-8" )
except UnicodeDecodeError:
raise ValueError("base64 encoded data should only contain ASCII characters" )
lowercase__ = encoded_data.count("=" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
lowercase__ = encoded_data[:-padding]
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )
lowercase__ = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(A ) , 8 )
]
return bytes(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase_: List[str] = logging.get_logger(__name__)
lowerCAmelCase_: Union[str, Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
lowerCAmelCase_: int = {
"vocab_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt",
},
"emoji_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json",
},
}
lowerCAmelCase_: Dict = {
"abeja/gpt-neox-japanese-2.7b": 2_0_4_8,
}
def __a ( A , A ):
'''simple docstring'''
with open(A , "r" , encoding="utf-8" ) as f:
lowercase__ = json.loads(f.read() )
lowercase__ = collections.OrderedDict()
lowercase__ = collections.OrderedDict()
lowercase__ = collections.OrderedDict()
with open(A , "r" , encoding="utf-8" ) as f:
lowercase__ = f.readlines()
lowercase__ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(A ):
lowercase__ = b
lowercase__ = idx
for wd in b:
lowercase__ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class a__ ( _a ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="<|endoftext|>", _UpperCAmelCase="<|endoftext|>", _UpperCAmelCase="<|startoftext|>", _UpperCAmelCase="<|endoftext|>", _UpperCAmelCase=False, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
unk_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, do_clean_text=_UpperCAmelCase, **_UpperCAmelCase, )
if not os.path.isfile(_UpperCAmelCase ):
raise ValueError(
F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'''
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
if not os.path.isfile(_UpperCAmelCase ):
raise ValueError(
F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'''
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
lowercase__ = do_clean_text
lowercase__ , lowercase__ , lowercase__ , lowercase__ = load_vocab_and_emoji(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = SubWordJapaneseTokenizer(
vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji )
@property
def snake_case__ ( self ):
'''simple docstring'''
return len(self.raw_vocab )
def snake_case__ ( self ):
'''simple docstring'''
return dict(self.raw_vocab, **self.added_tokens_encoder )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.subword_tokenizer.tokenize(_UpperCAmelCase, clean=self.do_clean_text )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.vocab.get(_UpperCAmelCase, self.vocab.get(self.unk_token ) )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.subword_tokenizer.convert_id_to_token(_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = "".join(_UpperCAmelCase ).strip()
return out_string
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] )
if len(_UpperCAmelCase ) > self.model_max_length:
lowercase__ = input_ids[-self.model_max_length :]
return input_ids
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = 0
if os.path.isdir(_UpperCAmelCase ):
lowercase__ = os.path.join(
_UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowercase__ = os.path.join(
_UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] )
else:
lowercase__ = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
lowercase__ = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
" Please check that the vocabulary is not corrupted!" )
lowercase__ = token_index
writer.write(",".join(_UpperCAmelCase ) + "\n" )
index += 1
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as writer:
json.dump(self.emoji, _UpperCAmelCase )
return vocab_file, emoji_file
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = vocab # same as swe
lowercase__ = ids_to_tokens # same as bpe
lowercase__ = emoji
lowercase__ = np.max([len(_UpperCAmelCase ) for w in self.vocab.keys()] )
lowercase__ = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" )
lowercase__ = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" )
lowercase__ = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" )
lowercase__ = re.compile(
R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
lowercase__ = re.compile(
R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
lowercase__ = re.compile(
R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" )
lowercase__ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
lowercase__ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
lowercase__ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} )
def __len__( self ):
'''simple docstring'''
return len(self.ids_to_tokens )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.content_repattera.sub("<URL>", _UpperCAmelCase )
lowercase__ = self.content_repattera.sub("<EMAIL>", _UpperCAmelCase )
lowercase__ = self.content_repattera.sub("<TEL>", _UpperCAmelCase )
lowercase__ = self.content_repattera.sub("<DATE>", _UpperCAmelCase )
lowercase__ = self.content_repattera.sub("<DATE>", _UpperCAmelCase )
lowercase__ = self.content_repattera.sub("<PRICE>", _UpperCAmelCase )
lowercase__ = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
lowercase__ = content.replace("<BLOCK><BLOCK>", "<BLOCK>" )
return content
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False ):
'''simple docstring'''
lowercase__ = text.replace(" ", "<SP>" )
lowercase__ = text.replace(" ", "<SP>" )
lowercase__ = text.replace("\r\n", "<BR>" )
lowercase__ = text.replace("\n", "<BR>" )
lowercase__ = text.replace("\r", "<BR>" )
lowercase__ = text.replace("\t", "<TAB>" )
lowercase__ = text.replace("—", "ー" )
lowercase__ = text.replace("−", "ー" )
for k, v in self.emoji["emoji"].items():
if k in text:
lowercase__ = text.replace(_UpperCAmelCase, _UpperCAmelCase )
if clean:
lowercase__ = self.clean_text(_UpperCAmelCase )
def check_simbol(_UpperCAmelCase ):
lowercase__ = x.encode()
if len(_UpperCAmelCase ) == 1 and len(_UpperCAmelCase ) == 2:
lowercase__ = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0Xc2a1 and c <= 0Xc2bf)
or (c >= 0Xc780 and c <= 0Xc783)
or (c >= 0Xcab9 and c <= 0Xcbbf)
or (c >= 0Xcc80 and c <= 0Xcda2)
):
return True
return False
def checkuae(_UpperCAmelCase ):
lowercase__ = x.encode()
if len(_UpperCAmelCase ) == 1 and len(_UpperCAmelCase ) == 3:
lowercase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0Xe2_8080 and c <= 0Xe2_b07f:
return True
return False
lowercase__ = 0
lowercase__ = []
while pos < len(_UpperCAmelCase ):
lowercase__ = min(len(_UpperCAmelCase ), pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3
lowercase__ = [] # (token_id, token, pos)
for e in range(_UpperCAmelCase, _UpperCAmelCase, -1 ):
lowercase__ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(_UpperCAmelCase ) > 2:
lowercase__ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(_UpperCAmelCase ) > 0:
# the smallest token_id is adopted
lowercase__ , lowercase__ , lowercase__ = sorted(_UpperCAmelCase, key=lambda _UpperCAmelCase : x[0] )[0]
result.append(_UpperCAmelCase )
lowercase__ = e
else:
lowercase__ = pos + 1
lowercase__ = text[pos:end]
if check_simbol(_UpperCAmelCase ):
result.append("<KIGOU>" )
elif checkuae(_UpperCAmelCase ):
result.append("<U2000U2BFF>" )
else:
for i in wd.encode("utf-8" ):
result.append("<|byte%d|>" % i )
lowercase__ = end
return result
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase="\n" ):
'''simple docstring'''
lowercase__ = []
lowercase__ = []
lowercase__ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(_UpperCAmelCase ) > 0:
words.append(bytearray(_UpperCAmelCase ).decode("utf-8", errors="replace" ) )
lowercase__ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word] )
elif word == "<SP>":
words.append(" " )
elif word == "<BR>":
words.append(_UpperCAmelCase )
elif word == "<TAB>":
words.append("\t" )
elif word == "<BLOCK>":
words.append("▀" )
elif word == "<KIGOU>":
words.append("ǀ" )
elif word == "<U2000U2BFF>":
words.append("‖" )
else:
words.append(_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
words.append(bytearray(_UpperCAmelCase ).decode("utf-8", errors="replace" ) )
lowercase__ = "".join(_UpperCAmelCase )
return text
| 668 |
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ):
'''simple docstring'''
lowercase__ = symbols(A )
lowercase__ = lambdify(A , A )
lowercase__ = lambdify(A , diff(A , A ) )
lowercase__ = starting_point
while True:
if diff_function(A ) != 0:
lowercase__ = prev_guess - multiplicity * func(A ) / diff_function(
A )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowercase__ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
# Find fourth Root of 5
print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}')
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F'{newton_raphson("log(y) - 1", 2, variable="y")}',
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}',
)
# Find root of cos(x)
print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
| 668 | 1 |
"""simple docstring"""
from __future__ import annotations
class a__ :
def __init__( self, _UpperCAmelCase = 0 ):
'''simple docstring'''
lowercase__ = key
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content]
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content]
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = 0 ):
'''simple docstring'''
assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
lowercase__ = ""
for ch in content:
ans += chr(ord(_UpperCAmelCase ) ^ key )
return ans
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = 0 ):
'''simple docstring'''
assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
lowercase__ = ""
for ch in content:
ans += chr(ord(_UpperCAmelCase ) ^ key )
return ans
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = 0 ):
'''simple docstring'''
assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase )
try:
with open(_UpperCAmelCase ) as fin, open("encrypt.out", "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCAmelCase, _UpperCAmelCase ) )
except OSError:
return False
return True
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
assert isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(_UpperCAmelCase, _UpperCAmelCase )
try:
with open(_UpperCAmelCase ) as fin, open("decrypt.out", "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCAmelCase, _UpperCAmelCase ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 668 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_: Union[str, Any] = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Any = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Tuple = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Optional[Any] = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 | 1 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
lowerCAmelCase_: int = logging.getLogger(__name__)
@dataclass
class a__ :
snake_case_ = field(
default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} )
snake_case_ = field(
default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , )
snake_case_ = field(
default=1024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
snake_case_ = field(
default=_a , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
snake_case_ = field(
default=_a , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
snake_case_ = field(
default=_a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
snake_case_ = field(
default=_a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
snake_case_ = field(
default=_a , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
snake_case_ = field(
default=_a , metadata={"help": "A csv or a json file containing the training data."} )
snake_case_ = field(
default=_a , metadata={"help": "A csv or a json file containing the validation data."} )
snake_case_ = field(default=_a , metadata={"help": "A csv or a json file containing the test data."} )
def snake_case__ ( self ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." )
else:
lowercase__ = self.train_file.split("." )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
lowercase__ = self.validation_file.split("." )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class a__ :
snake_case_ = field(
default=_a , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
snake_case_ = field(
default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
snake_case_ = field(
default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
snake_case_ = field(
default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
snake_case_ = field(
default=_a , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
snake_case_ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
snake_case_ = field(
default=_a , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def __a ( ):
'''simple docstring'''
lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
lowercase__ = training_args.get_process_log_level()
logger.setLevel(A )
datasets.utils.logging.set_verbosity(A )
transformers.utils.logging.set_verbosity(A )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
lowercase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowercase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
lowercase__ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
lowercase__ = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
lowercase__ = data_args.train_file.split("." )[-1]
lowercase__ = data_args.test_file.split("." )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
lowercase__ = data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`." )
for key in data_files.keys():
logger.info(f'''load a local file for {key}: {data_files[key]}''' )
if data_args.train_file.endswith(".csv" ):
# Loading a dataset from local csv files
lowercase__ = load_dataset("csv" , data_files=A , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
lowercase__ = load_dataset("json" , data_files=A , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
lowercase__ = raw_datasets["train"].features["label"].names
lowercase__ = len(A )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
lowercase__ = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=A , )
lowercase__ = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
lowercase__ = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowercase__ = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
lowercase__ = {"Refused": 0, "Entailed": 1}
lowercase__ = {0: "Refused", 1: "Entailed"}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'''
f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' )
lowercase__ = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(A ):
# Tokenize the texts
def _convert_table_text_to_pandas(A ):
lowercase__ = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )]
lowercase__ = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
lowercase__ = examples["statement"]
lowercase__ = list(map(_convert_table_text_to_pandas , examples["table_text"] ) )
lowercase__ = tokenizer(A , A , padding=A , max_length=A , truncation=A )
lowercase__ = examples["label"]
return result
with training_args.main_process_first(desc="dataset map pre-processing" ):
lowercase__ = raw_datasets.map(
A , batched=A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
lowercase__ = raw_datasets["train"]
if data_args.max_train_samples is not None:
lowercase__ = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
lowercase__ = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
lowercase__ = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset" )
lowercase__ = raw_datasets["test"]
if data_args.max_predict_samples is not None:
lowercase__ = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(A ) ) , 3 ):
logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(A ):
lowercase__ = p.predictions[0] if isinstance(p.predictions , A ) else p.predictions
lowercase__ = np.argmax(A , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowercase__ = default_data_collator
elif training_args.fpaa:
lowercase__ = DataCollatorWithPadding(A , pad_to_multiple_of=8 )
else:
lowercase__ = None
# Initialize our Trainer
lowercase__ = Trainer(
model=A , args=A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=A , tokenizer=A , data_collator=A , )
# Training
if training_args.do_train:
lowercase__ = None
if training_args.resume_from_checkpoint is not None:
lowercase__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowercase__ = last_checkpoint
lowercase__ = trainer.train(resume_from_checkpoint=A )
lowercase__ = train_result.metrics
lowercase__ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(A )
)
lowercase__ = min(A , len(A ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train" , A )
trainer.save_metrics("train" , A )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
lowercase__ = trainer.evaluate(eval_dataset=A )
lowercase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(A )
lowercase__ = min(A , len(A ) )
trainer.log_metrics("eval" , A )
trainer.save_metrics("eval" , A )
if training_args.do_predict:
logger.info("*** Predict ***" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
lowercase__ = predict_dataset.remove_columns("label" )
lowercase__ = trainer.predict(A , metric_key_prefix="predict" ).predictions
lowercase__ = np.argmax(A , axis=1 )
lowercase__ = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" )
if trainer.is_world_process_zero():
with open(A , "w" ) as writer:
logger.info("***** Predict Results *****" )
writer.write("index\tprediction\n" )
for index, item in enumerate(A ):
lowercase__ = label_list[item]
writer.write(f'''{index}\t{item}\n''' )
lowercase__ = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if training_args.push_to_hub:
trainer.push_to_hub(**A )
else:
trainer.create_model_card(**A )
def __a ( A ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 668 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = ["audio_values", "audio_mask"]
def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = spectrogram_length
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = feature_size // self.patch_size[1]
lowercase__ = n_fft
lowercase__ = sampling_rate // hop_length_to_sampling_rate
lowercase__ = sampling_rate
lowercase__ = padding_value
lowercase__ = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = spectrogram(
_UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, )
lowercase__ = log_spec[:, :-1]
lowercase__ = log_spec - 20.0
lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
F''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowercase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ):
lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa )
elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowercase__ = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], _UpperCAmelCase ):
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowercase__ = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowercase__ = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa )
# convert into correct format for padding
lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowercase__ = padded_audio_features * self.padding_value
for i in range(len(_UpperCAmelCase ) ):
lowercase__ = audio_features[i]
lowercase__ = feature
# return as BatchFeature
if return_attention_mask:
lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
lowercase__ = {"audio_values": padded_audio_features}
lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
return encoded_inputs
| 668 | 1 |
"""simple docstring"""
import os
from distutils.util import strtobool
def __a ( A , A ):
'''simple docstring'''
for e in env_keys:
lowercase__ = int(os.environ.get(A , -1 ) )
if val >= 0:
return val
return default
def __a ( A , A=False ):
'''simple docstring'''
lowercase__ = os.environ.get(A , str(A ) )
return strtobool(A ) == 1 # As its name indicates `strtobool` actually returns an int...
def __a ( A , A="no" ):
'''simple docstring'''
lowercase__ = os.environ.get(A , str(A ) )
return value
| 668 |
"""simple docstring"""
from __future__ import annotations
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
lowercase__ = []
for num in range(len(A ) ):
lowercase__ = 0
while 2 * i * i <= odd_composites[num]:
lowercase__ = odd_composites[num] - 2 * i * i
if is_prime(A ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(A ) == n:
return list_nums
return []
def __a ( ):
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
from math import isqrt
def __a ( A ):
'''simple docstring'''
return all(number % divisor != 0 for divisor in range(2 , isqrt(A ) + 1 ) )
def __a ( A = 10**6 ):
'''simple docstring'''
lowercase__ = 0
lowercase__ = 1
lowercase__ = 7
while prime_candidate < max_prime:
primes_count += is_prime(A )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F'{solution() = }')
| 668 |
"""simple docstring"""
import os
import sys
lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase_: Union[str, Any] = [
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoConfig.from_pretrained(*A , **A )
@add_start_docstrings(AutoTokenizer.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*A , **A )
@add_start_docstrings(AutoModel.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModel.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
| 668 | 1 |
"""simple docstring"""
from math import isqrt
def __a ( A ):
'''simple docstring'''
lowercase__ = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , A , A ):
lowercase__ = False
return [i for i in range(2 , A ) if is_prime[i]]
def __a ( A = 10**8 ):
'''simple docstring'''
lowercase__ = calculate_prime_numbers(max_number // 2 )
lowercase__ = 0
lowercase__ = 0
lowercase__ = len(A ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(F'{solution() = }')
| 668 |
"""simple docstring"""
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class a__ ( unittest.TestCase ):
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ):
lowercase__ = FlaxAutoModel.from_pretrained("bert-base" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 668 | 1 |
"""simple docstring"""
def __a ( A ):
'''simple docstring'''
lowercase__ = False
while is_sorted is False: # Until all the indices are traversed keep looping
lowercase__ = True
for i in range(0 , len(A ) - 1 , 2 ): # iterating over all even indices
if input_list[i] > input_list[i + 1]:
lowercase__ , lowercase__ = input_list[i + 1], input_list[i]
# swapping if elements not in order
lowercase__ = False
for i in range(1 , len(A ) - 1 , 2 ): # iterating over all odd indices
if input_list[i] > input_list[i + 1]:
lowercase__ , lowercase__ = input_list[i + 1], input_list[i]
# swapping if elements not in order
lowercase__ = False
return input_list
if __name__ == "__main__":
print("Enter list to be sorted")
lowerCAmelCase_: Tuple = [int(x) for x in input().split()]
# inputing elements of the list in one line
lowerCAmelCase_: List[Any] = odd_even_sort(input_list)
print("The sorted list is")
print(sorted_list)
| 668 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_: str = logging.get_logger(__name__)
lowerCAmelCase_: List[Any] = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class a__ ( _a ):
snake_case_ = "data2vec-vision"
def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = use_mask_token
lowercase__ = use_absolute_position_embeddings
lowercase__ = use_relative_position_bias
lowercase__ = use_shared_relative_position_bias
lowercase__ = layer_scale_init_value
lowercase__ = drop_path_rate
lowercase__ = use_mean_pooling
# decode head attributes (semantic segmentation)
lowercase__ = out_indices
lowercase__ = pool_scales
# auxiliary head attributes (semantic segmentation)
lowercase__ = use_auxiliary_head
lowercase__ = auxiliary_loss_weight
lowercase__ = auxiliary_channels
lowercase__ = auxiliary_num_convs
lowercase__ = auxiliary_concat_input
lowercase__ = semantic_loss_ignore_index
class a__ ( _a ):
snake_case_ = version.parse("1.11" )
@property
def snake_case__ ( self ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def snake_case__ ( self ):
'''simple docstring'''
return 1E-4
| 668 | 1 |
"""simple docstring"""
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def __a ( A ):
'''simple docstring'''
return EnvironmentCommand()
class a__ ( _a ):
@staticmethod
def snake_case__ ( _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = parser.add_parser("env" )
download_parser.set_defaults(func=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = huggingface_hub.__version__
lowercase__ = "not installed"
lowercase__ = "NA"
if is_torch_available():
import torch
lowercase__ = torch.__version__
lowercase__ = torch.cuda.is_available()
lowercase__ = "not installed"
if is_transformers_available():
import transformers
lowercase__ = transformers.__version__
lowercase__ = "not installed"
if is_accelerate_available():
import accelerate
lowercase__ = accelerate.__version__
lowercase__ = "not installed"
if is_xformers_available():
import xformers
lowercase__ = xformers.__version__
lowercase__ = {
"`diffusers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"PyTorch version (GPU?)": F'''{pt_version} ({pt_cuda_available})''',
"Huggingface_hub version": hub_version,
"Transformers version": transformers_version,
"Accelerate version": accelerate_version,
"xFormers version": xformers_version,
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" )
print(self.format_dict(_UpperCAmelCase ) )
return info
@staticmethod
def snake_case__ ( _UpperCAmelCase ):
'''simple docstring'''
return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 668 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: int = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class a__ ( _a ):
snake_case_ = "markuplm"
def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = classifier_dropout
# additional properties
lowercase__ = max_depth
lowercase__ = max_xpath_tag_unit_embeddings
lowercase__ = max_xpath_subs_unit_embeddings
lowercase__ = tag_pad_id
lowercase__ = subs_pad_id
lowercase__ = xpath_unit_hidden_size
| 668 | 1 |
"""simple docstring"""
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __a ( A ):
'''simple docstring'''
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class a__ ( nn.Module ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
super().__init__()
lowercase__ = module
lowercase__ = nn.Sequential(
nn.Linear(module.in_features, _UpperCAmelCase, bias=_UpperCAmelCase ), nn.Linear(_UpperCAmelCase, module.out_features, bias=_UpperCAmelCase ), )
lowercase__ = (2.0 / (5 * min(module.in_features, module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight, std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def snake_case__ ( self, _UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return self.module(_UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class a__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
snake_case_ = "bigscience/bloom-1b7"
# Constant values
snake_case_ = 2.109659552692574
snake_case_ = "Hello my name is"
snake_case_ = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
snake_case_ = 10
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained(self.model_name )
class a__ ( _a ):
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# Models and tokenizer
lowercase__ = AutoModelForCausalLM.from_pretrained(
self.model_name, torch_dtype=torch.floataa, device_map="auto" )
lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
def snake_case__ ( self ):
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase, "quantization_config" ) )
lowercase__ = config.to_dict()
lowercase__ = config.to_diff_dict()
lowercase__ = config.to_json_string()
def snake_case__ ( self ):
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
lowercase__ = self.model_fpaa.get_memory_footprint()
lowercase__ = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit, self.EXPECTED_RELATIVE_DIFFERENCE )
lowercase__ = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def snake_case__ ( self ):
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase, torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" )
lowercase__ = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ), max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = BitsAndBytesConfig()
