code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations def __a ( A ): '''simple docstring''' lowercase__ = str(A ) return len(A ) == 9 and set(A ) == set("123456789" ) def __a ( ): '''simple docstring''' for base_num in range(99_99 , 49_99 , -1 ): lowercase__ = 10_00_02 * base_num if is_9_pandigital(A ): return candidate for base_num in range(3_33 , 99 , -1 ): lowercase__ = 1_00_20_03 * base_num if is_9_pandigital(A ): return candidate return None if __name__ == "__main__": print(F'{solution() = }')
668
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
1
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = None snake_case_ = BloomTokenizerFast snake_case_ = BloomTokenizerFast snake_case_ = True snake_case_ = False snake_case_ = "tokenizer_file" snake_case_ = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_rust_tokenizer() lowercase__ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowercase__ = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] lowercase__ = tokenizer.batch_encode_plus(_UpperCAmelCase )["input_ids"] self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ = "This is a simple input" lowercase__ = ["This is a simple input 1", "This is a simple input 2"] lowercase__ = ("This is a simple input", "This is a pair") lowercase__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(_UpperCAmelCase, max_length=_UpperCAmelCase ) tokenizer_r.encode_plus(_UpperCAmelCase, max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase, max_length=_UpperCAmelCase ) tokenizer_r.encode(_UpperCAmelCase, max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase, max_length=_UpperCAmelCase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowercase__ = None # Hotfixing padding = None self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Simple input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Simple input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length", ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Pair input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length", ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_rust_tokenizer() lowercase__ = load_dataset("xnli", "all_languages", split="test", streaming=_UpperCAmelCase ) lowercase__ = next(iter(_UpperCAmelCase ) )["premise"] # pick up one data lowercase__ = list(sample_data.values() ) lowercase__ = list(map(tokenizer.encode, _UpperCAmelCase ) ) lowercase__ = [tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens] self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ), 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ), 1 )
668
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
1
"""simple docstring""" import copy import re class a__ : snake_case_ = "hp" snake_case_ = {} snake_case_ = None @classmethod def snake_case__ ( cls, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = prefix lowercase__ = defaults cls.build_naming_info() @staticmethod def snake_case__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if len(_UpperCAmelCase ) == 0: return "" lowercase__ = None if any(char.isdigit() for char in word ): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(_UpperCAmelCase ) + 1 ): lowercase__ = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: lowercase__ = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCAmelCase ): lowercase__ = "" while integer != 0: lowercase__ = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s lowercase__ = 0 while True: lowercase__ = word + "#" + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: lowercase__ = sword break lowercase__ = short_word lowercase__ = word return short_word @staticmethod def snake_case__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = param_name.split("_" ) lowercase__ = [TrialShortNamer.shortname_for_word(_UpperCAmelCase, _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name lowercase__ = ["", "_"] for separator in separators: lowercase__ = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: lowercase__ = shortname lowercase__ = param_name return shortname return param_name @staticmethod def snake_case__ ( _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TrialShortNamer.shortname_for_key(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = short_name lowercase__ = param_name @classmethod def snake_case__ ( cls ): '''simple docstring''' if cls.NAMING_INFO is not None: return lowercase__ = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } lowercase__ = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = info @classmethod def snake_case__ ( cls, _UpperCAmelCase ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None lowercase__ = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue lowercase__ = cls.NAMING_INFO["short_param"][k] if isinstance(_UpperCAmelCase, _UpperCAmelCase ): lowercase__ = 1 if v else 0 lowercase__ = "" if isinstance(_UpperCAmelCase, (int, float) ) else "-" lowercase__ = F'''{key}{sep}{v}''' name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def snake_case__ ( cls, _UpperCAmelCase ): '''simple docstring''' lowercase__ = repr[len(cls.PREFIX ) + 1 :] if repr == "": lowercase__ = [] else: lowercase__ = repr.split("_" ) lowercase__ = {} for value in values: if "-" in value: lowercase__ , lowercase__ = value.split("-" ) else: lowercase__ = re.sub("[0-9.]", "", _UpperCAmelCase ) lowercase__ = float(re.sub("[^0-9.]", "", _UpperCAmelCase ) ) lowercase__ = cls.NAMING_INFO["reverse_short_param"][p_k] lowercase__ = p_v for k in cls.DEFAULTS: if k not in parameters: lowercase__ = cls.DEFAULTS[k] return parameters
668