lowercase__ = True
lowercase__ = AutoModelForCausalLM.from_pretrained(
self.model_name, quantization_config=_UpperCAmelCase, device_map="auto" )
lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" )
lowercase__ = model_abit_from_config.generate(
input_ids=encoded_input["input_ids"].to(0 ), max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
lowercase__ = AutoModelForCausalLM.from_pretrained(
self.model_name, quantization_config=_UpperCAmelCase, load_in_abit=_UpperCAmelCase, device_map="auto", bnb_abit_quant_type="nf4", )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to("cpu" )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device("cuda:0" ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" )
lowercase__ = self.model_fpaa.to(torch.floataa )
lowercase__ = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ), max_new_tokens=10 )
# Check this does not throw an error
lowercase__ = self.model_fpaa.to("cpu" )
# Check this does not throw an error
lowercase__ = self.model_fpaa.half()
# Check this does not throw an error
lowercase__ = self.model_fpaa.float()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = AutoModelForSeqaSeqLM.from_pretrained("t5-small", load_in_abit=_UpperCAmelCase, device_map="auto" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class a__ ( unittest.TestCase ):
@classmethod
def snake_case__ ( cls ):
'''simple docstring'''
lowercase__ = "t5-small"
lowercase__ = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense
lowercase__ = AutoTokenizer.from_pretrained(cls.model_name )
lowercase__ = "Translate in German: Hello, my dog is cute"
def snake_case__ ( self ):
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self ):
'''simple docstring'''
from transformers import TaForConditionalGeneration
lowercase__ = TaForConditionalGeneration._keep_in_fpaa_modules
lowercase__ = None
# test with `t5-small`
lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ).to(0 )
lowercase__ = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
lowercase__ = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ).to(0 )
lowercase__ = model.generate(**_UpperCAmelCase )
lowercase__ = modules
def snake_case__ ( self ):
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
lowercase__ = TaForConditionalGeneration.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linearabit ) )
lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ).to(0 )
lowercase__ = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
lowercase__ = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" ).to(0 )
lowercase__ = model.generate(**_UpperCAmelCase )
class a__ ( _a ):
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# model_name
lowercase__ = "bigscience/bloom-560m"
lowercase__ = "t5-small"
# Different types of model
lowercase__ = AutoModel.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
# Sequence classification model
lowercase__ = AutoModelForSequenceClassification.from_pretrained(
self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
# CausalLM model
lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
# Seq2seq model
lowercase__ = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name, load_in_abit=_UpperCAmelCase, device_map="auto" )
def snake_case__ ( self ):
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self ):
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class a__ ( _a ):
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
def snake_case__ ( self ):
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = pipeline(
"text-generation", model=self.model_name, model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa}, max_new_tokens=self.MAX_NEW_TOKENS, )
# Real second forward pass
lowercase__ = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class a__ ( _a ):
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = AutoModelForCausalLM.from_pretrained(
self.model_name, load_in_abit=_UpperCAmelCase, device_map="balanced" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ), {0, 1} )
# Check that inference pass works on the model
lowercase__ = self.tokenizer(self.input_text, return_tensors="pt" )
# Second real batch
lowercase__ = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ), max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=_UpperCAmelCase ), self.EXPECTED_OUTPUTS )
class a__ ( _a ):
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = "facebook/opt-350m"
super().setUp()
def snake_case__ ( self ):
'''simple docstring'''
if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ):
return
# Step 1: freeze all parameters
lowercase__ = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ), {torch.cuda.current_device()} )
for param in model.parameters():
lowercase__ = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
lowercase__ = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
lowercase__ = LoRALayer(module.q_proj, rank=16 )
lowercase__ = LoRALayer(module.k_proj, rank=16 )
lowercase__ = LoRALayer(module.v_proj, rank=16 )
# Step 3: dummy batch
lowercase__ = self.tokenizer("Test batch ", return_tensors="pt" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
lowercase__ = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase, _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase, nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class a__ ( _a ):
snake_case_ = "gpt2-xl"
snake_case_ = 3.3191854854152187
| 668 |
"""simple docstring"""
lowerCAmelCase_: Union[str, Any] = [
9_9_9,
8_0_0,
7_9_9,
6_0_0,
5_9_9,
5_0_0,
4_0_0,
3_9_9,
3_7_7,
3_5_5,
3_3_3,
3_1_1,
2_8_8,
2_6_6,
2_4_4,
2_2_2,
2_0_0,
1_9_9,
1_7_7,
1_5_5,
1_3_3,
1_1_1,
8_8,
6_6,
4_4,
2_2,
0,
]
lowerCAmelCase_: List[str] = [
9_9_9,
9_7_6,
9_5_2,
9_2_8,
9_0_5,
8_8_2,
8_5_8,
8_5_7,
8_1_0,
7_6_2,
7_1_5,
7_1_4,
5_7_2,
4_2_9,
4_2_8,
2_8_6,
2_8_5,
2_3_8,
1_9_0,
1_4_3,
1_4_2,
1_1_8,
9_5,
7_1,
4_7,
2_4,
0,
]
lowerCAmelCase_: List[str] = [
9_9_9,
9_8_8,
9_7_7,
9_6_6,
9_5_5,
9_4_4,
9_3_3,
9_2_2,
9_1_1,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_5_0,
3_0_0,
2_9_9,
2_6_6,
2_3_3,
2_0_0,
1_9_9,
1_7_9,
1_5_9,
1_4_0,
1_2_0,
1_0_0,
9_9,
8_8,
7_7,
6_6,
5_5,
4_4,
3_3,
2_2,
1_1,
0,
]
lowerCAmelCase_: Dict = [
9_9_9,
9_9_5,
9_9_2,
9_8_9,
9_8_5,
9_8_1,
9_7_8,
9_7_5,
9_7_1,
9_6_7,
9_6_4,
9_6_1,
9_5_7,
9_5_6,
9_5_1,
9_4_7,
9_4_2,
9_3_7,
9_3_3,
9_2_8,
9_2_3,
9_1_9,
9_1_4,
9_1_3,
9_0_8,
9_0_3,
8_9_7,
8_9_2,
8_8_7,
8_8_1,
8_7_6,
8_7_1,
8_7_0,
8_6_4,
8_5_8,
8_5_2,
8_4_6,
8_4_0,
8_3_4,
8_2_8,
8_2_7,
8_2_0,
8_1_3,
8_0_6,
7_9_9,
7_9_2,
7_8_5,
7_8_4,
7_7_7,
7_7_0,
7_6_3,
7_5_6,
7_4_9,
7_4_2,
7_4_1,
7_3_3,
7_2_4,
7_1_6,
7_0_7,
6_9_9,
6_9_8,
6_8_8,
6_7_7,
6_6_6,
6_5_6,
6_5_5,
6_4_5,
6_3_4,
6_2_3,
6_1_3,
6_1_2,
5_9_8,
5_8_4,
5_7_0,
5_6_9,
5_5_5,
5_4_1,
5_2_7,
5_2_6,
5_0_5,
4_8_4,
4_8_3,
4_6_2,
4_4_0,
4_3_9,
3_9_6,
3_9_5,
3_5_2,
3_5_1,
3_0_8,
3_0_7,
2_6_4,
2_6_3,
2_2_0,
2_1_9,
1_7_6,
1_3_2,
8_8,
4_4,
0,
]
lowerCAmelCase_: Optional[int] = [
9_9_9,
9_9_7,
9_9_5,
9_9_2,
9_9_0,
9_8_8,
9_8_6,
9_8_4,
9_8_1,
9_7_9,
9_7_7,
9_7_5,
9_7_2,
9_7_0,
9_6_8,
9_6_6,
9_6_4,
9_6_1,
9_5_9,
9_5_7,
9_5_6,
9_5_4,
9_5_1,
9_4_9,
9_4_6,
9_4_4,
9_4_1,
9_3_9,
9_3_6,
9_3_4,
9_3_1,
9_2_9,
9_2_6,
9_2_4,
9_2_1,
9_1_9,
9_1_6,
9_1_4,
9_1_3,
9_1_0,
9_0_7,
9_0_5,
9_0_2,
8_9_9,
8_9_6,
8_9_3,
8_9_1,
8_8_8,
8_8_5,
8_8_2,
8_7_9,
8_7_7,
8_7_4,
8_7_1,
8_7_0,
8_6_7,
8_6_4,
8_6_1,
8_5_8,
8_5_5,
8_5_2,
8_4_9,
8_4_6,
8_4_3,
8_4_0,
8_3_7,
8_3_4,
8_3_1,
8_2_8,
8_2_7,
8_2_4,
8_2_1,
8_1_7,
8_1_4,
8_1_1,
8_0_8,
8_0_4,
8_0_1,
7_9_8,
7_9_5,
7_9_1,
7_8_8,
7_8_5,
7_8_4,
7_8_0,
7_7_7,
7_7_4,
7_7_0,
7_6_6,
7_6_3,
7_6_0,
7_5_6,
7_5_2,
7_4_9,
7_4_6,
7_4_2,
7_4_1,
7_3_7,
7_3_3,
7_3_0,
7_2_6,
7_2_2,
7_1_8,
7_1_4,
7_1_0,
7_0_7,
7_0_3,
6_9_9,
6_9_8,
6_9_4,
6_9_0,
6_8_5,
6_8_1,
6_7_7,
6_7_3,
6_6_9,
6_6_4,
6_6_0,
6_5_6,
6_5_5,
6_5_0,
6_4_6,
6_4_1,
6_3_6,
6_3_2,
6_2_7,
6_2_2,
6_1_8,
6_1_3,
6_1_2,
6_0_7,
6_0_2,
5_9_6,
5_9_1,
5_8_6,
5_8_0,
5_7_5,
5_7_0,
5_6_9,
5_6_3,
5_5_7,
5_5_1,
5_4_5,
5_3_9,
5_3_3,
5_2_7,
5_2_6,
5_1_9,
5_1_2,
5_0_5,
4_9_8,
4_9_1,
4_8_4,
4_8_3,
4_7_4,
4_6_6,
4_5_7,
4_4_9,
4_4_0,
4_3_9,
4_2_8,
4_1_8,
4_0_7,
3_9_6,
3_9_5,
3_8_1,
3_6_6,
3_5_2,
3_5_1,
3_3_0,
3_0_8,
3_0_7,
2_8_6,
2_6_4,
2_6_3,
2_4_2,
2_2_0,
2_1_9,
1_7_6,
1_7_5,
1_3_2,
1_3_1,
8_8,
4_4,
0,
]
lowerCAmelCase_: Tuple = [
9_9_9,
9_9_1,
9_8_2,
9_7_4,
9_6_6,
9_5_8,
9_5_0,
9_4_1,
9_3_3,
9_2_5,
9_1_6,
9_0_8,
9_0_0,
8_9_9,
8_7_4,
8_5_0,
8_2_5,
8_0_0,
7_9_9,
7_0_0,
6_0_0,
5_0_0,
4_0_0,
3_0_0,
2_0_0,
1_0_0,
0,
]
lowerCAmelCase_: str = [
9_9_9,
9_9_2,
9_8_5,
9_7_8,
9_7_1,
9_6_4,
9_5_7,
9_4_9,
9_4_2,
9_3_5,
9_2_8,
9_2_1,
9_1_4,
9_0_7,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_0_0,
2_9_9,
2_0_0,
1_9_9,
1_0_0,
9_9,
0,
]
lowerCAmelCase_: int = [
9_9_9,
9_9_6,
9_9_2,
9_8_9,
9_8_5,
9_8_2,
9_7_9,
9_7_5,
9_7_2,
9_6_8,
9_6_5,
9_6_1,
9_5_8,
9_5_5,
9_5_1,
9_4_8,
9_4_4,
9_4_1,
9_3_8,
9_3_4,
9_3_1,
9_2_7,
9_2_4,
9_2_0,
9_1_7,
9_1_4,
9_1_0,
9_0_7,
9_0_3,
9_0_0,
8_9_9,
8_9_1,
8_8_4,
8_7_6,
8_6_9,
8_6_1,
8_5_3,
8_4_6,
8_3_8,
8_3_0,
8_2_3,
8_1_5,
8_0_8,
8_0_0,
7_9_9,
7_8_8,
7_7_7,
7_6_6,
7_5_5,
7_4_4,
7_3_3,
7_2_2,
7_1_1,
7_0_0,
6_9_9,
6_8_8,
6_7_7,
6_6_6,
6_5_5,
6_4_4,
6_3_3,
6_2_2,
6_1_1,
6_0_0,
5_9_9,
5_8_5,
5_7_1,
5_5_7,
5_4_2,
5_2_8,
5_1_4,
5_0_0,
4_9_9,
4_8_5,
4_7_1,
4_5_7,
4_4_2,
4_2_8,
4_1_4,
4_0_0,
3_9_9,
3_7_9,
3_5_9,
3_4_0,
3_2_0,
3_0_0,
2_9_9,
2_7_9,
2_5_9,
2_4_0,
2_2_0,
2_0_0,
1_9_9,
1_6_6,
1_3_3,
1_0_0,
9_9,
6_6,
3_3,
0,
]
| 668 | 1 |
"""simple docstring"""
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class a__ ( _a ):
snake_case_ = "char"
snake_case_ = "bpe"
snake_case_ = "wp"
lowerCAmelCase_: str = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class a__ ( _a ):
snake_case_ = ["image_processor", "char_tokenizer"]
snake_case_ = "ViTImageProcessor"
snake_case_ = "MgpstrTokenizer"
def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.", _UpperCAmelCase, )
lowercase__ = kwargs.pop("feature_extractor" )
lowercase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
lowercase__ = tokenizer
lowercase__ = AutoTokenizer.from_pretrained("gpt2" )
lowercase__ = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(_UpperCAmelCase, _UpperCAmelCase )
def __call__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, **_UpperCAmelCase ):
'''simple docstring'''
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
lowercase__ = self.image_processor(_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase )
if text is not None:
lowercase__ = self.char_tokenizer(_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
lowercase__ = encodings["input_ids"]
return inputs
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ , lowercase__ , lowercase__ = sequences
lowercase__ = char_preds.size(0 )
lowercase__ , lowercase__ = self._decode_helper(_UpperCAmelCase, "char" )
lowercase__ , lowercase__ = self._decode_helper(_UpperCAmelCase, "bpe" )
lowercase__ , lowercase__ = self._decode_helper(_UpperCAmelCase, "wp" )
lowercase__ = []
lowercase__ = []
for i in range(_UpperCAmelCase ):
lowercase__ = [char_scores[i], bpe_scores[i], wp_scores[i]]
lowercase__ = [char_strs[i], bpe_strs[i], wp_strs[i]]
lowercase__ = scores.index(max(_UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
lowercase__ = {}
lowercase__ = final_strs
lowercase__ = final_scores
lowercase__ = char_strs
lowercase__ = bpe_strs
lowercase__ = wp_strs
return out
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
if format == DecodeType.CHARACTER:
lowercase__ = self.char_decode
lowercase__ = 1
lowercase__ = "[s]"
elif format == DecodeType.BPE:
lowercase__ = self.bpe_decode
lowercase__ = 2
lowercase__ = "#"
elif format == DecodeType.WORDPIECE:
lowercase__ = self.wp_decode
lowercase__ = 102
lowercase__ = "[SEP]"
else:
raise ValueError(F'''Format {format} is not supported.''' )
lowercase__ , lowercase__ = [], []
lowercase__ = pred_logits.size(0 )
lowercase__ = pred_logits.size(1 )
lowercase__ , lowercase__ = pred_logits.topk(1, dim=-1, largest=_UpperCAmelCase, sorted=_UpperCAmelCase )
lowercase__ = preds_index.view(-1, _UpperCAmelCase )[:, 1:]
lowercase__ = decoder(_UpperCAmelCase )
lowercase__ , lowercase__ = torch.nn.functional.softmax(_UpperCAmelCase, dim=2 ).max(dim=2 )
lowercase__ = preds_max_prob[:, 1:]
for index in range(_UpperCAmelCase ):
lowercase__ = preds_str[index].find(_UpperCAmelCase )
lowercase__ = preds_str[index][:pred_eos]
lowercase__ = preds_index[index].cpu().tolist()
lowercase__ = pred_index.index(_UpperCAmelCase ) if eos_token in pred_index else -1
lowercase__ = preds_max_prob[index][: pred_eos_index + 1]
lowercase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(_UpperCAmelCase )
conf_scores.append(_UpperCAmelCase )
return dec_strs, conf_scores
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = [seq.replace(" ", "" ) for seq in self.char_tokenizer.batch_decode(_UpperCAmelCase )]
return decode_strs
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.bpe_tokenizer.batch_decode(_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = [seq.replace(" ", "" ) for seq in self.wp_tokenizer.batch_decode(_UpperCAmelCase )]
return decode_strs
| 668 |
"""simple docstring"""
from __future__ import annotations
def __a ( A , A ):
'''simple docstring'''
if partitions <= 0:
raise ValueError("partitions must be a positive number!" )
if partitions > number_of_bytes:
raise ValueError("partitions can not > number_of_bytes!" )
lowercase__ = number_of_bytes // partitions
lowercase__ = []
for i in range(A ):
lowercase__ = i * bytes_per_partition + 1
lowercase__ = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
from __future__ import annotations
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
lowercase__ = []
for num in range(len(A ) ):
lowercase__ = 0
while 2 * i * i <= odd_composites[num]:
lowercase__ = odd_composites[num] - 2 * i * i
if is_prime(A ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(A ) == n:
return list_nums
return []
def __a ( ):
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 668 |
"""simple docstring"""
from collections import deque
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = process_name # process name
lowercase__ = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
lowercase__ = arrival_time
lowercase__ = burst_time # remaining burst time
lowercase__ = 0 # total time of the process wait in ready queue
lowercase__ = 0 # time from arrival time to completion time
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = number_of_queues
# time slice of queues that round robin algorithm applied
lowercase__ = time_slices
# unfinished process is in this ready_queue
lowercase__ = queue
# current time
lowercase__ = current_time
# finished process is in this sequence queue
lowercase__ = deque()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return [q.burst_time for q in queue]
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of finished process
while len(_UpperCAmelCase ) != 0:
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_UpperCAmelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
lowercase__ = 0
# set the process's turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# set the completion time
lowercase__ = self.current_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_UpperCAmelCase ) ):
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_UpperCAmelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
lowercase__ = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_UpperCAmelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
lowercase__ = 0
# set the finish time
lowercase__ = self.current_time
# update the process' turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def snake_case__ ( self ):
'''simple docstring'''
for i in range(self.number_of_queues - 1 ):
lowercase__ , lowercase__ = self.round_robin(
self.ready_queue, self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3)
lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7)
lowerCAmelCase_: str = Process("P3", 0, 6_8)
lowerCAmelCase_: int = Process("P4", 0, 2_4)
lowerCAmelCase_: Dict = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])})
lowerCAmelCase_: Any = Process("P1", 0, 5_3)
lowerCAmelCase_: Tuple = Process("P2", 0, 1_7)
lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8)
lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4)
lowerCAmelCase_: Union[str, Any] = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa])
lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0)
lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print sequence of finished processes
print(
F'sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'
)
| 668 | 1 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = ["audio_values", "audio_mask"]
def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = spectrogram_length
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = feature_size // self.patch_size[1]
lowercase__ = n_fft
lowercase__ = sampling_rate // hop_length_to_sampling_rate
lowercase__ = sampling_rate
lowercase__ = padding_value
lowercase__ = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = spectrogram(
_UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, )
lowercase__ = log_spec[:, :-1]
lowercase__ = log_spec - 20.0
lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
F''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowercase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ):
lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa )
elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowercase__ = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], _UpperCAmelCase ):
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowercase__ = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowercase__ = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa )
# convert into correct format for padding
lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowercase__ = padded_audio_features * self.padding_value
for i in range(len(_UpperCAmelCase ) ):
lowercase__ = audio_features[i]
lowercase__ = feature
# return as BatchFeature
if return_attention_mask:
lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
lowercase__ = {"audio_values": padded_audio_features}
lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
return encoded_inputs
| 668 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase_: Dict = "pt"
elif is_tf_available():
lowerCAmelCase_: Dict = "tf"
else:
lowerCAmelCase_: str = "jax"
class a__ ( _a , unittest.TestCase ):
snake_case_ = ByTaTokenizer
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
lowercase__ = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def snake_case__ ( self ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("google/byt5-small" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
try:
lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) )
lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
lowercase__ = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
lowercase__ = toks + toks
# toks_str = [t[1] for t in toks]
lowercase__ = [t[0] for t in toks]
# Ensure consistency
lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
lowercase__ = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase )
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
lowercase__ = " " + output_txt
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] )
lowercase__ = tokenizer(["hi", "I went to the gym", ""] )
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = "Unicode €."
lowercase__ = tokenizer(_UpperCAmelCase )
lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" )
lowercase__ = tokenizer("e è é ê ë" )
lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
if FRAMEWORK != "jax":
lowercase__ = list(batch.input_ids.numpy()[0] )
else:
lowercase__ = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids", _UpperCAmelCase )
self.assertIn("attention_mask", _UpperCAmelCase )
self.assertNotIn("decoder_input_ids", _UpperCAmelCase )
self.assertNotIn("decoder_attention_mask", _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = [
"Summary of the text.",
"Another summary.",
]
lowercase__ = tokenizer(
text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertEqual(32, targets["input_ids"].shape[1] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization. </s>"]
lowercase__ = ["Summary of the text. </s>"]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] )
self.assertEqual(_UpperCAmelCase, batch["labels"][0] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
lowercase__ = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"] )
lowercase__ = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token" )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, )
self.assertIn(
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )]
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, )
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens )
self.assertEqual(
["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase )
self.assertTrue(tokenizer.decode([255] ) == "" )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"]
lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
lowercase__ = 0
lowercase__ = tokenizer.convert_ids_to_tokens(
_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
for attr in attributes_list:
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
| 668 | 1 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class a__ ( _a ):
snake_case_ = ["image_processor", "tokenizer"]
snake_case_ = "OwlViTImageProcessor"
snake_case_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.", _UpperCAmelCase, )
lowercase__ = kwargs.pop("feature_extractor" )
lowercase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(_UpperCAmelCase, _UpperCAmelCase )
def __call__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase="max_length", _UpperCAmelCase="np", **_UpperCAmelCase ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none." )
if text is not None:
if isinstance(_UpperCAmelCase, _UpperCAmelCase ) or (isinstance(_UpperCAmelCase, _UpperCAmelCase ) and not isinstance(text[0], _UpperCAmelCase )):
lowercase__ = [self.tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase )]
elif isinstance(_UpperCAmelCase, _UpperCAmelCase ) and isinstance(text[0], _UpperCAmelCase ):
lowercase__ = []
# Maximum number of queries across batch
lowercase__ = max([len(_UpperCAmelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(_UpperCAmelCase ) != max_num_queries:
lowercase__ = t + [" "] * (max_num_queries - len(_UpperCAmelCase ))
lowercase__ = self.tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase )
encodings.append(_UpperCAmelCase )
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings" )
if return_tensors == "np":
lowercase__ = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0 )
lowercase__ = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
lowercase__ = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0 )
lowercase__ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
lowercase__ = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0 )
lowercase__ = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
lowercase__ = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0 )
lowercase__ = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0 )
else:
raise ValueError("Target return tensor type could not be returned" )
lowercase__ = BatchEncoding()
lowercase__ = input_ids
lowercase__ = attention_mask
if query_images is not None:
lowercase__ = BatchEncoding()
lowercase__ = self.image_processor(
_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase ).pixel_values
lowercase__ = query_pixel_values
if images is not None:
lowercase__ = self.image_processor(_UpperCAmelCase, return_tensors=_UpperCAmelCase, **_UpperCAmelCase )
if text is not None and images is not None:
lowercase__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
lowercase__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ), tensor_type=_UpperCAmelCase )
def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process(*_UpperCAmelCase, **_UpperCAmelCase )
def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*_UpperCAmelCase, **_UpperCAmelCase )
def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*_UpperCAmelCase, **_UpperCAmelCase )
def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.batch_decode(*_UpperCAmelCase, **_UpperCAmelCase )
def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.decode(*_UpperCAmelCase, **_UpperCAmelCase )
@property
def snake_case__ ( self ):
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", _UpperCAmelCase, )
return self.image_processor_class
@property
def snake_case__ ( self ):
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", _UpperCAmelCase, )
return self.image_processor
| 668 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class a__ ( unittest.TestCase ):
snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = hf_hub_download(
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 )
lowercase__ = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase, [
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
], )
@require_torch
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
lowercase__ = VideoMAEFeatureExtractor(
size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} )
lowercase__ = pipeline(
"video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
], top_k=2, )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
], )
@require_tf
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
lowerCAmelCase_: str = None
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: Tuple = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
lowerCAmelCase_: int = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
lowerCAmelCase_: int = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
lowerCAmelCase_: List[str] = "▁"
# Segments (not really needed)
lowerCAmelCase_: List[str] = 0
lowerCAmelCase_: List[str] = 1
lowerCAmelCase_: int = 2
lowerCAmelCase_: Union[str, Any] = 3
lowerCAmelCase_: Tuple = 4
class a__ ( _a ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = "left"
snake_case_ = XLNetTokenizer
def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=False, _UpperCAmelCase="<s>", _UpperCAmelCase="</s>", _UpperCAmelCase="<unk>", _UpperCAmelCase="<sep>", _UpperCAmelCase="<pad>", _UpperCAmelCase="<cls>", _UpperCAmelCase="<mask>", _UpperCAmelCase=["<eop>", "<eod>"], **_UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else mask_token
super().__init__(
vocab_file=_UpperCAmelCase, tokenizer_file=_UpperCAmelCase, do_lower_case=_UpperCAmelCase, remove_space=_UpperCAmelCase, keep_accents=_UpperCAmelCase, bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = 3
lowercase__ = do_lower_case
lowercase__ = remove_space
lowercase__ = keep_accents
lowercase__ = vocab_file
lowercase__ = False if not self.vocab_file else True
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file, _UpperCAmelCase )
return (out_vocab_file,)
| 668 |
"""simple docstring"""
import itertools
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __a ( ):
'''simple docstring'''
lowercase__ = 2
while True:
if is_prime(A ):
yield num
num += 1
def __a ( A = 1_00_01 ):
'''simple docstring'''
return next(itertools.islice(prime_generator() , nth - 1 , A ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
import argparse
lowerCAmelCase_: Optional[int] = "docs/source/_static/js/custom.js"
def __a ( A ):
'''simple docstring'''
with open(A , encoding="utf-8" , newline="\n" ) as f:
lowercase__ = f.readlines()
lowercase__ = 0
# First let's put the right version
while not lines[index].startswith("const stableVersion =" ):
index += 1
lowercase__ = f'''const stableVersion = "v{version}"\n'''
# Then update the dictionary
while not lines[index].startswith("const versionMapping = {" ):
index += 1
# We go until the end
while not lines[index].startswith("}" ):
index += 1
# We add the new version at the end
lines[index - 1] += f''' "v{version}": "v{version}",\n'''
with open(A , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(A )
if __name__ == "__main__":
lowerCAmelCase_: List[str] = argparse.ArgumentParser()
parser.add_argument("--version", help="Release version.")
lowerCAmelCase_: Dict = parser.parse_args()
update_custom_js(args.version)
| 668 |
"""simple docstring"""
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
_UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, )
def snake_case__ ( self ):
'''simple docstring'''
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, )
lowercase__ = self.builder.as_dataset(
split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory )
return dataset
| 668 | 1 |
"""simple docstring"""
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def __a ( ):
'''simple docstring'''
lowercase__ = ArgumentParser(
description=(
"PyTorch TPU distributed training launch "
"helper utility that will spawn up "
"multiple distributed processes"
) )
# Optional arguments for the launch helper
parser.add_argument("--num_cores" , type=A , default=1 , help="Number of TPU cores to use (1 or 8)." )
# positional
parser.add_argument(
"training_script" , type=A , help=(
"The full path to the single TPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
) , )
# rest from the training program
parser.add_argument("training_script_args" , nargs=A )
return parser.parse_args()
def __a ( ):
'''simple docstring'''
lowercase__ = parse_args()
# Import training_script as a module.
lowercase__ = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowercase__ = script_fpath.stem
lowercase__ = importlib.import_module(A )
# Patch sys.argv
lowercase__ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 668 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowerCAmelCase_: List[str] = 1_6
lowerCAmelCase_: Optional[Any] = 3_2
def __a ( A , A = 16 , A = "bert-base-cased" ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained(A )
lowercase__ = load_dataset("glue" , "mrpc" )
def tokenize_function(A ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowercase__ = datasets.map(
A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" )
return tokenizer.pad(A , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A )
lowercase__ = DataLoader(
tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A )
return train_dataloader, eval_dataloader
def __a ( A , A ):
'''simple docstring'''
lowercase__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["lr"]
lowercase__ = int(config["num_epochs"] )
lowercase__ = int(config["seed"] )
lowercase__ = int(config["batch_size"] )
lowercase__ = args.model_name_or_path
set_seed(A )
lowercase__ , lowercase__ = get_dataloaders(A , A , A )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A )
# Instantiate optimizer
lowercase__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowercase__ = optimizer_cls(params=model.parameters() , lr=A )
if accelerator.state.deepspeed_plugin is not None:
lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
lowercase__ = 1
lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowercase__ = get_linear_schedule_with_warmup(
optimizer=A , num_warmup_steps=0 , num_training_steps=A , )
else:
lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
A , A , A , A , A )
# We need to keep track of how many total steps we have iterated over
lowercase__ = 0
# We also need to keep track of the stating epoch so files are named properly
lowercase__ = 0
# Now we train the model
lowercase__ = evaluate.load("glue" , "mrpc" )
lowercase__ = 0
lowercase__ = {}
for epoch in range(A , A ):
model.train()
for step, batch in enumerate(A ):
lowercase__ = model(**A )
lowercase__ = outputs.loss
lowercase__ = loss / gradient_accumulation_steps
accelerator.backward(A )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
lowercase__ = 0
for step, batch in enumerate(A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**A )
lowercase__ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
lowercase__ , lowercase__ = accelerator.gather(
(predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A ) - 1:
lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A , references=A , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , A )
lowercase__ = eval_metric["accuracy"]
if best_performance < eval_metric["accuracy"]:
lowercase__ = eval_metric["accuracy"]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f:
json.dump(A , A )
def __a ( ):
'''simple docstring'''
lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , )
parser.add_argument(
"--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , )
parser.add_argument(
"--num_epochs" , type=A , default=3 , help="Number of train epochs." , )
lowercase__ = parser.parse_args()
lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(A , A )
if __name__ == "__main__":
main()
| 668 | 1 |
"""simple docstring"""
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def __a ( A , A , A , A , A = None , A = None , A = None , ):
'''simple docstring'''
if config_name_or_path is None:
lowercase__ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base"
if generator_tokenizer_name_or_path is None:
lowercase__ = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
lowercase__ = question_encoder_name_or_path
lowercase__ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration
# Save model.
lowercase__ = RagConfig.from_pretrained(A )
lowercase__ = AutoConfig.from_pretrained(A )
lowercase__ = AutoConfig.from_pretrained(A )
lowercase__ = gen_config
lowercase__ = question_encoder_config
lowercase__ = model_class.from_pretrained_question_encoder_generator(
A , A , config=A )
rag_model.save_pretrained(A )
# Sanity check.
model_class.from_pretrained(A )
# Save tokenizers.
lowercase__ = AutoTokenizer.from_pretrained(A )
gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" )
lowercase__ = AutoTokenizer.from_pretrained(A )
question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" )
if __name__ == "__main__":
lowerCAmelCase_: int = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token"],
required=True,
type=str,
help="RAG model type: rag_sequence, rag_token",
)
parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.")
parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier")
parser.add_argument(
"--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier"
)
parser.add_argument(
"--generator_tokenizer_name_or_path",
type=str,
help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``",
)
parser.add_argument(
"--question_encoder_tokenizer_name_or_path",
type=str,
help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``",
)
parser.add_argument(
"--config_name_or_path",
type=str,
help=(
"Identifier of the model config to use, if not provided, resolves to a base config for a given"
" ``model_type``"
),
)
lowerCAmelCase_: Any = parser.parse_args()
lowerCAmelCase_: Optional[Any] = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 668 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _a ):
snake_case_ = (IPNDMScheduler,)
snake_case_ = (("num_inference_steps", 50),)
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {"num_train_timesteps": 1000}
config.update(**_UpperCAmelCase )
return config
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
return sample
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.timesteps[5]
lowercase__ = scheduler.timesteps[6]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def snake_case__ ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 668 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase_: List[str] = {
"configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Tuple = ["BloomTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Union[str, Any] = [
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
"BloomForCausalLM",
"BloomModel",
"BloomPreTrainedModel",
"BloomForSequenceClassification",
"BloomForTokenClassification",
"BloomForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( _a , unittest.TestCase ):
snake_case_ = MgpstrTokenizer
snake_case_ = False
snake_case_ = {}
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file, "w", encoding="utf-8" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + "\n" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = "tester"
lowercase__ = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ), 1 )
lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase )
lowercase__ = tokenizer.tokenize(_UpperCAmelCase )
lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ), 0 )
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def snake_case__ ( self ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
def __a ( A ):
'''simple docstring'''
lowercase__ = len(A )
for _ in range(A ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
lowercase__ , lowercase__ = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
lowerCAmelCase_: str = list(range(1_0, 0, -1))
print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
| 668 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 668 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
lowerCAmelCase_: List[str] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = ["input_features", "attention_mask"]
def __init__( self, _UpperCAmelCase=80, _UpperCAmelCase=1_6000, _UpperCAmelCase=0.0, _UpperCAmelCase=10, _UpperCAmelCase=25, _UpperCAmelCase="hamming_window", _UpperCAmelCase=32_768.0, _UpperCAmelCase=0.97, _UpperCAmelCase=1.0, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=False, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase )
lowercase__ = feature_size
lowercase__ = sampling_rate
lowercase__ = padding_value
lowercase__ = hop_length
lowercase__ = win_length
lowercase__ = frame_signal_scale
lowercase__ = preemphasis_coeff
lowercase__ = mel_floor
lowercase__ = normalize_means
lowercase__ = normalize_vars
lowercase__ = win_function
lowercase__ = return_attention_mask
lowercase__ = win_length * sampling_rate // 1000
lowercase__ = hop_length * sampling_rate // 1000
lowercase__ = optimal_fft_length(self.sample_size )
lowercase__ = (self.n_fft // 2) + 1
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if self.win_function == "hamming_window":
lowercase__ = window_function(window_length=self.sample_size, name=self.win_function, periodic=_UpperCAmelCase )
else:
lowercase__ = window_function(window_length=self.sample_size, name=self.win_function )
lowercase__ = mel_filter_bank(
num_frequency_bins=self.n_freqs, num_mel_filters=self.feature_size, min_frequency=0.0, max_frequency=self.sampling_rate / 2.0, sampling_rate=self.sampling_rate, )
lowercase__ = spectrogram(
one_waveform * self.frame_signal_scale, window=_UpperCAmelCase, frame_length=self.sample_size, hop_length=self.sample_stride, fft_length=self.n_fft, center=_UpperCAmelCase, preemphasis=self.preemphasis_coeff, mel_filters=_UpperCAmelCase, mel_floor=self.mel_floor, log_mel="log", )
return msfc_features.T
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
if self.normalize_means:
lowercase__ = x[:input_length].mean(axis=0 )
lowercase__ = np.subtract(_UpperCAmelCase, _UpperCAmelCase )
if self.normalize_vars:
lowercase__ = x[:input_length].std(axis=0 )
lowercase__ = np.divide(_UpperCAmelCase, _UpperCAmelCase )
if input_length < x.shape[0]:
lowercase__ = padding_value
# make sure array is in float32
lowercase__ = x.astype(np.floataa )
return x
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(_UpperCAmelCase, _UpperCAmelCase, self.padding_value ) for x, n in zip(_UpperCAmelCase, _UpperCAmelCase )]
def __call__( self, _UpperCAmelCase, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowercase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ):
lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa )
elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [raw_speech]
# extract fbank features
lowercase__ = [self._extract_mfsc_features(_UpperCAmelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
lowercase__ = BatchFeature({"input_features": features} )
lowercase__ = self.pad(
_UpperCAmelCase, padding=_UpperCAmelCase, max_length=_UpperCAmelCase, truncation=_UpperCAmelCase, pad_to_multiple_of=_UpperCAmelCase, return_attention_mask=_UpperCAmelCase, **_UpperCAmelCase, )
# make sure list is in array format
lowercase__ = padded_inputs.get("input_features" )
if isinstance(input_features[0], _UpperCAmelCase ):
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in input_features]
lowercase__ = padded_inputs.get("attention_mask" )
if attention_mask is not None:
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
lowercase__ = (
np.array(_UpperCAmelCase, dtype=np.intaa )
if self._get_padding_strategies(_UpperCAmelCase, max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
lowercase__ = self.normalize(
padded_inputs["input_features"], attention_mask=_UpperCAmelCase )
if return_tensors is not None:
lowercase__ = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
| 668 |
"""simple docstring"""
from typing import Any
import numpy as np
def __a ( A ):
'''simple docstring'''
return np.array_equal(A , matrix.conjugate().T )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = v.conjugate().T
lowercase__ = v_star.dot(A )
assert isinstance(A , np.ndarray )
return (v_star_dot.dot(A )) / (v_star.dot(A ))
def __a ( ):
'''simple docstring'''
lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
lowercase__ = np.array([[1], [2], [3]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
print(rayleigh_quotient(A , A ) )
lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
assert rayleigh_quotient(A , A ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 668 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_: int = {
"configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Any = ["AlbertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Optional[Any] = ["AlbertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: str = [
"ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"AlbertForMaskedLM",
"AlbertForMultipleChoice",
"AlbertForPreTraining",
"AlbertForQuestionAnswering",
"AlbertForSequenceClassification",
"AlbertForTokenClassification",
"AlbertModel",
"AlbertPreTrainedModel",
"load_tf_weights_in_albert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: str = [
"TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFAlbertForMaskedLM",
"TFAlbertForMultipleChoice",
"TFAlbertForPreTraining",
"TFAlbertForQuestionAnswering",
"TFAlbertForSequenceClassification",
"TFAlbertForTokenClassification",
"TFAlbertMainLayer",
"TFAlbertModel",
"TFAlbertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: List[Any] = [
"FlaxAlbertForMaskedLM",
"FlaxAlbertForMultipleChoice",
"FlaxAlbertForPreTraining",
"FlaxAlbertForQuestionAnswering",
"FlaxAlbertForSequenceClassification",
"FlaxAlbertForTokenClassification",
"FlaxAlbertModel",
"FlaxAlbertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert import AlbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_albert_fast import AlbertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
AlbertPreTrainedModel,
load_tf_weights_in_albert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_albert import (
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAlbertForMaskedLM,
TFAlbertForMultipleChoice,
TFAlbertForPreTraining,
TFAlbertForQuestionAnswering,
TFAlbertForSequenceClassification,
TFAlbertForTokenClassification,
TFAlbertMainLayer,
TFAlbertModel,
TFAlbertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
FlaxAlbertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 |
"""simple docstring"""
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class a__ ( _a , unittest.TestCase ):
snake_case_ = PriorTransformer
snake_case_ = "hidden_states"
@property
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = {
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
lowercase__ = self.dummy_input
return init_dict, inputs_dict
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ), 0 )
model.to(_UpperCAmelCase )
lowercase__ = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common()
lowercase__ = self.model_class(**_UpperCAmelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2], _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" )
lowercase__ = model.to(_UpperCAmelCase )
if hasattr(_UpperCAmelCase, "set_default_attn_processor" ):
model.set_default_attn_processor()
lowercase__ = self.get_dummy_seed_input()
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
lowercase__ = output[0, :5].flatten().cpu()
print(_UpperCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] )
self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) )
@slow
class a__ ( unittest.TestCase ):
def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = batch_size
lowercase__ = embedding_dim
lowercase__ = num_embeddings
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]],
[37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]],
# fmt: on
] )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" )
model.to(_UpperCAmelCase )
lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase )
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
lowercase__ = sample[0, :8].flatten().cpu()
print(_UpperCAmelCase )
lowercase__ = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
| 668 | 1 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
lowerCAmelCase_: List[str] = 0
lowerCAmelCase_: Any = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowerCAmelCase_: Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
lowerCAmelCase_: int = tuple[int, int]
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = pos_x
lowercase__ = pos_y
lowercase__ = (pos_y, pos_x)
lowercase__ = goal_x
lowercase__ = goal_y
lowercase__ = g_cost
lowercase__ = parent
lowercase__ = self.calculate_heuristic()
lowercase__ = self.g_cost + self.h_cost
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.pos_x - self.goal_x
lowercase__ = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(_UpperCAmelCase ) + abs(_UpperCAmelCase )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self, _UpperCAmelCase ):
'''simple docstring'''
return self.f_cost < other.f_cost
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = Node(start[1], start[0], goal[1], goal[0], 0, _UpperCAmelCase )
lowercase__ = Node(goal[1], goal[0], goal[1], goal[0], 9_9999, _UpperCAmelCase )
lowercase__ = [self.start]
lowercase__ = []
lowercase__ = False
def snake_case__ ( self ):
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
lowercase__ = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(_UpperCAmelCase )
self.closed_nodes.append(_UpperCAmelCase )
lowercase__ = self.get_successors(_UpperCAmelCase )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_UpperCAmelCase )
else:
# retrieve the best current path
lowercase__ = self.open_nodes.pop(self.open_nodes.index(_UpperCAmelCase ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_UpperCAmelCase )
else:
self.open_nodes.append(_UpperCAmelCase )
return [self.start.pos]
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for action in delta:
lowercase__ = parent.pos_x + action[1]
lowercase__ = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_UpperCAmelCase, _UpperCAmelCase, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, _UpperCAmelCase, ) )
return successors
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = node
lowercase__ = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowercase__ = current_node.parent
path.reverse()
return path
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = AStar(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = AStar(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = False
def snake_case__ ( self ):
'''simple docstring'''
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
lowercase__ = self.fwd_astar.open_nodes.pop(0 )
lowercase__ = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
_UpperCAmelCase, _UpperCAmelCase )
self.fwd_astar.closed_nodes.append(_UpperCAmelCase )
self.bwd_astar.closed_nodes.append(_UpperCAmelCase )
lowercase__ = current_bwd_node
lowercase__ = current_fwd_node
lowercase__ = {
self.fwd_astar: self.fwd_astar.get_successors(_UpperCAmelCase ),
self.bwd_astar: self.bwd_astar.get_successors(_UpperCAmelCase ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(_UpperCAmelCase )
else:
# retrieve the best current path
lowercase__ = astar.open_nodes.pop(
astar.open_nodes.index(_UpperCAmelCase ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(_UpperCAmelCase )
else:
astar.open_nodes.append(_UpperCAmelCase )
return [self.fwd_astar.start.pos]
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.fwd_astar.retrace_path(_UpperCAmelCase )
lowercase__ = self.bwd_astar.retrace_path(_UpperCAmelCase )
bwd_path.pop()
bwd_path.reverse()
lowercase__ = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
lowerCAmelCase_: Optional[int] = (0, 0)
lowerCAmelCase_: Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
lowerCAmelCase_: List[str] = time.time()
lowerCAmelCase_: Union[str, Any] = AStar(init, goal)
lowerCAmelCase_: str = a_star.search()
lowerCAmelCase_: List[Any] = time.time() - start_time
print(F'AStar execution time = {end_time:f} seconds')
lowerCAmelCase_: Any = time.time()
lowerCAmelCase_: Dict = BidirectionalAStar(init, goal)
lowerCAmelCase_: Tuple = time.time() - bd_start_time
print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 668 |
"""simple docstring"""
lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(A )
lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data )
lowercase__ = len(A ) % 6 != 0
if padding_needed:
# The padding that will be added later
lowercase__ = b"=" * ((6 - len(A ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(A ) % 6)
else:
lowercase__ = b""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(A ) , 6 ) ).encode()
+ padding
)
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ) and not isinstance(A , A ):
lowercase__ = (
"argument should be a bytes-like object or ASCII string, "
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(A )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(A , A ):
try:
lowercase__ = encoded_data.decode("utf-8" )
except UnicodeDecodeError:
raise ValueError("base64 encoded data should only contain ASCII characters" )
lowercase__ = encoded_data.count("=" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
lowercase__ = encoded_data[:-padding]
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )
lowercase__ = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(A ) , 8 )
]
return bytes(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: Optional[Any] = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class a__ ( _a ):
snake_case_ = "canine"
def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1_6384, _UpperCAmelCase=16, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0Xe000, _UpperCAmelCase=0Xe001, _UpperCAmelCase=4, _UpperCAmelCase=4, _UpperCAmelCase=8, _UpperCAmelCase=1_6384, _UpperCAmelCase=128, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase )
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
# Character config:
lowercase__ = downsampling_rate
lowercase__ = upsampling_kernel_size
lowercase__ = num_hash_functions
lowercase__ = num_hash_buckets
lowercase__ = local_transformer_stride
| 668 |
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ):
'''simple docstring'''
lowercase__ = symbols(A )
lowercase__ = lambdify(A , A )
lowercase__ = lambdify(A , diff(A , A ) )
lowercase__ = starting_point
while True:
if diff_function(A ) != 0:
lowercase__ = prev_guess - multiplicity * func(A ) / diff_function(
A )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowercase__ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
# Find fourth Root of 5
print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}')
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F'{newton_raphson("log(y) - 1", 2, variable="y")}',
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}',
)
# Find root of cos(x)
print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
| 668 | 1 |
"""simple docstring"""
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
lowerCAmelCase_: int = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase_: int = direct_transformers_import(PATH_TO_TRANSFORMERS)
lowerCAmelCase_: List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
lowerCAmelCase_: Optional[int] = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)")
lowerCAmelCase_: Dict = {
"DecisionTransformerConfig",
"EncoderDecoderConfig",
"MusicgenConfig",
"RagConfig",
"SpeechEncoderDecoderConfig",
"TimmBackboneConfig",
"VisionEncoderDecoderConfig",
"VisionTextDualEncoderConfig",
"LlamaConfig",
}
def __a ( A ):
'''simple docstring'''
lowercase__ = None
# source code of `config_class`
lowercase__ = inspect.getsource(A )
lowercase__ = _re_checkpoint.findall(A )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("/" ):
lowercase__ = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
lowercase__ = f'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
lowercase__ = ckpt_name
break
return checkpoint
def __a ( ):
'''simple docstring'''
lowercase__ = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
lowercase__ = get_checkpoint_from_config_class(A )
lowercase__ = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(A )
if len(A ) > 0:
lowercase__ = "\n".join(sorted(A ) )
raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 668 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_: Union[str, Any] = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Any = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Tuple = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Optional[Any] = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 | 1 |
"""simple docstring"""
lowerCAmelCase_: Union[str, Any] = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 668 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = ["audio_values", "audio_mask"]
def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = spectrogram_length
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = feature_size // self.patch_size[1]
lowercase__ = n_fft
lowercase__ = sampling_rate // hop_length_to_sampling_rate
lowercase__ = sampling_rate
lowercase__ = padding_value
lowercase__ = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = spectrogram(
_UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, )
lowercase__ = log_spec[:, :-1]
lowercase__ = log_spec - 20.0
lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
F''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowercase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ):
lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa )
elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowercase__ = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], _UpperCAmelCase ):
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowercase__ = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowercase__ = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa )
# convert into correct format for padding
lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowercase__ = padded_audio_features * self.padding_value
for i in range(len(_UpperCAmelCase ) ):
lowercase__ = audio_features[i]
lowercase__ = feature
# return as BatchFeature
if return_attention_mask:
lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
lowercase__ = {"audio_values": padded_audio_features}
lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
return encoded_inputs
| 668 | 1 |
"""simple docstring"""
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
lowerCAmelCase_: Optional[int] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = ["input_features", "is_longer"]
def __init__( self, _UpperCAmelCase=64, _UpperCAmelCase=4_8000, _UpperCAmelCase=480, _UpperCAmelCase=10, _UpperCAmelCase=1024, _UpperCAmelCase=0.0, _UpperCAmelCase=False, _UpperCAmelCase = 0, _UpperCAmelCase = 1_4000, _UpperCAmelCase = None, _UpperCAmelCase = "fusion", _UpperCAmelCase = "repeatpad", **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, return_attention_mask=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = top_db
lowercase__ = truncation
lowercase__ = padding
lowercase__ = fft_window_size
lowercase__ = (fft_window_size >> 1) + 1
lowercase__ = hop_length
lowercase__ = max_length_s
lowercase__ = max_length_s * sampling_rate
lowercase__ = sampling_rate
lowercase__ = frequency_min
lowercase__ = frequency_max
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=_UpperCAmelCase, min_frequency=_UpperCAmelCase, max_frequency=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, norm=_UpperCAmelCase, mel_scale="htk", )
lowercase__ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=_UpperCAmelCase, min_frequency=_UpperCAmelCase, max_frequency=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = spectrogram(
_UpperCAmelCase, window_function(self.fft_window_size, "hann" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=_UpperCAmelCase, log_mel="dB", )
return log_mel_spectrogram.T
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
lowercase__ = [0]
# randomly choose index for each part
lowercase__ = np.random.choice(ranges[0] )
lowercase__ = np.random.choice(ranges[1] )
lowercase__ = np.random.choice(ranges[2] )
lowercase__ = mel[idx_front : idx_front + chunk_frames, :]
lowercase__ = mel[idx_middle : idx_middle + chunk_frames, :]
lowercase__ = mel[idx_back : idx_back + chunk_frames, :]
lowercase__ = torch.tensor(mel[None, None, :] )
lowercase__ = torch.nn.functional.interpolate(
_UpperCAmelCase, size=[chunk_frames, 64], mode="bilinear", align_corners=_UpperCAmelCase )
lowercase__ = mel_shrink[0][0].numpy()
lowercase__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 )
return mel_fusion
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
lowercase__ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
lowercase__ = len(_UpperCAmelCase ) - max_length
lowercase__ = np.random.randint(0, overflow + 1 )
lowercase__ = waveform[idx : idx + max_length]
lowercase__ = self._np_extract_fbank_features(_UpperCAmelCase, self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(_UpperCAmelCase, self.mel_filters )
lowercase__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
lowercase__ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
lowercase__ = np.stack([mel, mel, mel, mel], axis=0 )
lowercase__ = False
else:
lowercase__ = self._random_mel_fusion(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
lowercase__ = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
lowercase__ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
lowercase__ = int(max_length / len(_UpperCAmelCase ) )
lowercase__ = np.stack(np.tile(_UpperCAmelCase, n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
lowercase__ = int(max_length / len(_UpperCAmelCase ) )
lowercase__ = np.stack(np.tile(_UpperCAmelCase, _UpperCAmelCase ) )
lowercase__ = np.pad(_UpperCAmelCase, (0, max_length - waveform.shape[0]), mode="constant", constant_values=0 )
if truncation == "fusion":
lowercase__ = self._np_extract_fbank_features(_UpperCAmelCase, self.mel_filters )
lowercase__ = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 )
else:
lowercase__ = self._np_extract_fbank_features(_UpperCAmelCase, self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = truncation if truncation is not None else self.truncation
lowercase__ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowercase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ):
lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa )
elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray(_UpperCAmelCase )]
# convert to mel spectrogram, truncate and pad if needed.
lowercase__ = [
self._get_input_mel(_UpperCAmelCase, max_length if max_length else self.nb_max_samples, _UpperCAmelCase, _UpperCAmelCase )
for waveform in raw_speech
]
lowercase__ = []
lowercase__ = []
for mel, longer in padded_inputs:
input_mel.append(_UpperCAmelCase )
is_longer.append(_UpperCAmelCase )
if truncation == "fusion" and sum(_UpperCAmelCase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
lowercase__ = np.random.randint(0, len(_UpperCAmelCase ) )
lowercase__ = True
if isinstance(input_mel[0], _UpperCAmelCase ):
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
lowercase__ = [[longer] for longer in is_longer]
lowercase__ = {"input_features": input_mel, "is_longer": is_longer}
lowercase__ = BatchFeature(_UpperCAmelCase )
if return_tensors is not None:
lowercase__ = input_features.convert_to_tensors(_UpperCAmelCase )
return input_features
| 668 |
"""simple docstring"""
from __future__ import annotations
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
lowercase__ = []
for num in range(len(A ) ):
lowercase__ = 0
while 2 * i * i <= odd_composites[num]:
lowercase__ = odd_composites[num] - 2 * i * i
if is_prime(A ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(A ) == n:
return list_nums
return []
def __a ( ):
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
from __future__ import annotations
def __a ( A , A ):
'''simple docstring'''
lowercase__ = []
lowercase__ = []
lowercase__ = 0
lowercase__ = sum(A )
create_state_space_tree(A , A , A , A , A , A )
return result
def __a ( A , A , A , A , A , A , ):
'''simple docstring'''
if sum(A ) > max_sum or (remaining_nums_sum + sum(A )) < max_sum:
return
if sum(A ) == max_sum:
result.append(A )
return
for index in range(A , len(A ) ):
create_state_space_tree(
A , A , index + 1 , [*path, nums[index]] , A , remaining_nums_sum - nums[index] , )
lowerCAmelCase_: List[Any] = [3, 3_4, 4, 1_2, 5, 2]
lowerCAmelCase_: str = 9
lowerCAmelCase_: Union[str, Any] = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 668 |
"""simple docstring"""
import os
import sys
lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase_: Union[str, Any] = [
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoConfig.from_pretrained(*A , **A )
@add_start_docstrings(AutoTokenizer.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*A , **A )
@add_start_docstrings(AutoModel.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModel.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
| 668 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class a__ ( unittest.TestCase ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=99, _UpperCAmelCase=32, _UpperCAmelCase=5, _UpperCAmelCase=4, _UpperCAmelCase=37, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=16, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=4, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_attention_mask
lowercase__ = use_token_type_ids
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = type_sequence_label_size
lowercase__ = initializer_range
lowercase__ = num_choices
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
lowercase__ = None
if self.use_attention_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
lowercase__ = AlbertConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_UpperCAmelCase, initializer_range=self.initializer_range, )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs
lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class a__ ( _a , unittest.TestCase ):
snake_case_ = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowercase__ = model_class_name.from_pretrained("albert-base-v2" )
lowercase__ = model(np.ones((1, 1) ) )
self.assertIsNotNone(_UpperCAmelCase )
@require_flax
class a__ ( unittest.TestCase ):
@slow
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = FlaxAlbertModel.from_pretrained("albert-base-v2" )
lowercase__ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowercase__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowercase__ = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0]
lowercase__ = (1, 11, 768)
self.assertEqual(output.shape, _UpperCAmelCase )
lowercase__ = np.array(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], _UpperCAmelCase, atol=1E-4 ) )
| 668 |
"""simple docstring"""
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class a__ ( unittest.TestCase ):
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ):
lowercase__ = FlaxAutoModel.from_pretrained("bert-base" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 668 | 1 |
"""simple docstring"""
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
lowercase__ = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(A ):
os.makedirs(A )
lowercase__ = model.state_dict()
def to_tf_var_name(A ):
for patt, repl in iter(A ):
lowercase__ = name.replace(A , A )
return f'''bert/{name}'''
def create_tf_var(A , A , A ):
lowercase__ = tf.dtypes.as_dtype(tensor.dtype )
lowercase__ = tf.get_variable(dtype=A , shape=tensor.shape , name=A , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(A )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
lowercase__ = to_tf_var_name(A )
lowercase__ = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
lowercase__ = torch_tensor.T
lowercase__ = create_tf_var(tensor=A , name=A , session=A )
tf.keras.backend.set_value(A , A )
lowercase__ = session.run(A )
print(f'''Successfully created {tf_name}: {np.allclose(A , A )}''' )
lowercase__ = tf.train.Saver(tf.trainable_variables() )
saver.save(A , os.path.join(A , model_name.replace("-" , "_" ) + ".ckpt" ) )
def __a ( A=None ):
'''simple docstring'''
lowercase__ = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=A , required=A , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=A , default=A , required=A , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=A , required=A , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=A , required=A , help="Directory in which to save tensorflow model" )
lowercase__ = parser.parse_args(A )
lowercase__ = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 668 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_: str = logging.get_logger(__name__)
lowerCAmelCase_: List[Any] = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class a__ ( _a ):
snake_case_ = "data2vec-vision"
def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = use_mask_token
lowercase__ = use_absolute_position_embeddings
lowercase__ = use_relative_position_bias
lowercase__ = use_shared_relative_position_bias
lowercase__ = layer_scale_init_value
lowercase__ = drop_path_rate
lowercase__ = use_mean_pooling
# decode head attributes (semantic segmentation)
lowercase__ = out_indices
lowercase__ = pool_scales
# auxiliary head attributes (semantic segmentation)
lowercase__ = use_auxiliary_head
lowercase__ = auxiliary_loss_weight
lowercase__ = auxiliary_channels
lowercase__ = auxiliary_num_convs
lowercase__ = auxiliary_concat_input
lowercase__ = semantic_loss_ignore_index
class a__ ( _a ):
snake_case_ = version.parse("1.11" )
@property
def snake_case__ ( self ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def snake_case__ ( self ):
'''simple docstring'''
return 1E-4
| 668 | 1 |
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def __a ( A , A , A , A , A ):
'''simple docstring'''
with open(A ) as metadata_file:
lowercase__ = json.load(A )
lowercase__ = LukeConfig(use_entity_aware_attention=A , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
lowercase__ = torch.load(A , map_location="cpu" )["module"]
# Load the entity vocab file
lowercase__ = load_original_entity_vocab(A )
# add an entry for [MASK2]
lowercase__ = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
lowercase__ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
lowercase__ = AddedToken("<ent>" , lstrip=A , rstrip=A )
lowercase__ = AddedToken("<ent2>" , lstrip=A , rstrip=A )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(A )
with open(os.path.join(A , "tokenizer_config.json" ) , "r" ) as f:
lowercase__ = json.load(A )
lowercase__ = "MLukeTokenizer"
with open(os.path.join(A , "tokenizer_config.json" ) , "w" ) as f:
json.dump(A , A )
with open(os.path.join(A , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(A , A )
lowercase__ = MLukeTokenizer.from_pretrained(A )
# Initialize the embeddings of the special tokens
lowercase__ = tokenizer.convert_tokens_to_ids(["@"] )[0]
lowercase__ = tokenizer.convert_tokens_to_ids(["#"] )[0]
lowercase__ = state_dict["embeddings.word_embeddings.weight"]
lowercase__ = word_emb[ent_init_index].unsqueeze(0 )
lowercase__ = word_emb[enta_init_index].unsqueeze(0 )
lowercase__ = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
lowercase__ = state_dict[bias_name]
lowercase__ = decoder_bias[ent_init_index].unsqueeze(0 )
lowercase__ = decoder_bias[enta_init_index].unsqueeze(0 )
lowercase__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
lowercase__ = f'''encoder.layer.{layer_index}.attention.self.'''
lowercase__ = state_dict[prefix + matrix_name]
lowercase__ = state_dict[prefix + matrix_name]
lowercase__ = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
lowercase__ = state_dict["entity_embeddings.entity_embeddings.weight"]
lowercase__ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
lowercase__ = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
lowercase__ = state_dict["entity_predictions.bias"]
lowercase__ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
lowercase__ = torch.cat([entity_prediction_bias, entity_mask_bias] )
lowercase__ = LukeForMaskedLM(config=A ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
lowercase__ = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
lowercase__ = state_dict[key]
else:
lowercase__ = state_dict[key]
lowercase__ , lowercase__ = model.load_state_dict(A , strict=A )
if set(A ) != {"luke.embeddings.position_ids"}:
raise ValueError(f'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(A ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
lowercase__ = MLukeTokenizer.from_pretrained(A , task="entity_classification" )
lowercase__ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
lowercase__ = (0, 9)
lowercase__ = tokenizer(A , entity_spans=[span] , return_tensors="pt" )
lowercase__ = model(**A )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
lowercase__ = torch.Size((1, 33, 7_68) )
lowercase__ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
lowercase__ = torch.Size((1, 1, 7_68) )
lowercase__ = torch.tensor([[-0.1482, 0.0609, 0.0322]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
f''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A , atol=1e-4 ):
raise ValueError
# Verify masked word/entity prediction
lowercase__ = MLukeTokenizer.from_pretrained(A )
lowercase__ = "Tokyo is the capital of <mask>."
lowercase__ = (24, 30)
lowercase__ = tokenizer(A , entity_spans=[span] , return_tensors="pt" )
lowercase__ = model(**A )
lowercase__ = encoding["input_ids"][0].tolist()
lowercase__ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
lowercase__ = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(A )
lowercase__ = outputs.entity_logits[0][0].argmax().item()
lowercase__ = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(A ) )
model.save_pretrained(A )
def __a ( A ):
'''simple docstring'''
lowercase__ = ["[MASK]", "[PAD]", "[UNK]"]
lowercase__ = [json.loads(A ) for line in open(A )]
lowercase__ = {}
for entry in data:
lowercase__ = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
lowercase__ = entity_id
break
lowercase__ = f'''{language}:{entity_name}'''
lowercase__ = entity_id
return new_mapping
if __name__ == "__main__":
lowerCAmelCase_: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
lowerCAmelCase_: List[str] = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 668 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: int = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class a__ ( _a ):
snake_case_ = "markuplm"
def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = classifier_dropout
# additional properties
lowercase__ = max_depth
lowercase__ = max_xpath_tag_unit_embeddings
lowercase__ = max_xpath_subs_unit_embeddings
lowercase__ = tag_pad_id
lowercase__ = subs_pad_id
lowercase__ = xpath_unit_hidden_size
| 668 | 1 |
"""simple docstring"""
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __a ( A , A ):
'''simple docstring'''
assert isinstance(A , A )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = tmp_path / "cache"
lowercase__ = {"text": "string"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase__ = TextDatasetReader(A , cache_dir=A , keep_in_memory=A ).read()
_check_text_dataset(A , A )
@pytest.mark.parametrize(
"features" , [
None,
{"text": "string"},
{"text": "int32"},
{"text": "float32"},
] , )
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = tmp_path / "cache"
lowercase__ = {"text": "string"}
lowercase__ = features.copy() if features else default_expected_features
lowercase__ = (
Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase__ = TextDatasetReader(A , features=A , cache_dir=A ).read()
_check_text_dataset(A , A )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = tmp_path / "cache"
lowercase__ = {"text": "string"}
lowercase__ = TextDatasetReader(A , cache_dir=A , split=A ).read()
_check_text_dataset(A , A )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" , [str, list] )
def __a ( A , A , A ):
'''simple docstring'''
if issubclass(A , A ):
lowercase__ = text_path
elif issubclass(A , A ):
lowercase__ = [text_path]
lowercase__ = tmp_path / "cache"
lowercase__ = {"text": "string"}
lowercase__ = TextDatasetReader(A , cache_dir=A ).read()
_check_text_dataset(A , A )
def __a ( A , A , A=("train",) ):
'''simple docstring'''
assert isinstance(A , A )
for split in splits:
lowercase__ = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" , [False, True] )
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = tmp_path / "cache"
lowercase__ = {"text": "string"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
lowercase__ = TextDatasetReader({"train": text_path} , cache_dir=A , keep_in_memory=A ).read()
_check_text_datasetdict(A , A )
@pytest.mark.parametrize(
"features" , [
None,
{"text": "string"},
{"text": "int32"},
{"text": "float32"},
] , )
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = tmp_path / "cache"
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
lowercase__ = {"text": "string"}
lowercase__ = features.copy() if features else default_expected_features
lowercase__ = (
Features({feature: Value(A ) for feature, dtype in features.items()} ) if features is not None else None
)
lowercase__ = TextDatasetReader({"train": text_path} , features=A , cache_dir=A ).read()
_check_text_datasetdict(A , A )
@pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] )
def __a ( A , A , A ):
'''simple docstring'''
if split:
lowercase__ = {split: text_path}
else:
lowercase__ = "train"
lowercase__ = {"train": text_path, "test": text_path}
lowercase__ = tmp_path / "cache"
lowercase__ = {"text": "string"}
lowercase__ = TextDatasetReader(A , cache_dir=A ).read()
_check_text_datasetdict(A , A , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 668 |
"""simple docstring"""
lowerCAmelCase_: Union[str, Any] = [
9_9_9,
8_0_0,
7_9_9,
6_0_0,
5_9_9,
5_0_0,
4_0_0,
3_9_9,
3_7_7,
3_5_5,
3_3_3,
3_1_1,
2_8_8,
2_6_6,
2_4_4,
2_2_2,
2_0_0,
1_9_9,
1_7_7,
1_5_5,
1_3_3,
1_1_1,
8_8,
6_6,
4_4,
2_2,
0,
]
lowerCAmelCase_: List[str] = [
9_9_9,
9_7_6,
9_5_2,
9_2_8,
9_0_5,
8_8_2,
8_5_8,
8_5_7,
8_1_0,
7_6_2,
7_1_5,
7_1_4,
5_7_2,
4_2_9,
4_2_8,
2_8_6,
2_8_5,
2_3_8,
1_9_0,
1_4_3,
1_4_2,
1_1_8,
9_5,
7_1,
4_7,
2_4,
0,
]
lowerCAmelCase_: List[str] = [
9_9_9,
9_8_8,
9_7_7,
9_6_6,
9_5_5,
9_4_4,
9_3_3,
9_2_2,
9_1_1,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_5_0,
3_0_0,
2_9_9,
2_6_6,
2_3_3,
2_0_0,
1_9_9,
1_7_9,
1_5_9,
1_4_0,
1_2_0,
1_0_0,
9_9,
8_8,
7_7,
6_6,
5_5,
4_4,
3_3,
2_2,
1_1,
0,
]
lowerCAmelCase_: Dict = [
9_9_9,
9_9_5,
9_9_2,
9_8_9,
9_8_5,
9_8_1,
9_7_8,
9_7_5,
9_7_1,
9_6_7,
9_6_4,
9_6_1,
9_5_7,
9_5_6,
9_5_1,
9_4_7,
9_4_2,
9_3_7,
9_3_3,
9_2_8,
9_2_3,
9_1_9,
9_1_4,
9_1_3,
9_0_8,
9_0_3,
8_9_7,
8_9_2,
8_8_7,
8_8_1,
8_7_6,
8_7_1,
8_7_0,
8_6_4,
8_5_8,
8_5_2,
8_4_6,
8_4_0,
8_3_4,
8_2_8,
8_2_7,
8_2_0,
8_1_3,
8_0_6,
7_9_9,
7_9_2,
7_8_5,
7_8_4,
7_7_7,
7_7_0,
7_6_3,
7_5_6,
7_4_9,
7_4_2,
7_4_1,
7_3_3,
7_2_4,
7_1_6,
7_0_7,
6_9_9,
6_9_8,
6_8_8,
6_7_7,
6_6_6,
6_5_6,
6_5_5,
6_4_5,
6_3_4,
6_2_3,
6_1_3,
6_1_2,
5_9_8,
5_8_4,
5_7_0,
5_6_9,
5_5_5,
5_4_1,
5_2_7,
5_2_6,
5_0_5,
4_8_4,
4_8_3,
4_6_2,
4_4_0,
4_3_9,
3_9_6,
3_9_5,
3_5_2,
3_5_1,
3_0_8,
3_0_7,
2_6_4,
2_6_3,
2_2_0,
2_1_9,
1_7_6,
1_3_2,
8_8,
4_4,
0,
]
lowerCAmelCase_: Optional[int] = [
9_9_9,
9_9_7,
9_9_5,
9_9_2,
9_9_0,
9_8_8,
9_8_6,
9_8_4,
9_8_1,
9_7_9,
9_7_7,
9_7_5,
9_7_2,
9_7_0,
9_6_8,
9_6_6,
9_6_4,
9_6_1,
9_5_9,
9_5_7,
9_5_6,
9_5_4,
9_5_1,
9_4_9,
9_4_6,
9_4_4,
9_4_1,
9_3_9,
9_3_6,
9_3_4,
9_3_1,
9_2_9,
9_2_6,
9_2_4,
9_2_1,
9_1_9,
9_1_6,
9_1_4,
9_1_3,
9_1_0,
9_0_7,
9_0_5,
9_0_2,
8_9_9,
8_9_6,
8_9_3,
8_9_1,
8_8_8,
8_8_5,
8_8_2,
8_7_9,
8_7_7,
8_7_4,
8_7_1,
8_7_0,
8_6_7,
8_6_4,
8_6_1,
8_5_8,
8_5_5,
8_5_2,
8_4_9,
8_4_6,
8_4_3,
8_4_0,
8_3_7,
8_3_4,
8_3_1,
8_2_8,
8_2_7,
8_2_4,
8_2_1,
8_1_7,
8_1_4,
8_1_1,
8_0_8,
8_0_4,
8_0_1,
7_9_8,
7_9_5,
7_9_1,
7_8_8,
7_8_5,
7_8_4,
7_8_0,
7_7_7,
7_7_4,
7_7_0,
7_6_6,
7_6_3,
7_6_0,
7_5_6,
7_5_2,
7_4_9,
7_4_6,
7_4_2,
7_4_1,
7_3_7,
7_3_3,
7_3_0,
7_2_6,
7_2_2,
7_1_8,
7_1_4,
7_1_0,
7_0_7,
7_0_3,
6_9_9,
6_9_8,
6_9_4,
6_9_0,
6_8_5,
6_8_1,
6_7_7,
6_7_3,
6_6_9,
6_6_4,
6_6_0,
6_5_6,
6_5_5,
6_5_0,
6_4_6,
6_4_1,
6_3_6,
6_3_2,
6_2_7,
6_2_2,
6_1_8,
6_1_3,
6_1_2,
6_0_7,
6_0_2,
5_9_6,
5_9_1,
5_8_6,
5_8_0,
5_7_5,
5_7_0,
5_6_9,
5_6_3,
5_5_7,
5_5_1,
5_4_5,
5_3_9,
5_3_3,
5_2_7,
5_2_6,
5_1_9,
5_1_2,
5_0_5,
4_9_8,
4_9_1,
4_8_4,
4_8_3,
4_7_4,
4_6_6,
4_5_7,
4_4_9,
4_4_0,
4_3_9,
4_2_8,
4_1_8,
4_0_7,
3_9_6,
3_9_5,
3_8_1,
3_6_6,
3_5_2,
3_5_1,
3_3_0,
3_0_8,
3_0_7,
2_8_6,
2_6_4,
2_6_3,
2_4_2,
2_2_0,
2_1_9,
1_7_6,
1_7_5,
1_3_2,
1_3_1,
8_8,
4_4,
0,
]
lowerCAmelCase_: Tuple = [
9_9_9,
9_9_1,
9_8_2,
9_7_4,
9_6_6,
9_5_8,
9_5_0,
9_4_1,
9_3_3,
9_2_5,
9_1_6,
9_0_8,
9_0_0,
8_9_9,
8_7_4,
8_5_0,
8_2_5,
8_0_0,
7_9_9,
7_0_0,
6_0_0,
5_0_0,
4_0_0,
3_0_0,
2_0_0,
1_0_0,
0,
]
lowerCAmelCase_: str = [
9_9_9,
9_9_2,
9_8_5,
9_7_8,
9_7_1,
9_6_4,
9_5_7,
9_4_9,
9_4_2,
9_3_5,
9_2_8,
9_2_1,
9_1_4,
9_0_7,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_0_0,
2_9_9,
2_0_0,
1_9_9,
1_0_0,
9_9,
0,
]
lowerCAmelCase_: int = [
9_9_9,
9_9_6,
9_9_2,
9_8_9,
9_8_5,
9_8_2,
9_7_9,
9_7_5,
9_7_2,
9_6_8,
9_6_5,
9_6_1,
9_5_8,
9_5_5,
9_5_1,
9_4_8,
9_4_4,
9_4_1,
9_3_8,
9_3_4,
9_3_1,
9_2_7,
9_2_4,
9_2_0,
9_1_7,
9_1_4,
9_1_0,
9_0_7,
9_0_3,
9_0_0,
8_9_9,
8_9_1,
8_8_4,
8_7_6,
8_6_9,
8_6_1,
8_5_3,
8_4_6,
8_3_8,
8_3_0,
8_2_3,
8_1_5,
8_0_8,
8_0_0,
7_9_9,
7_8_8,
7_7_7,
7_6_6,
7_5_5,
7_4_4,
7_3_3,
7_2_2,
7_1_1,
7_0_0,
6_9_9,
6_8_8,
6_7_7,
6_6_6,
6_5_5,
6_4_4,
6_3_3,
6_2_2,
6_1_1,
6_0_0,
5_9_9,
5_8_5,
5_7_1,
5_5_7,
5_4_2,
5_2_8,
5_1_4,
5_0_0,
4_9_9,
4_8_5,
4_7_1,
4_5_7,
4_4_2,
4_2_8,
4_1_4,
4_0_0,
3_9_9,
3_7_9,
3_5_9,
3_4_0,
3_2_0,
3_0_0,
2_9_9,
2_7_9,
2_5_9,
2_4_0,
2_2_0,
2_0_0,
1_9_9,
1_6_6,
1_3_3,
1_0_0,
9_9,
6_6,
3_3,
0,
]
| 668 | 1 |
"""simple docstring"""
def __a ( A , A ):
'''simple docstring'''
lowercase__ = len(A ) + 1
lowercase__ = len(A ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
lowercase__ = [[0 for i in range(A )] for j in range(A )]
# since string of zero length match pattern of zero length
lowercase__ = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , A ):
lowercase__ = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , A ):
lowercase__ = dp[0][j - 2] if pattern[j - 1] == "*" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , A ):
for j in range(1 , A ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
lowercase__ = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
lowercase__ = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
lowercase__ = dp[i - 1][j]
else:
lowercase__ = 0
else:
lowercase__ = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
lowerCAmelCase_: List[str] = "aab"
lowerCAmelCase_: Any = "c*a*b"
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'{input_string} matches the given pattern {pattern}')
else:
print(F'{input_string} does not match with the given pattern {pattern}')
| 668 |
"""simple docstring"""
from __future__ import annotations
def __a ( A , A ):
'''simple docstring'''
if partitions <= 0:
raise ValueError("partitions must be a positive number!" )
if partitions > number_of_bytes:
raise ValueError("partitions can not > number_of_bytes!" )
lowercase__ = number_of_bytes // partitions
lowercase__ = []
for i in range(A ):
lowercase__ = i * bytes_per_partition + 1
lowercase__ = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_: List[Any] = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: List[Any] = [
"SEW_PRETRAINED_MODEL_ARCHIVE_LIST",
"SEWForCTC",
"SEWForSequenceClassification",
"SEWModel",
"SEWPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 |
"""simple docstring"""
from collections import deque
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = process_name # process name
lowercase__ = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
lowercase__ = arrival_time
lowercase__ = burst_time # remaining burst time
lowercase__ = 0 # total time of the process wait in ready queue
lowercase__ = 0 # time from arrival time to completion time
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = number_of_queues
# time slice of queues that round robin algorithm applied
lowercase__ = time_slices
# unfinished process is in this ready_queue
lowercase__ = queue
# current time
lowercase__ = current_time
# finished process is in this sequence queue
lowercase__ = deque()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return [q.burst_time for q in queue]
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of finished process
while len(_UpperCAmelCase ) != 0:
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_UpperCAmelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
lowercase__ = 0
# set the process's turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# set the completion time
lowercase__ = self.current_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_UpperCAmelCase ) ):
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_UpperCAmelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
lowercase__ = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_UpperCAmelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
lowercase__ = 0
# set the finish time
lowercase__ = self.current_time
# update the process' turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def snake_case__ ( self ):
'''simple docstring'''
for i in range(self.number_of_queues - 1 ):
lowercase__ , lowercase__ = self.round_robin(
self.ready_queue, self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3)
lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7)
lowerCAmelCase_: str = Process("P3", 0, 6_8)
lowerCAmelCase_: int = Process("P4", 0, 2_4)
lowerCAmelCase_: Dict = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])})
lowerCAmelCase_: Any = Process("P1", 0, 5_3)
lowerCAmelCase_: Tuple = Process("P2", 0, 1_7)
lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8)
lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4)
lowerCAmelCase_: Union[str, Any] = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa])
lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0)
lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print sequence of finished processes
print(
F'sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'
)
| 668 | 1 |
"""simple docstring"""
import functools
def __a ( A , A ):
'''simple docstring'''
lowercase__ = len(A )
lowercase__ = len(A )
@functools.cache
def min_distance(A , A ) -> int:
# if first word index is overflow - delete all from the second word
if indexa >= len_worda:
return len_worda - indexa
# if second word index is overflow - delete all from the first word
if indexa >= len_worda:
return len_worda - indexa
lowercase__ = int(worda[indexa] != worda[indexa] ) # current letters not identical
return min(
1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , )
return min_distance(0 , 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase_: Dict = "pt"
elif is_tf_available():
lowerCAmelCase_: Dict = "tf"
else:
lowerCAmelCase_: str = "jax"
class a__ ( _a , unittest.TestCase ):
snake_case_ = ByTaTokenizer
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
lowercase__ = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def snake_case__ ( self ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("google/byt5-small" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
try:
lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) )
lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
lowercase__ = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
lowercase__ = toks + toks
# toks_str = [t[1] for t in toks]
lowercase__ = [t[0] for t in toks]
# Ensure consistency
lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
lowercase__ = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase )
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
lowercase__ = " " + output_txt
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] )
lowercase__ = tokenizer(["hi", "I went to the gym", ""] )
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = "Unicode €."
lowercase__ = tokenizer(_UpperCAmelCase )
lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" )
lowercase__ = tokenizer("e è é ê ë" )
lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
if FRAMEWORK != "jax":
lowercase__ = list(batch.input_ids.numpy()[0] )
else:
lowercase__ = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids", _UpperCAmelCase )
self.assertIn("attention_mask", _UpperCAmelCase )
self.assertNotIn("decoder_input_ids", _UpperCAmelCase )
self.assertNotIn("decoder_attention_mask", _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = [
"Summary of the text.",
"Another summary.",
]
lowercase__ = tokenizer(
text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertEqual(32, targets["input_ids"].shape[1] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization. </s>"]
lowercase__ = ["Summary of the text. </s>"]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] )
self.assertEqual(_UpperCAmelCase, batch["labels"][0] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
lowercase__ = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"] )
lowercase__ = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token" )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, )
self.assertIn(
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )]
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, )
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens )
self.assertEqual(
["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase )
self.assertTrue(tokenizer.decode([255] ) == "" )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"]
lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
lowercase__ = 0
lowercase__ = tokenizer.convert_ids_to_tokens(
_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
for attr in attributes_list:
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
| 668 | 1 |
"""simple docstring"""
from argparse import ArgumentParser
from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline
from ..utils import logging
from . import BaseTransformersCLICommand
lowerCAmelCase_: str = logging.get_logger(__name__) # pylint: disable=invalid-name
def __a ( A ):
'''simple docstring'''
if not path:
return "pipe"
for ext in PipelineDataFormat.SUPPORTED_FORMATS:
if path.endswith(A ):
return ext
raise Exception(
f'''Unable to determine file format from file extension {path}. '''
f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' )
def __a ( A ):
'''simple docstring'''
lowercase__ = pipeline(
task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , )
lowercase__ = try_infer_format_from_ext(args.input ) if args.format == "infer" else args.format
lowercase__ = PipelineDataFormat.from_str(
format=A , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , )
return RunCommand(A , A )
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = nlp
lowercase__ = reader
@staticmethod
def snake_case__ ( _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = parser.add_parser("run", help="Run a pipeline through the CLI" )
run_parser.add_argument("--task", choices=get_supported_tasks(), help="Task to run" )
run_parser.add_argument("--input", type=_UpperCAmelCase, help="Path to the file to use for inference" )
run_parser.add_argument("--output", type=_UpperCAmelCase, help="Path to the file that will be used post to write results." )
run_parser.add_argument("--model", type=_UpperCAmelCase, help="Name or path to the model to instantiate." )
run_parser.add_argument("--config", type=_UpperCAmelCase, help="Name or path to the model's config to instantiate." )
run_parser.add_argument(
"--tokenizer", type=_UpperCAmelCase, help="Name of the tokenizer to use. (default: same as the model name)" )
run_parser.add_argument(
"--column", type=_UpperCAmelCase, help="Name of the column to use as input. (For multi columns input as QA use column1,columns2)", )
run_parser.add_argument(
"--format", type=_UpperCAmelCase, default="infer", choices=PipelineDataFormat.SUPPORTED_FORMATS, help="Input format to read from", )
run_parser.add_argument(
"--device", type=_UpperCAmelCase, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", )
run_parser.add_argument("--overwrite", action="store_true", help="Allow overwriting the output file." )
run_parser.set_defaults(func=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self._nlp, []
for entry in self._reader:
lowercase__ = nlp(**_UpperCAmelCase ) if self._reader.is_multi_columns else nlp(_UpperCAmelCase )
if isinstance(_UpperCAmelCase, _UpperCAmelCase ):
outputs.append(_UpperCAmelCase )
else:
outputs += output
# Saving data
if self._nlp.binary_output:
lowercase__ = self._reader.save_binary(_UpperCAmelCase )
logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''' )
else:
self._reader.save(_UpperCAmelCase )
| 668 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class a__ ( unittest.TestCase ):
snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = hf_hub_download(
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 )
lowercase__ = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase, [
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
], )
@require_torch
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
lowercase__ = VideoMAEFeatureExtractor(
size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} )
lowercase__ = pipeline(
"video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
], top_k=2, )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
], )
@require_tf
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __a ( A ):
'''simple docstring'''
lowercase__ = filter(lambda A : p.requires_grad , model.parameters() )
lowercase__ = sum([np.prod(p.size() ) for p in model_parameters] )
return params
lowerCAmelCase_: str = logging.getLogger(__name__)
def __a ( A , A ):
'''simple docstring'''
if metric == "rouge2":
lowercase__ = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
lowercase__ = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
lowercase__ = "{val_avg_em:.4f}-{step_count}"
elif metric == "loss":
lowercase__ = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
" function." )
lowercase__ = ModelCheckpoint(
dirpath=A , filename=A , monitor=f'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def __a ( A , A ):
'''simple docstring'''
return EarlyStopping(
monitor=f'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=A , verbose=A , )
class a__ ( pl.Callback ):
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {F'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_UpperCAmelCase )
@rank_zero_only
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=True ):
'''simple docstring'''
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
lowercase__ = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
lowercase__ = Path(pl_module.hparams.output_dir )
if type_path == "test":
lowercase__ = od / "test_results.txt"
lowercase__ = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
lowercase__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
lowercase__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_UpperCAmelCase )
generations_file.parent.mkdir(exist_ok=_UpperCAmelCase )
with open(_UpperCAmelCase, "a+" ) as writer:
for key in sorted(_UpperCAmelCase ):
if key in ["log", "progress_bar", "preds"]:
continue
lowercase__ = metrics[key]
if isinstance(_UpperCAmelCase, torch.Tensor ):
lowercase__ = val.item()
lowercase__ = F'''{key}: {val:.6f}\n'''
writer.write(_UpperCAmelCase )
if not save_generations:
return
if "preds" in metrics:
lowercase__ = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(_UpperCAmelCase )
@rank_zero_only
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
try:
lowercase__ = pl_module.model.model.num_parameters()
except AttributeError:
lowercase__ = pl_module.model.num_parameters()
lowercase__ = count_trainable_parameters(_UpperCAmelCase )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} )
@rank_zero_only
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
save_json(pl_module.metrics, pl_module.metrics_save_path )
return self._write_logs(_UpperCAmelCase, _UpperCAmelCase, "test" )
@rank_zero_only
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
save_json(pl_module.metrics, pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 668 |
"""simple docstring"""
import itertools
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __a ( ):
'''simple docstring'''
lowercase__ = 2
while True:
if is_prime(A ):
yield num
num += 1
def __a ( A = 1_00_01 ):
'''simple docstring'''
return next(itertools.islice(prime_generator() , nth - 1 , A ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
from math import factorial
def __a ( A , A ):
'''simple docstring'''
if n < k or k < 0:
raise ValueError("Please enter positive integers for n and k where n >= k" )
return factorial(A ) // (factorial(A ) * factorial(n - k ))
if __name__ == "__main__":
print(
"The number of five-card hands possible from a standard",
F'fifty-two card deck is: {combinations(5_2, 5)}\n',
)
print(
"If a class of 40 students must be arranged into groups of",
F'4 for group projects, there are {combinations(4_0, 4)} ways',
"to arrange them.\n",
)
print(
"If 10 teams are competing in a Formula One race, there",
F'are {combinations(1_0, 3)} ways that first, second and',
"third place can be awarded.",
)
| 668 |
"""simple docstring"""
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
_UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, )
def snake_case__ ( self ):
'''simple docstring'''
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, )
lowercase__ = self.builder.as_dataset(
split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory )
return dataset
| 668 | 1 |
"""simple docstring"""
import itertools
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __a ( ):
'''simple docstring'''
lowercase__ = 2
while True:
if is_prime(A ):
yield num
num += 1
def __a ( A = 1_00_01 ):
'''simple docstring'''
return next(itertools.islice(prime_generator() , nth - 1 , A ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 668 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowerCAmelCase_: List[str] = 1_6
lowerCAmelCase_: Optional[Any] = 3_2
def __a ( A , A = 16 , A = "bert-base-cased" ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained(A )
lowercase__ = load_dataset("glue" , "mrpc" )
def tokenize_function(A ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowercase__ = datasets.map(
A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" )
return tokenizer.pad(A , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A )
lowercase__ = DataLoader(
tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A )
return train_dataloader, eval_dataloader
def __a ( A , A ):
'''simple docstring'''
lowercase__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["lr"]
lowercase__ = int(config["num_epochs"] )
lowercase__ = int(config["seed"] )
lowercase__ = int(config["batch_size"] )
lowercase__ = args.model_name_or_path
set_seed(A )
lowercase__ , lowercase__ = get_dataloaders(A , A , A )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A )
# Instantiate optimizer
lowercase__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowercase__ = optimizer_cls(params=model.parameters() , lr=A )
if accelerator.state.deepspeed_plugin is not None:
lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
lowercase__ = 1
lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowercase__ = get_linear_schedule_with_warmup(
optimizer=A , num_warmup_steps=0 , num_training_steps=A , )
else:
lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
A , A , A , A , A )
# We need to keep track of how many total steps we have iterated over
lowercase__ = 0
# We also need to keep track of the stating epoch so files are named properly
lowercase__ = 0
# Now we train the model
lowercase__ = evaluate.load("glue" , "mrpc" )
lowercase__ = 0
lowercase__ = {}
for epoch in range(A , A ):
model.train()
for step, batch in enumerate(A ):
lowercase__ = model(**A )
lowercase__ = outputs.loss
lowercase__ = loss / gradient_accumulation_steps
accelerator.backward(A )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
lowercase__ = 0
for step, batch in enumerate(A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**A )
lowercase__ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
lowercase__ , lowercase__ = accelerator.gather(
(predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A ) - 1:
lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A , references=A , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , A )
lowercase__ = eval_metric["accuracy"]
if best_performance < eval_metric["accuracy"]:
lowercase__ = eval_metric["accuracy"]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f:
json.dump(A , A )
def __a ( ):
'''simple docstring'''
lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , )
parser.add_argument(
"--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , )
parser.add_argument(
"--num_epochs" , type=A , default=3 , help="Number of train epochs." , )
lowercase__ = parser.parse_args()
lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(A , A )
if __name__ == "__main__":
main()
| 668 | 1 |
"""simple docstring"""
def __a ( A ):
'''simple docstring'''
lowercase__ = [0] * len(A )
for i in range(1 , len(A ) ):
# use last results for better performance - dynamic programming
lowercase__ = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
lowercase__ = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
lowercase__ = j
return prefix_result
def __a ( A ):
'''simple docstring'''
return max(prefix_function(A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _a ):
snake_case_ = (IPNDMScheduler,)
snake_case_ = (("num_inference_steps", 50),)
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {"num_train_timesteps": 1000}
config.update(**_UpperCAmelCase )
return config
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
return sample
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.timesteps[5]
lowercase__ = scheduler.timesteps[6]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def snake_case__ ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 668 | 1 |
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=99, _UpperCAmelCase=32, _UpperCAmelCase=2, _UpperCAmelCase=4, _UpperCAmelCase=37, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=16, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=3, _UpperCAmelCase=4, _UpperCAmelCase=None, ):
'''simple docstring'''
lowercase__ = parent
lowercase__ = 13
lowercase__ = 7
lowercase__ = True
lowercase__ = True
lowercase__ = True
lowercase__ = True
lowercase__ = 99
lowercase__ = 384
lowercase__ = 2
lowercase__ = 4
lowercase__ = 37
lowercase__ = "gelu"
lowercase__ = 0.1
lowercase__ = 0.1
lowercase__ = 512
lowercase__ = 16
lowercase__ = 2
lowercase__ = 0.02
lowercase__ = 3
lowercase__ = 4
lowercase__ = 128
lowercase__ = 2
lowercase__ = 9
lowercase__ = 1
lowercase__ = None
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
lowercase__ = None
if self.use_input_mask:
lowercase__ = random_attention_mask([self.batch_size, self.seq_length] )
lowercase__ = None
if self.use_token_type_ids:
lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
lowercase__ = None
lowercase__ = None
lowercase__ = None
if self.use_labels:
lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size )
lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
lowercase__ = ids_tensor([self.batch_size], self.num_choices )
lowercase__ = ConvBertConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=_UpperCAmelCase, )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = TFConvBertModel(config=_UpperCAmelCase )
lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowercase__ = [input_ids, input_mask]
lowercase__ = model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = TFConvBertForMaskedLM(config=_UpperCAmelCase )
lowercase__ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.num_labels
lowercase__ = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
lowercase__ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.num_choices
lowercase__ = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) )
lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) )
lowercase__ = tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.num_choices, 1) )
lowercase__ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.num_labels
lowercase__ = TFConvBertForTokenClassification(config=_UpperCAmelCase )
lowercase__ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
lowercase__ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
lowercase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.prepare_config_and_inputs()
(
(
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) , (
lowercase__
) ,
) = config_and_inputs
lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class a__ ( _a , _a , unittest.TestCase ):
snake_case_ = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = TFConvBertModelTester(self )
lowercase__ = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=37 )
def snake_case__ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = True
lowercase__ = True
if hasattr(_UpperCAmelCase, "use_cache" ):
lowercase__ = True
lowercase__ = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length )
lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase )
for model_class in self.all_model_classes:
lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase, saved_model=_UpperCAmelCase )
lowercase__ = os.path.join(_UpperCAmelCase, "saved_model", "1" )
lowercase__ = tf.keras.models.load_model(_UpperCAmelCase )
lowercase__ = model(_UpperCAmelCase )
if self.is_encoder_decoder:
lowercase__ = outputs["encoder_hidden_states"]
lowercase__ = outputs["encoder_attentions"]
else:
lowercase__ = outputs["hidden_states"]
lowercase__ = outputs["attentions"]
self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase )
lowercase__ = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], )
self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], )
@slow
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ = True
lowercase__ = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length )
lowercase__ = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length )
lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase )
lowercase__ = getattr(self.model_tester, "key_length", _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase ):
lowercase__ = len(_UpperCAmelCase )
self.assertEqual(out_len % 2, 0 )
lowercase__ = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], )
def check_encoder_attentions_output(_UpperCAmelCase ):
lowercase__ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ), self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], )
for model_class in self.all_model_classes:
lowercase__ = True
lowercase__ = False
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) )
lowercase__ = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states, _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states, _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
lowercase__ = True
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states, _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
lowercase__ = True
lowercase__ = True
lowercase__ = model_class(_UpperCAmelCase )
lowercase__ = model(self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states, _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class a__ ( unittest.TestCase ):
@slow
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
lowercase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase__ = model(_UpperCAmelCase )[0]
lowercase__ = [1, 6, 768]
self.assertEqual(output.shape, _UpperCAmelCase )
lowercase__ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3], _UpperCAmelCase, atol=1E-4 )
| 668 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( _a , unittest.TestCase ):
snake_case_ = MgpstrTokenizer
snake_case_ = False
snake_case_ = {}
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file, "w", encoding="utf-8" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + "\n" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = "tester"
lowercase__ = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ), 1 )
lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase )
lowercase__ = tokenizer.tokenize(_UpperCAmelCase )
lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ), 0 )
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def snake_case__ ( self ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
def __a ( A ):
'''simple docstring'''
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("Program to check whether a number is a Perfect number or not...")
lowerCAmelCase_: str = int(input("Enter number: ").strip())
print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
| 668 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 668 | 1 |
"""simple docstring"""
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
_UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, )
def snake_case__ ( self ):
'''simple docstring'''
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, )
lowercase__ = self.builder.as_dataset(
split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory )
return dataset
| 668 |
"""simple docstring"""
from typing import Any
import numpy as np
def __a ( A ):
'''simple docstring'''
return np.array_equal(A , matrix.conjugate().T )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = v.conjugate().T
lowercase__ = v_star.dot(A )
assert isinstance(A , np.ndarray )
return (v_star_dot.dot(A )) / (v_star.dot(A ))
def __a ( ):
'''simple docstring'''
lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
lowercase__ = np.array([[1], [2], [3]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
print(rayleigh_quotient(A , A ) )
lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
assert rayleigh_quotient(A , A ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 668 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: List[Any] = {"vocab_file": "sentencepiece.bpe.model"}
lowerCAmelCase_: Optional[int] = {
"vocab_file": {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model",
}
}
lowerCAmelCase_: str = {
"camembert-base": 5_1_2,
}
lowerCAmelCase_: Optional[Any] = "▁"
class a__ ( _a ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self, _UpperCAmelCase, _UpperCAmelCase="<s>", _UpperCAmelCase="</s>", _UpperCAmelCase="</s>", _UpperCAmelCase="<s>", _UpperCAmelCase="<unk>", _UpperCAmelCase="<pad>", _UpperCAmelCase="<mask>", _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"], _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else mask_token
lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCAmelCase, )
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_UpperCAmelCase ) )
lowercase__ = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
lowercase__ = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
lowercase__ = len(self.fairseq_tokens_to_ids )
lowercase__ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids )
lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase__ = [self.cls_token_id]
lowercase__ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase, token_ids_a=_UpperCAmelCase, already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1]
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = [self.sep_token_id]
lowercase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def snake_case__ ( self ):
'''simple docstring'''
return len(self.fairseq_tokens_to_ids ) + len(self.sp_model )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.sp_model.encode(_UpperCAmelCase, out_type=_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(_UpperCAmelCase ) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
lowercase__ = ""
lowercase__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_UpperCAmelCase ) + token
lowercase__ = True
lowercase__ = []
else:
current_sub_tokens.append(_UpperCAmelCase )
lowercase__ = False
out_string += self.sp_model.decode(_UpperCAmelCase )
return out_string.strip()
def __getstate__( self ):
'''simple docstring'''
lowercase__ = self.__dict__.copy()
lowercase__ = None
return state
def __setstate__( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs" ):
lowercase__ = {}
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
if not os.path.isdir(_UpperCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase__ = os.path.join(
_UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase, "wb" ) as fi:
lowercase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
| 668 |
"""simple docstring"""
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class a__ ( _a , unittest.TestCase ):
snake_case_ = PriorTransformer
snake_case_ = "hidden_states"
@property
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = {
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
lowercase__ = self.dummy_input
return init_dict, inputs_dict
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ), 0 )
model.to(_UpperCAmelCase )
lowercase__ = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common()
lowercase__ = self.model_class(**_UpperCAmelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2], _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" )
lowercase__ = model.to(_UpperCAmelCase )
if hasattr(_UpperCAmelCase, "set_default_attn_processor" ):
model.set_default_attn_processor()
lowercase__ = self.get_dummy_seed_input()
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
lowercase__ = output[0, :5].flatten().cpu()
print(_UpperCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] )
self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) )
@slow
class a__ ( unittest.TestCase ):
def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = batch_size
lowercase__ = embedding_dim
lowercase__ = num_embeddings
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]],
[37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]],
# fmt: on
] )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" )
model.to(_UpperCAmelCase )
lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase )
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
lowercase__ = sample[0, :8].flatten().cpu()
print(_UpperCAmelCase )
lowercase__ = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
| 668 | 1 |
"""simple docstring"""
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
lowerCAmelCase_: Union[str, Any] = "base_with_context"
def __a ( A , A ):
'''simple docstring'''
lowercase__ = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) )
lowercase__ = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A )
for lyr_num, lyr in enumerate(model.encoders ):
lowercase__ = weights[f'''layers_{lyr_num}''']
lowercase__ = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
lowercase__ = ly_weight["attention"]
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def __a ( A , A ):
'''simple docstring'''
lowercase__ = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) )
lowercase__ = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A )
for lyr_num, lyr in enumerate(model.encoders ):
lowercase__ = weights[f'''layers_{lyr_num}''']
lowercase__ = ly_weight["attention"]
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
lowercase__ = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
lowercase__ = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def __a ( A , A ):
'''simple docstring'''
lowercase__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) )
lowercase__ = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=A )
lowercase__ = nn.Parameter(
torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
lowercase__ = weights[f'''layers_{lyr_num}''']
lowercase__ = nn.Parameter(
torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) )
lowercase__ = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) )
lowercase__ = ly_weight["self_attention"]
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
lowercase__ = ly_weight["MultiHeadDotProductAttention_0"]
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
lowercase__ = nn.Parameter(
torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
lowercase__ = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
lowercase__ = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) )
lowercase__ = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) )
return model
def __a ( A ):
'''simple docstring'''
lowercase__ = checkpoints.load_tax_checkpoint(args.checkpoint_path )
lowercase__ = jnp.tree_util.tree_map(onp.array , A )
lowercase__ = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
lowercase__ = os.path.join(args.checkpoint_path , ".." , "config.gin" )
lowercase__ = inference.parse_training_gin_file(A , A )
lowercase__ = inference.InferenceModel(args.checkpoint_path , A )
lowercase__ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" )
lowercase__ = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
lowercase__ = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
lowercase__ = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
lowercase__ = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , A )
lowercase__ = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , A )
lowercase__ = load_decoder(ta_checkpoint["target"]["decoder"] , A )
lowercase__ = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" )
lowercase__ = SpectrogramDiffusionPipeline(
notes_encoder=A , continuous_encoder=A , decoder=A , scheduler=A , melgan=A , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
lowerCAmelCase_: Optional[int] = argparse.ArgumentParser()
parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument(
"--checkpoint_path",
default=F'{MODEL}/checkpoint_500000',
type=str,
required=False,
help="Path to the original jax model checkpoint.",
)
lowerCAmelCase_: Union[str, Any] = parser.parse_args()
main(args)
| 668 |
"""simple docstring"""
lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(A )
lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data )
lowercase__ = len(A ) % 6 != 0
if padding_needed:
# The padding that will be added later
lowercase__ = b"=" * ((6 - len(A ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(A ) % 6)
else:
lowercase__ = b""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(A ) , 6 ) ).encode()
+ padding
)
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ) and not isinstance(A , A ):
lowercase__ = (
"argument should be a bytes-like object or ASCII string, "
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(A )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(A , A ):
try:
lowercase__ = encoded_data.decode("utf-8" )
except UnicodeDecodeError:
raise ValueError("base64 encoded data should only contain ASCII characters" )
lowercase__ = encoded_data.count("=" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
lowercase__ = encoded_data[:-padding]
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )
lowercase__ = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(A ) , 8 )
]
return bytes(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
lowerCAmelCase_: Optional[Any] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = "vision-encoder-decoder"
snake_case_ = True
def __init__( self, **_UpperCAmelCase ):
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F'''A configuraton of type {self.model_type} cannot be instantiated because '''
F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' )
lowercase__ = kwargs.pop("encoder" )
lowercase__ = encoder_config.pop("model_type" )
lowercase__ = kwargs.pop("decoder" )
lowercase__ = decoder_config.pop("model_type" )
lowercase__ = AutoConfig.for_model(_UpperCAmelCase, **_UpperCAmelCase )
lowercase__ = AutoConfig.for_model(_UpperCAmelCase, **_UpperCAmelCase )
lowercase__ = True
@classmethod
def snake_case__ ( cls, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ):
'''simple docstring'''
logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" )
lowercase__ = True
lowercase__ = True
return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = copy.deepcopy(self.__dict__ )
lowercase__ = self.encoder.to_dict()
lowercase__ = self.decoder.to_dict()
lowercase__ = self.__class__.model_type
return output
class a__ ( _a ):
snake_case_ = version.parse("1.11" )
@property
def snake_case__ ( self ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def snake_case__ ( self ):
'''simple docstring'''
return 1E-4
@property
def snake_case__ ( self ):
'''simple docstring'''
return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} )
class a__ ( _a ):
@property
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = OrderedDict()
lowercase__ = {0: "batch", 1: "past_decoder_sequence + sequence"}
lowercase__ = {0: "batch", 1: "past_decoder_sequence + sequence"}
lowercase__ = {0: "batch", 1: "encoder_sequence"}
return common_inputs
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = -1, _UpperCAmelCase = -1, _UpperCAmelCase = False, _UpperCAmelCase = None, ):
'''simple docstring'''
import torch
lowercase__ = OrderedDict()
lowercase__ = super().generate_dummy_inputs(
_UpperCAmelCase, batch_size=_UpperCAmelCase, seq_length=_UpperCAmelCase, is_pair=_UpperCAmelCase, framework=_UpperCAmelCase )
lowercase__ , lowercase__ = dummy_input["input_ids"].shape
lowercase__ = (batch, encoder_sequence, self._config.encoder_hidden_size)
lowercase__ = dummy_input.pop("input_ids" )
lowercase__ = dummy_input.pop("attention_mask" )
lowercase__ = torch.zeros(_UpperCAmelCase )
return common_inputs
class a__ ( _a ):
@property
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = "default" ):
'''simple docstring'''
lowercase__ = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase, _UpperCAmelCase )
| 668 |
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ):
'''simple docstring'''
lowercase__ = symbols(A )
lowercase__ = lambdify(A , A )
lowercase__ = lambdify(A , diff(A , A ) )
lowercase__ = starting_point
while True:
if diff_function(A ) != 0:
lowercase__ = prev_guess - multiplicity * func(A ) / diff_function(
A )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowercase__ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
# Find fourth Root of 5
print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}')
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F'{newton_raphson("log(y) - 1", 2, variable="y")}',
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}',
)
# Find root of cos(x)
print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
| 668 | 1 |
"""simple docstring"""
from typing import Any
def __a ( A , A , A , A , A , ):
'''simple docstring'''
_validation(
A , A , A , A , A , )
# Creates data structures and fill initial step
lowercase__ = {}
lowercase__ = {}
for state in states_space:
lowercase__ = observations_space[0]
lowercase__ = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowercase__ = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(A ) ):
lowercase__ = observations_space[o]
lowercase__ = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowercase__ = ""
lowercase__ = -1
for k_state in states_space:
lowercase__ = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowercase__ = probability
lowercase__ = k_state
# Update probabilities and pointers dicts
lowercase__ = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowercase__ = arg_max
# The final observation
lowercase__ = observations_space[len(A ) - 1]
# argmax for given final observation
lowercase__ = ""
lowercase__ = -1
for k_state in states_space:
lowercase__ = probabilities[(k_state, final_observation)]
if probability > max_probability:
lowercase__ = probability
lowercase__ = k_state
lowercase__ = arg_max
# Process pointers backwards
lowercase__ = last_state
lowercase__ = []
for o in range(len(A ) - 1 , -1 , -1 ):
result.append(A )
lowercase__ = pointers[previous, observations_space[o]]
result.reverse()
return result
def __a ( A , A , A , A , A , ):
'''simple docstring'''
_validate_not_empty(
A , A , A , A , A , )
_validate_lists(A , A )
_validate_dicts(
A , A , A )
def __a ( A , A , A , A , A , ):
'''simple docstring'''
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def __a ( A , A ):
'''simple docstring'''
_validate_list(A , "observations_space" )
_validate_list(A , "states_space" )
def __a ( A , A ):
'''simple docstring'''
if not isinstance(_object , A ):
lowercase__ = f'''{var_name} must be a list'''
raise ValueError(A )
else:
for x in _object:
if not isinstance(A , A ):
lowercase__ = f'''{var_name} must be a list of strings'''
raise ValueError(A )
def __a ( A , A , A , ):
'''simple docstring'''
_validate_dict(A , "initial_probabilities" , A )
_validate_nested_dict(A , "transition_probabilities" )
_validate_nested_dict(A , "emission_probabilities" )
def __a ( A , A ):
'''simple docstring'''
_validate_dict(_object , A , A )
for x in _object.values():
_validate_dict(A , A , A , A )
def __a ( A , A , A , A = False ):
'''simple docstring'''
if not isinstance(_object , A ):
lowercase__ = f'''{var_name} must be a dict'''
raise ValueError(A )
if not all(isinstance(A , A ) for x in _object ):
lowercase__ = f'''{var_name} all keys must be strings'''
raise ValueError(A )
if not all(isinstance(A , A ) for x in _object.values() ):
lowercase__ = "nested dictionary " if nested else ""
lowercase__ = f'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(A )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 668 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_: Union[str, Any] = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Any = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Tuple = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Optional[Any] = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase_: List[str] = {
"configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Optional[int] = [
"MEGA_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegaForCausalLM",
"MegaForMaskedLM",
"MegaForMultipleChoice",
"MegaForQuestionAnswering",
"MegaForSequenceClassification",
"MegaForTokenClassification",
"MegaModel",
"MegaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = ["audio_values", "audio_mask"]
def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = spectrogram_length
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = feature_size // self.patch_size[1]
lowercase__ = n_fft
lowercase__ = sampling_rate // hop_length_to_sampling_rate
lowercase__ = sampling_rate
lowercase__ = padding_value
lowercase__ = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = spectrogram(
_UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, )
lowercase__ = log_spec[:, :-1]
lowercase__ = log_spec - 20.0
lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
F''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowercase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ):
lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa )
elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowercase__ = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], _UpperCAmelCase ):
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowercase__ = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowercase__ = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa )
# convert into correct format for padding
lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowercase__ = padded_audio_features * self.padding_value
for i in range(len(_UpperCAmelCase ) ):
lowercase__ = audio_features[i]
lowercase__ = feature
# return as BatchFeature
if return_attention_mask:
lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
lowercase__ = {"audio_values": padded_audio_features}
lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
return encoded_inputs
| 668 | 1 |
"""simple docstring"""
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _a ):
snake_case_ = (DDIMParallelScheduler,)
snake_case_ = (("eta", 0.0), ("num_inference_steps", 50))
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {
"num_train_timesteps": 1000,
"beta_start": 0.0_001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**_UpperCAmelCase )
return config
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ , lowercase__ = 10, 0.0
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for t in scheduler.timesteps:
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
return sample
def snake_case__ ( self ):
'''simple docstring'''
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(steps_offset=1 )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1] ) )
def snake_case__ ( self ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_UpperCAmelCase, beta_end=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
self.check_over_configs(thresholding=_UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=_UpperCAmelCase, prediction_type=_UpperCAmelCase, sample_max_value=_UpperCAmelCase, )
def snake_case__ ( self ):
'''simple docstring'''
for t in [1, 10, 49]:
self.check_over_forward(time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500] ):
self.check_over_forward(time_step=_UpperCAmelCase, num_inference_steps=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=_UpperCAmelCase, eta=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420, 400 ) - 0.14_771 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980, 960 ) - 0.32_460 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0, 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487, 486 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999, 998 ) - 0.02 ) ) < 1E-5
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ , lowercase__ = 10, 0.0
scheduler.set_timesteps(_UpperCAmelCase )
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
lowercase__ = self.dummy_sample_deter + 0.1
lowercase__ = self.dummy_sample_deter - 0.1
lowercase__ = samplea.shape[0]
lowercase__ = torch.stack([samplea, samplea, samplea], dim=0 )
lowercase__ = torch.arange(_UpperCAmelCase )[0:3, None].repeat(1, _UpperCAmelCase )
lowercase__ = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) )
lowercase__ = scheduler.batch_step_no_noise(_UpperCAmelCase, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ), _UpperCAmelCase )
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 1_147.7_904 ) < 1E-2
assert abs(result_mean.item() - 0.4_982 ) < 1E-3
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 172.0_067 ) < 1E-2
assert abs(result_mean.item() - 0.223_967 ) < 1E-3
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop(prediction_type="v_prediction" )
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 52.5_302 ) < 1E-2
assert abs(result_mean.item() - 0.0_684 ) < 1E-3
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase, beta_start=0.01 )
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 149.8_295 ) < 1E-2
assert abs(result_mean.item() - 0.1_951 ) < 1E-3
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase, beta_start=0.01 )
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 149.0_784 ) < 1E-2
assert abs(result_mean.item() - 0.1_941 ) < 1E-3
| 668 |
"""simple docstring"""
from __future__ import annotations
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
lowercase__ = []
for num in range(len(A ) ):
lowercase__ = 0
while 2 * i * i <= odd_composites[num]:
lowercase__ = odd_composites[num] - 2 * i * i
if is_prime(A ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(A ) == n:
return list_nums
return []
def __a ( ):
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ):
'''simple docstring'''
lowercase__ = symbols(A )
lowercase__ = lambdify(A , A )
lowercase__ = lambdify(A , diff(A , A ) )
lowercase__ = starting_point
while True:
if diff_function(A ) != 0:
lowercase__ = prev_guess - multiplicity * func(A ) / diff_function(
A )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowercase__ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
# Find fourth Root of 5
print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}')
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F'{newton_raphson("log(y) - 1", 2, variable="y")}',
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}',
)
# Find root of cos(x)
print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
| 668 |
"""simple docstring"""
import os
import sys
lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase_: Union[str, Any] = [
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoConfig.from_pretrained(*A , **A )
@add_start_docstrings(AutoTokenizer.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*A , **A )
@add_start_docstrings(AutoModel.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModel.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
| 668 | 1 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 668 |
"""simple docstring"""
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class a__ ( unittest.TestCase ):
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ):
lowercase__ = FlaxAutoModel.from_pretrained("bert-base" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 668 | 1 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from importlib import import_module
from typing import Dict, List, Optional, Tuple
import numpy as np
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch import nn
from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
lowerCAmelCase_: Tuple = logging.getLogger(__name__)
@dataclass
class a__ :
snake_case_ = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
snake_case_ = field(
default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
snake_case_ = field(
default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} )
snake_case_ = field(
default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
snake_case_ = field(default=_a , metadata={"help": "Set this flag to use fast tokenization."} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
snake_case_ = field(
default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class a__ :
snake_case_ = field(
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} )
snake_case_ = field(
default=_a , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , )
snake_case_ = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
snake_case_ = field(
default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __a ( ):
'''simple docstring'''
lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
" --overwrite_output_dir to overcome." )
lowercase__ = import_module("tasks" )
try:
lowercase__ = getattr(A , model_args.task_type )
lowercase__ = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '''
f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , A )
# Set seed
set_seed(training_args.seed )
# Prepare CONLL-2003 task
lowercase__ = token_classification_task.get_labels(data_args.labels )
lowercase__ = dict(enumerate(A ) )
lowercase__ = len(A )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowercase__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , idalabel=A , labelaid={label: i for i, label in enumerate(A )} , cache_dir=model_args.cache_dir , )
lowercase__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , )
lowercase__ = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , )
# Get datasets
lowercase__ = (
TokenClassificationDataset(
token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowercase__ = (
TokenClassificationDataset(
token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def align_predictions(A , A ) -> Tuple[List[int], List[int]]:
lowercase__ = np.argmax(A , axis=2 )
lowercase__ , lowercase__ = preds.shape
lowercase__ = [[] for _ in range(A )]
lowercase__ = [[] for _ in range(A )]
for i in range(A ):
for j in range(A ):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(label_map[label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
return preds_list, out_label_list
def compute_metrics(A ) -> Dict:
lowercase__ , lowercase__ = align_predictions(p.predictions , p.label_ids )
return {
"accuracy_score": accuracy_score(A , A ),
"precision": precision_score(A , A ),
"recall": recall_score(A , A ),
"f1": fa_score(A , A ),
}
# Data collator
lowercase__ = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowercase__ = Trainer(
model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_process_zero():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowercase__ = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
lowercase__ = trainer.evaluate()
lowercase__ = os.path.join(training_args.output_dir , "eval_results.txt" )
if trainer.is_world_process_zero():
with open(A , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s" , A , A )
writer.write("%s = %s\n" % (key, value) )
results.update(A )
# Predict
if training_args.do_predict:
lowercase__ = TokenClassificationDataset(
token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , )
lowercase__ , lowercase__ , lowercase__ = trainer.predict(A )
lowercase__ , lowercase__ = align_predictions(A , A )
lowercase__ = os.path.join(training_args.output_dir , "test_results.txt" )
if trainer.is_world_process_zero():
with open(A , "w" ) as writer:
for key, value in metrics.items():
logger.info(" %s = %s" , A , A )
writer.write("%s = %s\n" % (key, value) )
# Save predictions
lowercase__ = os.path.join(training_args.output_dir , "test_predictions.txt" )
if trainer.is_world_process_zero():
with open(A , "w" ) as writer:
with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f:
token_classification_task.write_predictions_to_file(A , A , A )
return results
def __a ( A ):
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 668 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_: str = logging.get_logger(__name__)
lowerCAmelCase_: List[Any] = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class a__ ( _a ):
snake_case_ = "data2vec-vision"
def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(**_UpperCAmelCase )
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = image_size
lowercase__ = patch_size
lowercase__ = num_channels
lowercase__ = use_mask_token
lowercase__ = use_absolute_position_embeddings
lowercase__ = use_relative_position_bias
lowercase__ = use_shared_relative_position_bias
lowercase__ = layer_scale_init_value
lowercase__ = drop_path_rate
lowercase__ = use_mean_pooling
# decode head attributes (semantic segmentation)
lowercase__ = out_indices
lowercase__ = pool_scales
# auxiliary head attributes (semantic segmentation)
lowercase__ = use_auxiliary_head
lowercase__ = auxiliary_loss_weight
lowercase__ = auxiliary_channels
lowercase__ = auxiliary_num_convs
lowercase__ = auxiliary_concat_input
lowercase__ = semantic_loss_ignore_index
class a__ ( _a ):
snake_case_ = version.parse("1.11" )
@property
def snake_case__ ( self ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def snake_case__ ( self ):
'''simple docstring'''
return 1E-4
| 668 | 1 |
"""simple docstring"""
import sys
def __a ( A ):
'''simple docstring'''
lowercase__ = len(A )
lowercase__ = [[0 for x in range(A )] for x in range(A )]
lowercase__ = [[0 for x in range(A )] for x in range(A )]
for chain_length in range(2 , A ):
for a in range(1 , n - chain_length + 1 ):
lowercase__ = a + chain_length - 1
lowercase__ = sys.maxsize
for c in range(A , A ):
lowercase__ = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
lowercase__ = cost
lowercase__ = c
return matrix, sol
def __a ( A , A , A ):
'''simple docstring'''
if i == j:
print("A" + str(A ) , end=" " )
else:
print("(" , end=" " )
print_optiomal_solution(A , A , optimal_solution[i][j] )
print_optiomal_solution(A , optimal_solution[i][j] + 1 , A )
print(")" , end=" " )
def __a ( ):
'''simple docstring'''
lowercase__ = [30, 35, 15, 5, 10, 20, 25]
lowercase__ = len(A )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
lowercase__ , lowercase__ = matrix_chain_order(A )
print("No. of Operation required: " + str(matrix[1][n - 1] ) )
print_optiomal_solution(A , 1 , n - 1 )
if __name__ == "__main__":
main()
| 668 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: int = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class a__ ( _a ):
snake_case_ = "markuplm"
def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = classifier_dropout
# additional properties
lowercase__ = max_depth
lowercase__ = max_xpath_tag_unit_embeddings
lowercase__ = max_xpath_subs_unit_embeddings
lowercase__ = tag_pad_id
lowercase__ = subs_pad_id
lowercase__ = xpath_unit_hidden_size
| 668 | 1 |
"""simple docstring"""
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
lowerCAmelCase_: List[Any] = parse(importlib.metadata.version("torch"))
def __a ( A , A , A ):
'''simple docstring'''
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(f'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' )
lowercase__ = STR_OPERATION_TO_FUNC[operation]
if isinstance(A , A ):
lowercase__ = parse(importlib.metadata.version(A ) )
return operation(A , parse(A ) )
def __a ( A , A ):
'''simple docstring'''
return compare_versions(A , A , A )
| 668 |
"""simple docstring"""
lowerCAmelCase_: Union[str, Any] = [
9_9_9,
8_0_0,
7_9_9,
6_0_0,
5_9_9,
5_0_0,
4_0_0,
3_9_9,
3_7_7,
3_5_5,
3_3_3,
3_1_1,
2_8_8,
2_6_6,
2_4_4,
2_2_2,
2_0_0,
1_9_9,
1_7_7,
1_5_5,
1_3_3,
1_1_1,
8_8,
6_6,
4_4,
2_2,
0,
]
lowerCAmelCase_: List[str] = [
9_9_9,
9_7_6,
9_5_2,
9_2_8,
9_0_5,
8_8_2,
8_5_8,
8_5_7,
8_1_0,
7_6_2,
7_1_5,
7_1_4,
5_7_2,
4_2_9,
4_2_8,
2_8_6,
2_8_5,
2_3_8,
1_9_0,
1_4_3,
1_4_2,
1_1_8,
9_5,
7_1,
4_7,
2_4,
0,
]
lowerCAmelCase_: List[str] = [
9_9_9,
9_8_8,
9_7_7,
9_6_6,
9_5_5,
9_4_4,
9_3_3,
9_2_2,
9_1_1,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_5_0,
3_0_0,
2_9_9,
2_6_6,
2_3_3,
2_0_0,
1_9_9,
1_7_9,
1_5_9,
1_4_0,
1_2_0,
1_0_0,
9_9,
8_8,
7_7,
6_6,
5_5,
4_4,
3_3,
2_2,
1_1,
0,
]
lowerCAmelCase_: Dict = [
9_9_9,
9_9_5,
9_9_2,
9_8_9,
9_8_5,
9_8_1,
9_7_8,
9_7_5,
9_7_1,
9_6_7,
9_6_4,
9_6_1,
9_5_7,
9_5_6,
9_5_1,
9_4_7,
9_4_2,
9_3_7,
9_3_3,
9_2_8,
9_2_3,
9_1_9,
9_1_4,
9_1_3,
9_0_8,
9_0_3,
8_9_7,
8_9_2,
8_8_7,
8_8_1,
8_7_6,
8_7_1,
8_7_0,
8_6_4,
8_5_8,
8_5_2,
8_4_6,
8_4_0,
8_3_4,
8_2_8,
8_2_7,
8_2_0,
8_1_3,
8_0_6,
7_9_9,
7_9_2,
7_8_5,
7_8_4,
7_7_7,
7_7_0,
7_6_3,
7_5_6,
7_4_9,
7_4_2,
7_4_1,
7_3_3,
7_2_4,
7_1_6,
7_0_7,
6_9_9,
6_9_8,
6_8_8,
6_7_7,
6_6_6,
6_5_6,
6_5_5,
6_4_5,
6_3_4,
6_2_3,
6_1_3,
6_1_2,
5_9_8,
5_8_4,
5_7_0,
5_6_9,
5_5_5,
5_4_1,
5_2_7,
5_2_6,
5_0_5,
4_8_4,
4_8_3,
4_6_2,
4_4_0,
4_3_9,
3_9_6,
3_9_5,
3_5_2,
3_5_1,
3_0_8,
3_0_7,
2_6_4,
2_6_3,
2_2_0,
2_1_9,
1_7_6,
1_3_2,
8_8,
4_4,
0,
]
lowerCAmelCase_: Optional[int] = [
9_9_9,
9_9_7,
9_9_5,
9_9_2,
9_9_0,
9_8_8,
9_8_6,
9_8_4,
9_8_1,
9_7_9,
9_7_7,
9_7_5,
9_7_2,
9_7_0,
9_6_8,
9_6_6,
9_6_4,
9_6_1,
9_5_9,
9_5_7,
9_5_6,
9_5_4,
9_5_1,
9_4_9,
9_4_6,
9_4_4,
9_4_1,
9_3_9,
9_3_6,
9_3_4,
9_3_1,
9_2_9,
9_2_6,
9_2_4,
9_2_1,
9_1_9,
9_1_6,
9_1_4,
9_1_3,
9_1_0,
9_0_7,
9_0_5,
9_0_2,
8_9_9,
8_9_6,
8_9_3,
8_9_1,
8_8_8,
8_8_5,
8_8_2,
8_7_9,
8_7_7,
8_7_4,
8_7_1,
8_7_0,
8_6_7,
8_6_4,
8_6_1,
8_5_8,
8_5_5,
8_5_2,
8_4_9,
8_4_6,
8_4_3,
8_4_0,
8_3_7,
8_3_4,
8_3_1,
8_2_8,
8_2_7,
8_2_4,
8_2_1,
8_1_7,
8_1_4,
8_1_1,
8_0_8,
8_0_4,
8_0_1,
7_9_8,
7_9_5,
7_9_1,
7_8_8,
7_8_5,
7_8_4,
7_8_0,
7_7_7,
7_7_4,
7_7_0,
7_6_6,
7_6_3,
7_6_0,
7_5_6,
7_5_2,
7_4_9,
7_4_6,
7_4_2,
7_4_1,
7_3_7,
7_3_3,
7_3_0,
7_2_6,
7_2_2,
7_1_8,
7_1_4,
7_1_0,
7_0_7,
7_0_3,
6_9_9,
6_9_8,
6_9_4,
6_9_0,
6_8_5,
6_8_1,
6_7_7,
6_7_3,
6_6_9,
6_6_4,
6_6_0,
6_5_6,
6_5_5,
6_5_0,
6_4_6,
6_4_1,
6_3_6,
6_3_2,
6_2_7,
6_2_2,
6_1_8,
6_1_3,
6_1_2,
6_0_7,
6_0_2,
5_9_6,
5_9_1,
5_8_6,
5_8_0,
5_7_5,
5_7_0,
5_6_9,
5_6_3,
5_5_7,
5_5_1,
5_4_5,
5_3_9,
5_3_3,
5_2_7,
5_2_6,
5_1_9,
5_1_2,
5_0_5,
4_9_8,
4_9_1,
4_8_4,
4_8_3,
4_7_4,
4_6_6,
4_5_7,
4_4_9,
4_4_0,
4_3_9,
4_2_8,
4_1_8,
4_0_7,
3_9_6,
3_9_5,
3_8_1,
3_6_6,
3_5_2,
3_5_1,
3_3_0,
3_0_8,
3_0_7,
2_8_6,
2_6_4,
2_6_3,
2_4_2,
2_2_0,
2_1_9,
1_7_6,
1_7_5,
1_3_2,
1_3_1,
8_8,
4_4,
0,
]
lowerCAmelCase_: Tuple = [
9_9_9,
9_9_1,
9_8_2,
9_7_4,
9_6_6,
9_5_8,
9_5_0,
9_4_1,
9_3_3,
9_2_5,
9_1_6,
9_0_8,
9_0_0,
8_9_9,
8_7_4,
8_5_0,
8_2_5,
8_0_0,
7_9_9,
7_0_0,
6_0_0,
5_0_0,
4_0_0,
3_0_0,
2_0_0,
1_0_0,
0,
]
lowerCAmelCase_: str = [
9_9_9,
9_9_2,
9_8_5,
9_7_8,
9_7_1,
9_6_4,
9_5_7,
9_4_9,
9_4_2,
9_3_5,
9_2_8,
9_2_1,
9_1_4,
9_0_7,
9_0_0,
8_9_9,
8_7_9,
8_5_9,
8_4_0,
8_2_0,
8_0_0,
7_9_9,
7_6_6,
7_3_3,
7_0_0,
6_9_9,
6_5_0,
6_0_0,
5_9_9,
5_0_0,
4_9_9,
4_0_0,
3_9_9,
3_0_0,
2_9_9,
2_0_0,
1_9_9,
1_0_0,
9_9,
0,
]
lowerCAmelCase_: int = [
9_9_9,
9_9_6,
9_9_2,
9_8_9,
9_8_5,
9_8_2,
9_7_9,
9_7_5,
9_7_2,
9_6_8,
9_6_5,
9_6_1,
9_5_8,
9_5_5,
9_5_1,
9_4_8,
9_4_4,
9_4_1,
9_3_8,
9_3_4,
9_3_1,
9_2_7,
9_2_4,
9_2_0,
9_1_7,
9_1_4,
9_1_0,
9_0_7,
9_0_3,
9_0_0,
8_9_9,
8_9_1,
8_8_4,
8_7_6,
8_6_9,
8_6_1,
8_5_3,
8_4_6,
8_3_8,
8_3_0,
8_2_3,
8_1_5,
8_0_8,
8_0_0,
7_9_9,
7_8_8,
7_7_7,
7_6_6,
7_5_5,
7_4_4,
7_3_3,
7_2_2,
7_1_1,
7_0_0,
6_9_9,
6_8_8,
6_7_7,
6_6_6,
6_5_5,
6_4_4,
6_3_3,
6_2_2,
6_1_1,
6_0_0,
5_9_9,
5_8_5,
5_7_1,
5_5_7,
5_4_2,
5_2_8,
5_1_4,
5_0_0,
4_9_9,
4_8_5,
4_7_1,
4_5_7,
4_4_2,
4_2_8,
4_1_4,
4_0_0,
3_9_9,
3_7_9,
3_5_9,
3_4_0,
3_2_0,
3_0_0,
2_9_9,
2_7_9,
2_5_9,
2_4_0,
2_2_0,
2_0_0,
1_9_9,
1_6_6,
1_3_3,
1_0_0,
9_9,
6_6,
3_3,
0,
]
| 668 | 1 |
"""simple docstring"""
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class a__ ( unittest.TestCase ):
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = mock.Mock()
lowercase__ = 500
lowercase__ = {}
lowercase__ = HTTPError
lowercase__ = {}
# Download this model to make sure it's in the cache.
lowercase__ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request", return_value=_UpperCAmelCase ) as mock_head:
lowercase__ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = mock.Mock()
lowercase__ = 500
lowercase__ = {}
lowercase__ = HTTPError
lowercase__ = {}
# Download this model to make sure it's in the cache.
lowercase__ = GPTaTokenizerFast.from_pretrained("gpt2" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request", return_value=_UpperCAmelCase ) as mock_head:
lowercase__ = GPTaTokenizerFast.from_pretrained("gpt2" )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case__ ( self ):
'''simple docstring'''
try:
lowercase__ = tempfile.mktemp()
with open(_UpperCAmelCase, "wb" ) as f:
http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model", _UpperCAmelCase )
lowercase__ = AlbertTokenizer.from_pretrained(_UpperCAmelCase )
finally:
os.remove(_UpperCAmelCase )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("tokenizer.json" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("tokenizer.json", "wb" ) as f:
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json", _UpperCAmelCase )
lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size, 1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("tokenizer.json" )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" )
@is_staging_test
class a__ ( unittest.TestCase ):
snake_case_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def snake_case__ ( cls ):
'''simple docstring'''
lowercase__ = TOKEN
HfFolder.save_token(_UpperCAmelCase )
@classmethod
def snake_case__ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token, repo_id="test-tokenizer" )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-tokenizer-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-tokenizer" )
except HTTPError:
pass
def snake_case__ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = os.path.join(_UpperCAmelCase, "vocab.txt" )
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
lowercase__ = BertTokenizer(_UpperCAmelCase )
tokenizer.push_to_hub("test-tokenizer", use_auth_token=self._token )
lowercase__ = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
# Reset repo
delete_repo(token=self._token, repo_id="test-tokenizer" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_UpperCAmelCase, repo_id="test-tokenizer", push_to_hub=_UpperCAmelCase, use_auth_token=self._token )
lowercase__ = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
def snake_case__ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = os.path.join(_UpperCAmelCase, "vocab.txt" )
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
lowercase__ = BertTokenizer(_UpperCAmelCase )
tokenizer.push_to_hub("valid_org/test-tokenizer-org", use_auth_token=self._token )
lowercase__ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-tokenizer-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
_UpperCAmelCase, repo_id="valid_org/test-tokenizer-org", push_to_hub=_UpperCAmelCase, use_auth_token=self._token )
lowercase__ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab )
@require_tokenizers
def snake_case__ ( self ):
'''simple docstring'''
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = os.path.join(_UpperCAmelCase, "vocab.txt" )
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
lowercase__ = CustomTokenizer(_UpperCAmelCase )
# No fast custom tokenizer
tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token )
lowercase__ = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=_UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
lowercase__ = os.path.join(_UpperCAmelCase, "vocab.txt" )
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
lowercase__ = BertTokenizerFast.from_pretrained(_UpperCAmelCase )
bert_tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = CustomTokenizerFast.from_pretrained(_UpperCAmelCase )
tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token )
lowercase__ = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=_UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizerFast" )
lowercase__ = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''', use_fast=_UpperCAmelCase, trust_remote_code=_UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" )
class a__ ( unittest.TestCase ):
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = Trie()
trie.add("Hello 友達" )
self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} )
trie.add("Hello" )
trie.data
self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = Trie()
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS] This is a extra_id_100"] )
trie.add("[CLS]" )
trie.add("extra_id_1" )
trie.add("extra_id_100" )
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS]", " This is a ", "extra_id_100"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = Trie()
trie.add("A" )
self.assertEqual(trie.split("ABC" ), ["A", "BC"] )
self.assertEqual(trie.split("BCA" ), ["BC", "A"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = Trie()
trie.add("TOKEN]" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = Trie()
trie.add("A" )
trie.add("P" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = Trie()
trie.add("AB" )
trie.add("B" )
trie.add("C" )
self.assertEqual(trie.split("ABC" ), ["AB", "C"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = Trie()
trie.add("ABC" )
trie.add("B" )
trie.add("CD" )
self.assertEqual(trie.split("ABCD" ), ["ABC", "D"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = Trie()
lowercase__ = trie.cut_text("ABC", [0, 0, 2, 1, 2, 3] )
self.assertEqual(_UpperCAmelCase, ["AB", "C"] )
| 668 |
"""simple docstring"""
from __future__ import annotations
def __a ( A , A ):
'''simple docstring'''
if partitions <= 0:
raise ValueError("partitions must be a positive number!" )
if partitions > number_of_bytes:
raise ValueError("partitions can not > number_of_bytes!" )
lowercase__ = number_of_bytes // partitions
lowercase__ = []
for i in range(A ):
lowercase__ = i * bytes_per_partition + 1
lowercase__ = (
number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition
)
allocation_list.append(f'''{start_bytes}-{end_bytes}''' )
return allocation_list
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
import string
from math import logaa
def __a ( A , A ):
'''simple docstring'''
lowercase__ = document.translate(
str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" )
lowercase__ = document_without_punctuation.split(" " ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = corpus.lower().translate(
str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with ''
lowercase__ = corpus_without_punctuation.split("\n" )
lowercase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(A ))
def __a ( A , A , A=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("log10(0) is undefined." )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("df must be > 0" )
elif n == 0:
raise ValueError("log10(0) is undefined." )
return round(logaa(n / df ) , 3 )
def __a ( A , A ):
'''simple docstring'''
return round(tf * idf , 3 )
| 668 |
"""simple docstring"""
from collections import deque
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = process_name # process name
lowercase__ = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
lowercase__ = arrival_time
lowercase__ = burst_time # remaining burst time
lowercase__ = 0 # total time of the process wait in ready queue
lowercase__ = 0 # time from arrival time to completion time
class a__ :
def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = number_of_queues
# time slice of queues that round robin algorithm applied
lowercase__ = time_slices
# unfinished process is in this ready_queue
lowercase__ = queue
# current time
lowercase__ = current_time
# finished process is in this sequence queue
lowercase__ = deque()
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return [q.burst_time for q in queue]
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of finished process
while len(_UpperCAmelCase ) != 0:
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_UpperCAmelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
lowercase__ = 0
# set the process's turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# set the completion time
lowercase__ = self.current_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_UpperCAmelCase ) ):
lowercase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_UpperCAmelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
lowercase__ = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_UpperCAmelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
lowercase__ = 0
# set the finish time
lowercase__ = self.current_time
# update the process' turnaround time because it is finished
lowercase__ = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def snake_case__ ( self ):
'''simple docstring'''
for i in range(self.number_of_queues - 1 ):
lowercase__ , lowercase__ = self.round_robin(
self.ready_queue, self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3)
lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7)
lowerCAmelCase_: str = Process("P3", 0, 6_8)
lowerCAmelCase_: int = Process("P4", 0, 2_4)
lowerCAmelCase_: Dict = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])})
lowerCAmelCase_: Any = Process("P1", 0, 5_3)
lowerCAmelCase_: Tuple = Process("P2", 0, 1_7)
lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8)
lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4)
lowerCAmelCase_: Union[str, Any] = 3
lowerCAmelCase_: Any = [1_7, 2_5]
lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa])
lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0)
lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'
)
# print sequence of finished processes
print(
F'sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'
)
| 668 | 1 |
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase_: Dict = logging.get_logger(__name__)
lowerCAmelCase_: Dict = "▁"
lowerCAmelCase_: Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowerCAmelCase_: Union[str, Any] = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowerCAmelCase_: Union[str, Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowerCAmelCase_: str = {
"ernie-m-base": 5_1_4,
"ernie-m-large": 5_1_4,
}
lowerCAmelCase_: Optional[int] = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class a__ ( _a ):
snake_case_ = ["input_ids"]
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_INIT_CONFIGURATION
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = RESOURCE_FILES_NAMES
def __init__( self, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=False, _UpperCAmelCase="utf8", _UpperCAmelCase="[UNK]", _UpperCAmelCase="[SEP]", _UpperCAmelCase="[PAD]", _UpperCAmelCase="[CLS]", _UpperCAmelCase="[MASK]", _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, vocab_file=_UpperCAmelCase, encoding=_UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCAmelCase, )
lowercase__ = do_lower_case
lowercase__ = sentencepiece_model_ckpt
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowercase__ = self.load_vocab(filepath=_UpperCAmelCase )
else:
lowercase__ = {self.sp_model.id_to_piece(_UpperCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
lowercase__ = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if text is None:
return None
lowercase__ = self.tokenize(_UpperCAmelCase )
lowercase__ , lowercase__ = "", []
for i, ch in enumerate(_UpperCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
lowercase__ = self.SP_CHAR_MAPPING.get(_UpperCAmelCase )
else:
lowercase__ = unicodedata.normalize("NFKC", _UpperCAmelCase )
if self.is_whitespace(_UpperCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_UpperCAmelCase ) )
lowercase__ , lowercase__ , lowercase__ = normalized_text, [], 0
if self.do_lower_case:
lowercase__ = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowercase__ = token[1:]
lowercase__ = text[offset:].index(_UpperCAmelCase ) + offset
lowercase__ = start + len(_UpperCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowercase__ = end
return token_mapping
@property
def snake_case__ ( self ):
'''simple docstring'''
return len(self.vocab )
def snake_case__ ( self ):
'''simple docstring'''
return dict(self.vocab, **self.added_tokens_encoder )
def __getstate__( self ):
'''simple docstring'''
lowercase__ = self.__dict__.copy()
lowercase__ = None
return state
def __setstate__( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs" ):
lowercase__ = {}
lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return "".join((self.SP_CHAR_MAPPING.get(_UpperCAmelCase, _UpperCAmelCase ) for c in text) )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=64, _UpperCAmelCase=0.1 ):
'''simple docstring'''
if self.sp_model_kwargs.get("enable_sampling" ) is True:
lowercase__ = True
if self.sp_model_kwargs.get("alpha" ) is not None:
lowercase__ = self.sp_model_kwargs.get("alpha" )
if self.sp_model_kwargs.get("nbest_size" ) is not None:
lowercase__ = self.sp_model_kwargs.get("nbest_size" )
if not enable_sampling:
lowercase__ = self.sp_model.EncodeAsPieces(_UpperCAmelCase )
else:
lowercase__ = self.sp_model.SampleEncodeAsPieces(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
lowercase__ = []
for pi, piece in enumerate(_UpperCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_UpperCAmelCase ) and pi != 0:
new_pieces.append(_UpperCAmelCase )
continue
else:
continue
lowercase__ = 0
for i, chunk in enumerate(_UpperCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_UpperCAmelCase ) or self.is_punct(_UpperCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_UpperCAmelCase )
lowercase__ = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowercase__ = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowercase__ = i
if len(_UpperCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase, " " ).strip()
return out_string
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.convert_ids_to_tokens(_UpperCAmelCase )
lowercase__ = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase, " " ).strip()
return out_string
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.vocab.get(_UpperCAmelCase, self.vocab.get(self.unk_token ) )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
return self.reverse_vocab.get(_UpperCAmelCase, self.unk_token )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowercase__ = [self.cls_token_id]
lowercase__ = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None ):
'''simple docstring'''
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase=False ):
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_UpperCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_UpperCAmelCase ) + 1) + [1] * (len(_UpperCAmelCase ) + 3)
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_UpperCAmelCase ) == 1:
lowercase__ = unicodedata.category(_UpperCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {}
with io.open(_UpperCAmelCase, "r", encoding="utf-8" ) as f:
for index, line in enumerate(_UpperCAmelCase ):
lowercase__ = line.rstrip("\n" )
lowercase__ = int(_UpperCAmelCase )
return token_to_idx
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ):
'''simple docstring'''
lowercase__ = 0
if os.path.isdir(_UpperCAmelCase ):
lowercase__ = os.path.join(
_UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
lowercase__ = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(_UpperCAmelCase, "w", encoding="utf-8" ) as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda _UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
" Please check that the vocabulary is not corrupted!" )
lowercase__ = token_index
writer.write(token + "\n" )
index += 1
lowercase__ = os.path.join(_UpperCAmelCase, "sentencepiece.bpe.model" )
with open(_UpperCAmelCase, "wb" ) as fi:
lowercase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (vocab_file,)
| 668 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
lowerCAmelCase_: Dict = "pt"
elif is_tf_available():
lowerCAmelCase_: Dict = "tf"
else:
lowerCAmelCase_: str = "jax"
class a__ ( _a , unittest.TestCase ):
snake_case_ = ByTaTokenizer
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
lowercase__ = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def snake_case__ ( self ):
'''simple docstring'''
return ByTaTokenizer.from_pretrained("google/byt5-small" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ):
'''simple docstring'''
lowercase__ = []
for i in range(len(_UpperCAmelCase ) ):
try:
lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) )
lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) )
if max_length is not None and len(_UpperCAmelCase ) > max_length:
lowercase__ = toks[:max_length]
if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0:
while len(_UpperCAmelCase ) < min_length:
lowercase__ = toks + toks
# toks_str = [t[1] for t in toks]
lowercase__ = [t[0] for t in toks]
# Ensure consistency
lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase )
if " " not in output_txt and len(_UpperCAmelCase ) > 1:
lowercase__ = (
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase )
+ " "
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase )
)
if with_prefix_space:
lowercase__ = " " + output_txt
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
return output_txt, output_ids
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] )
lowercase__ = tokenizer(["hi", "I went to the gym", ""] )
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = "Unicode €."
lowercase__ = tokenizer(_UpperCAmelCase )
lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" )
lowercase__ = tokenizer("e è é ê ë" )
lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded["input_ids"], _UpperCAmelCase )
# decoding
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
if FRAMEWORK != "jax":
lowercase__ = list(batch.input_ids.numpy()[0] )
else:
lowercase__ = list(batch.input_ids.tolist()[0] )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual((2, 37), batch.input_ids.shape )
self.assertEqual((2, 37), batch.attention_mask.shape )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids", _UpperCAmelCase )
self.assertIn("attention_mask", _UpperCAmelCase )
self.assertNotIn("decoder_input_ids", _UpperCAmelCase )
self.assertNotIn("decoder_attention_mask", _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = [
"Summary of the text.",
"Another summary.",
]
lowercase__ = tokenizer(
text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase )
self.assertEqual(32, targets["input_ids"].shape[1] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.ta_base_tokenizer
lowercase__ = ["A long paragraph for summarization. </s>"]
lowercase__ = ["Summary of the text. </s>"]
# fmt: off
lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] )
self.assertEqual(_UpperCAmelCase, batch["labels"][0] )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length, 42 )
# Now let's start the test
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
shutil.rmtree(_UpperCAmelCase )
lowercase__ = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
lowercase__ = tempfile.mkdtemp()
lowercase__ = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"] )
lowercase__ = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token" )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
tokenizer.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase )
lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length, 42 )
lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 )
self.assertEqual(tokenizer.model_max_length, 43 )
shutil.rmtree(_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file:
lowercase__ = json.load(_UpperCAmelCase )
lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
lowercase__ = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile:
json.dump(_UpperCAmelCase, _UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, )
self.assertIn(
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )]
lowercase__ = tokenizer_class.from_pretrained(
_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, )
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens )
self.assertEqual(
["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase )
self.assertTrue(tokenizer.decode([255] ) == "" )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"]
lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
lowercase__ = 0
lowercase__ = tokenizer.convert_ids_to_tokens(
_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
for attr in attributes_list:
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] )
setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] )
self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
| 668 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _a ):
snake_case_ = (PNDMScheduler,)
snake_case_ = (("num_inference_steps", 50),)
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {
"num_train_timesteps": 1000,
"beta_start": 0.0_001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**_UpperCAmelCase )
return config
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step_plms(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
return sample
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step_prk(_UpperCAmelCase, 0, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step_prk(_UpperCAmelCase, 1, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step_plms(_UpperCAmelCase, 0, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step_plms(_UpperCAmelCase, 1, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def snake_case__ ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(steps_offset=1 )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps, torch.LongTensor(
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ), )
def snake_case__ ( self ):
'''simple docstring'''
for beta_start, beta_end in zip([0.0_001, 0.001], [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase, beta_end=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = 27
for scheduler_class in self.scheduler_classes:
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
lowercase__ = scheduler.step_prk(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaises(_UpperCAmelCase ):
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample ).prev_sample
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1_318 ) < 1E-2
assert abs(result_mean.item() - 0.2_580 ) < 1E-3
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop(prediction_type="v_prediction" )
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3_986 ) < 1E-2
assert abs(result_mean.item() - 0.0_878 ) < 1E-3
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase, beta_start=0.01 )
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0_399 ) < 1E-2
assert abs(result_mean.item() - 0.2_995 ) < 1E-3
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase, beta_start=0.01 )
lowercase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9_482 ) < 1E-2
assert abs(result_mean.item() - 0.2_434 ) < 1E-3
| 668 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class a__ ( unittest.TestCase ):
snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = hf_hub_download(
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 )
lowercase__ = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
for example in examples:
lowercase__ = video_classifier(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase, [
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
{"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )},
], )
@require_torch
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
lowercase__ = VideoMAEFeatureExtractor(
size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} )
lowercase__ = pipeline(
"video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 )
lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" )
lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], )
lowercase__ = video_classifier(
[
video_file_path,
video_file_path,
], top_k=2, )
self.assertEqual(
nested_simplify(_UpperCAmelCase, decimals=4 ), [
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
[{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}],
], )
@require_tf
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
from collections import Counter
from timeit import timeit
def __a ( A = "" , ):
'''simple docstring'''
return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2
def __a ( A = "" ):
'''simple docstring'''
if len(A ) == 0:
return True
lowercase__ = input_str.replace(" " , "" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
lowercase__ = {}
for character in lower_case_input_str:
lowercase__ = character_freq_dict.get(A , 0 ) + 1
lowercase__ = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def __a ( A = "" ):
'''simple docstring'''
print("\nFor string = " , A , ":" )
print(
"> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(A ) , "\ttime =" , timeit(
"z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , )
print(
"> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(A ) , "\ttime =" , timeit(
"z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , )
if __name__ == "__main__":
lowerCAmelCase_: Dict = input(
"Enter string to determine if it can be rearranged as a palindrome or not: "
).strip()
benchmark(check_str)
lowerCAmelCase_: Union[str, Any] = can_string_be_rearranged_as_palindrome_counter(check_str)
print(F'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 668 |
"""simple docstring"""
import itertools
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __a ( ):
'''simple docstring'''
lowercase__ = 2
while True:
if is_prime(A ):
yield num
num += 1
def __a ( A = 1_00_01 ):
'''simple docstring'''
return next(itertools.islice(prime_generator() , nth - 1 , A ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
class a__ :
def __init__( self ):
'''simple docstring'''
lowercase__ = {}
def snake_case__ ( self ):
'''simple docstring'''
print(self.vertex )
for i in self.vertex:
print(_UpperCAmelCase, " -> ", " -> ".join([str(_UpperCAmelCase ) for j in self.vertex[i]] ) )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
if from_vertex in self.vertex:
self.vertex[from_vertex].append(_UpperCAmelCase )
else:
# else make a new vertex
lowercase__ = [to_vertex]
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = True
print(_UpperCAmelCase, end=" " )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(_UpperCAmelCase, _UpperCAmelCase )
if __name__ == "__main__":
lowerCAmelCase_: Union[str, Any] = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print("DFS:")
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 668 |
"""simple docstring"""
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class a__ ( _a ):
def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
_UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths}
lowercase__ = Text(
cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, )
def snake_case__ ( self ):
'''simple docstring'''
if self.streaming:
lowercase__ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase__ = None
lowercase__ = None
lowercase__ = None
lowercase__ = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, )
lowercase__ = self.builder.as_dataset(
split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory )
return dataset
| 668 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( _a , unittest.TestCase ):
snake_case_ = MgpstrTokenizer
snake_case_ = False
snake_case_ = {}
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file, "w", encoding="utf-8" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + "\n" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = "tester"
lowercase__ = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ), 1 )
lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase )
lowercase__ = tokenizer.tokenize(_UpperCAmelCase )
lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ), 0 )
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def snake_case__ ( self ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowerCAmelCase_: List[str] = 1_6
lowerCAmelCase_: Optional[Any] = 3_2
def __a ( A , A = 16 , A = "bert-base-cased" ):
'''simple docstring'''
lowercase__ = AutoTokenizer.from_pretrained(A )
lowercase__ = load_dataset("glue" , "mrpc" )
def tokenize_function(A ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowercase__ = datasets.map(
A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" )
return tokenizer.pad(A , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
lowercase__ = DataLoader(
tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A )
lowercase__ = DataLoader(
tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A )
return train_dataloader, eval_dataloader
def __a ( A , A ):
'''simple docstring'''
lowercase__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ = config["lr"]
lowercase__ = int(config["num_epochs"] )
lowercase__ = int(config["seed"] )
lowercase__ = int(config["batch_size"] )
lowercase__ = args.model_name_or_path
set_seed(A )
lowercase__ , lowercase__ = get_dataloaders(A , A , A )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A )
# Instantiate optimizer
lowercase__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowercase__ = optimizer_cls(params=model.parameters() , lr=A )
if accelerator.state.deepspeed_plugin is not None:
lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
lowercase__ = 1
lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowercase__ = get_linear_schedule_with_warmup(
optimizer=A , num_warmup_steps=0 , num_training_steps=A , )
else:
lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare(
A , A , A , A , A )
# We need to keep track of how many total steps we have iterated over
lowercase__ = 0
# We also need to keep track of the stating epoch so files are named properly
lowercase__ = 0
# Now we train the model
lowercase__ = evaluate.load("glue" , "mrpc" )
lowercase__ = 0
lowercase__ = {}
for epoch in range(A , A ):
model.train()
for step, batch in enumerate(A ):
lowercase__ = model(**A )
lowercase__ = outputs.loss
lowercase__ = loss / gradient_accumulation_steps
accelerator.backward(A )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
lowercase__ = 0
for step, batch in enumerate(A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ = model(**A )
lowercase__ = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
lowercase__ , lowercase__ = accelerator.gather(
(predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(A ) - 1:
lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=A , references=A , )
lowercase__ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , A )
lowercase__ = eval_metric["accuracy"]
if best_performance < eval_metric["accuracy"]:
lowercase__ = eval_metric["accuracy"]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f:
json.dump(A , A )
def __a ( ):
'''simple docstring'''
lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , )
parser.add_argument(
"--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , )
parser.add_argument(
"--num_epochs" , type=A , default=3 , help="Number of train epochs." , )
lowercase__ = parser.parse_args()
lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(A , A )
if __name__ == "__main__":
main()
| 668 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase_: List[Any] = logging.get_logger(__name__)
lowerCAmelCase_: int = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class a__ ( _a ):
snake_case_ = "markuplm"
def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = hidden_act
lowercase__ = intermediate_size
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = type_vocab_size
lowercase__ = initializer_range
lowercase__ = layer_norm_eps
lowercase__ = position_embedding_type
lowercase__ = use_cache
lowercase__ = classifier_dropout
# additional properties
lowercase__ = max_depth
lowercase__ = max_xpath_tag_unit_embeddings
lowercase__ = max_xpath_subs_unit_embeddings
lowercase__ = tag_pad_id
lowercase__ = subs_pad_id
lowercase__ = xpath_unit_hidden_size
| 668 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a__ ( _a ):
snake_case_ = (IPNDMScheduler,)
snake_case_ = (("num_inference_steps", 50),)
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = {"num_train_timesteps": 1000}
config.update(**_UpperCAmelCase )
return config
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
if time_step is None:
lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
lowercase__ = self.scheduler_classes[0]
lowercase__ = self.get_scheduler_config(**_UpperCAmelCase )
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = 10
lowercase__ = self.dummy_model()
lowercase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample
return sample
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = dict(self.forward_default_kwargs )
lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ = self.get_scheduler_config()
lowercase__ = scheduler_class(**_UpperCAmelCase )
lowercase__ = self.dummy_sample
lowercase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ):
lowercase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowercase__ = dummy_past_residuals[:]
lowercase__ = scheduler.timesteps[5]
lowercase__ = scheduler.timesteps[6]
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def snake_case__ ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.full_loop()
lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 668 | 1 |
"""simple docstring"""
def __a ( A , A ):
'''simple docstring'''
return price * (1 + tax_rate)
if __name__ == "__main__":
print(F'{price_plus_tax(1_0_0, 0.25) = }')
print(F'{price_plus_tax(125.50, 0.05) = }')
| 668 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( _a , unittest.TestCase ):
snake_case_ = MgpstrTokenizer
snake_case_ = False
snake_case_ = {}
snake_case_ = False
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# fmt: off
lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) )
lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file, "w", encoding="utf-8" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + "\n" )
def snake_case__ ( self, **_UpperCAmelCase ):
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase )
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = "tester"
lowercase__ = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def snake_case__ ( self ):
'''simple docstring'''
pass
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ), 1 )
lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase )
lowercase__ = tokenizer.tokenize(_UpperCAmelCase )
lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ), 0 )
lowercase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def snake_case__ ( self ):
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def snake_case__ ( self ):
'''simple docstring'''
pass
| 668 | 1 |
"""simple docstring"""
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_: str = get_tests_dir("fixtures/test_sentencepiece.model")
lowerCAmelCase_: int = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
lowerCAmelCase_: List[Any] = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class a__ ( _a , unittest.TestCase ):
snake_case_ = CamembertTokenizer
snake_case_ = CamembertTokenizerFast
snake_case_ = True
snake_case_ = True
def snake_case__ ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = CamembertTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = "<pad>"
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ), _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ), _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0], "<s>NOTUSED" )
self.assertEqual(vocab_keys[1], "<pad>" )
self.assertEqual(vocab_keys[-1], "<mask>" )
self.assertEqual(len(_UpperCAmelCase ), 1004 )
def snake_case__ ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size, 1005 )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = CamembertTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
lowercase__ = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
lowercase__ = "I was born in 92000, and this is falsé."
lowercase__ = tokenizer.encode(_UpperCAmelCase )
lowercase__ = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
lowercase__ = rust_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
lowercase__ = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowercase__ = self.get_tokenizer()
lowercase__ = self.get_rust_tokenizer()
lowercase__ = "I was born in 92000, and this is falsé."
lowercase__ = tokenizer.tokenize(_UpperCAmelCase )
lowercase__ = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
lowercase__ = rust_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = self.get_rust_tokenizer()
lowercase__ = tokenizer.encode(_UpperCAmelCase )
lowercase__ = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = {"input_ids": [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 2_7575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 2_2804, 1_8818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 1_0326, 24, 2267, 20, 416, 5072, 1_5612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
lowercase__ = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase, model_name="camembert-base", revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf", sequences=_UpperCAmelCase, )
| 668 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 668 | 1 |
"""simple docstring"""
from math import loga
def __a ( A ):
'''simple docstring'''
if a < 0:
raise ValueError("Input value must be a positive integer" )
elif isinstance(A , A ):
raise TypeError("Input value must be a 'int' type" )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 |
"""simple docstring"""
from typing import Any
import numpy as np
def __a ( A ):
'''simple docstring'''
return np.array_equal(A , matrix.conjugate().T )
def __a ( A , A ):
'''simple docstring'''
lowercase__ = v.conjugate().T
lowercase__ = v_star.dot(A )
assert isinstance(A , np.ndarray )
return (v_star_dot.dot(A )) / (v_star.dot(A ))
def __a ( ):
'''simple docstring'''
lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] )
lowercase__ = np.array([[1], [2], [3]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
print(rayleigh_quotient(A , A ) )
lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(A ), f'''{a} is not hermitian.'''
assert rayleigh_quotient(A , A ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 668 | 1 |
"""simple docstring"""
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class a__ ( unittest.TestCase ):
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ):
lowercase__ = FlaxAutoModel.from_pretrained("bert-base" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 668 |
"""simple docstring"""
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class a__ ( _a , unittest.TestCase ):
snake_case_ = PriorTransformer
snake_case_ = "hidden_states"
@property
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = {
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
lowercase__ = self.dummy_input
return init_dict, inputs_dict
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ), 0 )
model.to(_UpperCAmelCase )
lowercase__ = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common()
lowercase__ = self.model_class(**_UpperCAmelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2], _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" )
lowercase__ = model.to(_UpperCAmelCase )
if hasattr(_UpperCAmelCase, "set_default_attn_processor" ):
model.set_default_attn_processor()
lowercase__ = self.get_dummy_seed_input()
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
lowercase__ = output[0, :5].flatten().cpu()
print(_UpperCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] )
self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) )
@slow
class a__ ( unittest.TestCase ):
def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = batch_size
lowercase__ = embedding_dim
lowercase__ = num_embeddings
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]],
[37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]],
# fmt: on
] )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" )
model.to(_UpperCAmelCase )
lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase )
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
lowercase__ = sample[0, :8].flatten().cpu()
print(_UpperCAmelCase )
lowercase__ = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
| 668 | 1 |
"""simple docstring"""
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class a__ ( _a , unittest.TestCase ):
snake_case_ = PriorTransformer
snake_case_ = "hidden_states"
@property
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = 4
lowercase__ = 8
lowercase__ = 7
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
@property
def snake_case__ ( self ):
'''simple docstring'''
return (4, 8)
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = {
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
lowercase__ = self.dummy_input
return init_dict, inputs_dict
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ), 0 )
model.to(_UpperCAmelCase )
lowercase__ = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common()
lowercase__ = self.model_class(**_UpperCAmelCase )
lowercase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ = [*signature.parameters.keys()]
lowercase__ = ["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2], _UpperCAmelCase )
def snake_case__ ( self ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" )
lowercase__ = model.to(_UpperCAmelCase )
if hasattr(_UpperCAmelCase, "set_default_attn_processor" ):
model.set_default_attn_processor()
lowercase__ = self.get_dummy_seed_input()
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
lowercase__ = output[0, :5].flatten().cpu()
print(_UpperCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] )
self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) )
@slow
class a__ ( unittest.TestCase ):
def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ):
'''simple docstring'''
torch.manual_seed(_UpperCAmelCase )
lowercase__ = batch_size
lowercase__ = embedding_dim
lowercase__ = num_embeddings
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase )
lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def snake_case__ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]],
[37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]],
# fmt: on
] )
def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" )
model.to(_UpperCAmelCase )
lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase )
with torch.no_grad():
lowercase__ = model(**_UpperCAmelCase )[0]
assert list(sample.shape ) == [1, 768]
lowercase__ = sample[0, :8].flatten().cpu()
print(_UpperCAmelCase )
lowercase__ = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
| 668 |
"""simple docstring"""
lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(A )
lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data )
lowercase__ = len(A ) % 6 != 0
if padding_needed:
# The padding that will be added later
lowercase__ = b"=" * ((6 - len(A ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(A ) % 6)
else:
lowercase__ = b""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(A ) , 6 ) ).encode()
+ padding
)
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ) and not isinstance(A , A ):
lowercase__ = (
"argument should be a bytes-like object or ASCII string, "
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(A )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(A , A ):
try:
lowercase__ = encoded_data.decode("utf-8" )
except UnicodeDecodeError:
raise ValueError("base64 encoded data should only contain ASCII characters" )
lowercase__ = encoded_data.count("=" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
lowercase__ = encoded_data[:-padding]
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
lowercase__ = "".join(
bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )
lowercase__ = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(A ) , 8 )
]
return bytes(A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 | 1 |
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
def __a ( A , A ):
'''simple docstring'''
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def __a ( A ):
'''simple docstring'''
lowercase__ = []
lowercase__ = 11
lowercase__ = int("1" + "0" * digit_len )
for num in range(A , A ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(A , A ):
solutions.append(f'''{num}/{den}''' )
den += 1
num += 1
lowercase__ = 10
return solutions
def __a ( A = 2 ):
'''simple docstring'''
lowercase__ = 1.0
for fraction in fraction_list(A ):
lowercase__ = Fraction(A )
result *= frac.denominator / frac.numerator
return int(A )
if __name__ == "__main__":
print(solution())
| 668 |
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ):
'''simple docstring'''
lowercase__ = symbols(A )
lowercase__ = lambdify(A , A )
lowercase__ = lambdify(A , diff(A , A ) )
lowercase__ = starting_point
while True:
if diff_function(A ) != 0:
lowercase__ = prev_guess - multiplicity * func(A ) / diff_function(
A )
else:
raise ZeroDivisionError("Could not find root" ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowercase__ = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
# Find fourth Root of 5
print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}')
# Find value of e
print(
"The root of log(y) - 1 = 0 is ",
F'{newton_raphson("log(y) - 1", 2, variable="y")}',
)
# Exponential Roots
print(
"The root of exp(x) - 1 = 0 is",
F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}',
)
# Find root of cos(x)
print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
| 668 | 1 |
"""simple docstring"""
from __future__ import annotations
def __a ( A , A , A ):
'''simple docstring'''
lowercase__ = list(range(len(A ) ) )
lowercase__ = [v / w for v, w in zip(A , A )]
index.sort(key=lambda A : ratio[i] , reverse=A )
lowercase__ = 0
lowercase__ = [0] * len(A )
for i in index:
if weight[i] <= capacity:
lowercase__ = 1
max_value += value[i]
capacity -= weight[i]
else:
lowercase__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 668 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_: Union[str, Any] = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Any = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Tuple = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_: Optional[Any] = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 668 | 1 |
"""simple docstring"""
def __a ( A , A ):
'''simple docstring'''
if digit_amount > 0:
return round(number - int(A ) , A )
return number - int(A )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 668 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__)
class a__ ( _a ):
snake_case_ = ["audio_values", "audio_mask"]
def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ):
'''simple docstring'''
super().__init__(
feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, )
lowercase__ = spectrogram_length
lowercase__ = num_channels
lowercase__ = patch_size
lowercase__ = feature_size // self.patch_size[1]
lowercase__ = n_fft
lowercase__ = sampling_rate // hop_length_to_sampling_rate
lowercase__ = sampling_rate
lowercase__ = padding_value
lowercase__ = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T
def snake_case__ ( self, _UpperCAmelCase ):
'''simple docstring'''
lowercase__ = spectrogram(
_UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, )
lowercase__ = log_spec[:, :-1]
lowercase__ = log_spec - 20.0
lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0
return log_spec
def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
F''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
lowercase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ):
lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa )
elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowercase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowercase__ = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
lowercase__ = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], _UpperCAmelCase ):
lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
lowercase__ = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
lowercase__ = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa )
# convert into correct format for padding
lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
lowercase__ = padded_audio_features * self.padding_value
for i in range(len(_UpperCAmelCase ) ):
lowercase__ = audio_features[i]
lowercase__ = feature
# return as BatchFeature
if return_attention_mask:
lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
lowercase__ = {"audio_values": padded_audio_features}
lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase )
return encoded_inputs
| 668 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class a__ ( _a ):
snake_case_ = 42
snake_case_ = 42
def __init__( self, _UpperCAmelCase, _UpperCAmelCase ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=_UpperCAmelCase, scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self, _UpperCAmelCase = 1, _UpperCAmelCase = 2000, _UpperCAmelCase = None, _UpperCAmelCase = "pil", _UpperCAmelCase = True, **_UpperCAmelCase, ):
'''simple docstring'''
lowercase__ = self.unet.config.sample_size
lowercase__ = (batch_size, 3, img_size, img_size)
lowercase__ = self.unet
lowercase__ = randn_tensor(_UpperCAmelCase, generator=_UpperCAmelCase ) * self.scheduler.init_noise_sigma
lowercase__ = sample.to(self.device )
self.scheduler.set_timesteps(_UpperCAmelCase )
self.scheduler.set_sigmas(_UpperCAmelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
lowercase__ = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
lowercase__ = self.unet(_UpperCAmelCase, _UpperCAmelCase ).sample
lowercase__ = self.scheduler.step_correct(_UpperCAmelCase, _UpperCAmelCase, generator=_UpperCAmelCase ).prev_sample
# prediction step
lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ).sample
lowercase__ = self.scheduler.step_pred(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, generator=_UpperCAmelCase )
lowercase__ , lowercase__ = output.prev_sample, output.prev_sample_mean
lowercase__ = sample_mean.clamp(0, 1 )
lowercase__ = sample.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
lowercase__ = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 668 |
"""simple docstring"""
from __future__ import annotations
import math
def __a ( A ):
'''simple docstring'''
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def __a ( A ):
'''simple docstring'''
if not isinstance(A , A ):
raise ValueError("n must be an integer" )
if n <= 0:
raise ValueError("n must be >= 0" )
lowercase__ = []
for num in range(len(A ) ):
lowercase__ = 0
while 2 * i * i <= odd_composites[num]:
lowercase__ = odd_composites[num] - 2 * i * i
if is_prime(A ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(A ) == n:
return list_nums
return []
def __a ( ):
'''simple docstring'''
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F'{solution() = }')
| 668 | 1 |
"""simple docstring"""
def __a ( A ):
'''simple docstring'''
lowercase__ = len(A )
for i in range(1 , A ):
lowercase__ = collection[i]
lowercase__ = 0
lowercase__ = i - 1
while low <= high:
lowercase__ = (low + high) // 2
if val < collection[mid]:
lowercase__ = mid - 1
else:
lowercase__ = mid + 1
for j in range(A , A , -1 ):
lowercase__ = collection[j - 1]
lowercase__ = val
return collection
if __name__ == "__main__":
lowerCAmelCase_: str = input("Enter numbers separated by a comma:\n").strip()
lowerCAmelCase_: str = [int(item) for item in user_input.split(",")]
print(binary_insertion_sort(unsorted))
| 668 |
"""simple docstring"""
import os
import sys
lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowerCAmelCase_: Union[str, Any] = [
"torch",
"numpy",
"tokenizers",
"filelock",
"requests",
"tqdm",
"regex",
"sentencepiece",
"sacremoses",
"importlib_metadata",
"huggingface_hub",
]
@add_start_docstrings(AutoConfig.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoConfig.from_pretrained(*A , **A )
@add_start_docstrings(AutoTokenizer.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoTokenizer.from_pretrained(*A , **A )
@add_start_docstrings(AutoModel.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModel.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForCausalLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForMaskedLM.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForSequenceClassification.from_pretrained(*A , **A )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def __a ( *A , **A ):
'''simple docstring'''
return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
| 668 | 1 |
"""simple docstring"""
from math import factorial
def __a ( A , A , A ):
'''simple docstring'''
if successes > trials:
raise ValueError("successes must be lower or equal to trials" )
if trials < 0 or successes < 0:
raise ValueError("the function is defined for non-negative integers" )
if not isinstance(A , A ) or not isinstance(A , A ):
raise ValueError("the function is defined for non-negative integers" )
if not 0 < prob < 1:
raise ValueError("prob has to be in range of 1 - 0" )
lowercase__ = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
lowercase__ = float(factorial(A ) )
coefficient /= factorial(A ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 668 |
"""simple docstring"""
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class a__ ( unittest.TestCase ):
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(_UpperCAmelCase ):
lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase )
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
@slow
def snake_case__ ( self ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase )
lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX )
@jax.jit
def eval(**_UpperCAmelCase ):
return model(**_UpperCAmelCase )
eval(**_UpperCAmelCase ).block_until_ready()
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ):
lowercase__ = FlaxAutoModel.from_pretrained("bert-base" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(
_UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def snake_case__ ( self ):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ):
lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
| 668 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.