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase_: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = {"vocab_file": "spiece.model"} lowerCAmelCase_: Dict = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=False, _UpperCAmelCase="<s>", _UpperCAmelCase="</s>", _UpperCAmelCase="<unk>", _UpperCAmelCase="<sep>", _UpperCAmelCase="<pad>", _UpperCAmelCase="<cls>", _UpperCAmelCase="<mask>", _UpperCAmelCase=["<eop>", "<eod>"], _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = AddedToken(_UpperCAmelCase, lstrip=_UpperCAmelCase, rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase, remove_space=_UpperCAmelCase, keep_accents=_UpperCAmelCase, bos_token=_UpperCAmelCase, eos_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, cls_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **_UpperCAmelCase, ) lowercase__ = 3 lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) lowercase__ = jieba lowercase__ = str.maketrans(" \n", "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case__ ( self ): '''simple docstring''' return len(self.sp_model ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs" ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if self.remove_space: lowercase__ = " ".join(inputs.strip().split() ) else: lowercase__ = inputs lowercase__ = outputs.replace("``", "\"" ).replace("''", "\"" ) if not self.keep_accents: lowercase__ = unicodedata.normalize("NFKD", _UpperCAmelCase ) lowercase__ = "".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: lowercase__ = outputs.lower() return outputs def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.preprocess_text(_UpperCAmelCase ) lowercase__ = self.sp_model.encode(_UpperCAmelCase, out_type=_UpperCAmelCase ) lowercase__ = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowercase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase, "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase__ = cur_pieces[1:] else: lowercase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return self.sp_model.PieceToId(_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return self.sp_model.IdToPiece(_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "".join(_UpperCAmelCase ).replace(_UpperCAmelCase, " " ).strip() return out_string def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase, token_ids_a=_UpperCAmelCase, already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase, "wb" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = super()._decode(*_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = text.replace(" ", "" ).replace("\u2582", " " ).replace("\u2583", "\n" ) return text
668
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
1
"""simple docstring""" from __future__ import annotations def __a ( A , A , A ): '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
668
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
1
"""simple docstring""" def __a ( A ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
668
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
1
"""simple docstring""" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''Input value of [number={number}] must be an integer''' raise TypeError(A ) if number < 1: lowercase__ = f'''Input value of [number={number}] must be > 0''' raise ValueError(A ) lowercase__ = 1 for i in range(1 , A ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
668
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__ ( _a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class a__ ( unittest.TestCase ): @property def snake_case__ ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = ort.SessionOptions() lowercase__ = False return options def snake_case__ ( self ): '''simple docstring''' lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lowercase__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", safety_checker=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = "A red cat sitting on a park bench" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=_UpperCAmelCase, image=_UpperCAmelCase, mask_image=_UpperCAmelCase, guidance_scale=7.5, num_inference_steps=10, generator=_UpperCAmelCase, output_type="np", ) lowercase__ = output.images lowercase__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase__ = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lowercase__ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting", subfolder="scheduler", revision="onnx" ) lowercase__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision="onnx", scheduler=_UpperCAmelCase, safety_checker=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__ = "A red cat sitting on a park bench" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=_UpperCAmelCase, image=_UpperCAmelCase, mask_image=_UpperCAmelCase, guidance_scale=7.5, num_inference_steps=20, generator=_UpperCAmelCase, output_type="np", ) lowercase__ = output.images lowercase__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowercase__ = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
668
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase_: int = logging.get_logger(__name__) lowerCAmelCase_: List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowerCAmelCase_: Tuple = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __a ( A , A , A , A , A ): '''simple docstring''' for attribute in key.split("." ): lowercase__ = getattr(A , A ) if weight_type is not None: lowercase__ = getattr(A , A ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __a ( A , A ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == "group" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(A )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" , A ) if "weight_g" in name: lowercase__ = "weight_g" elif "weight_v" in name: lowercase__ = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: lowercase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = "weight" else: lowercase__ = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def __a ( A , A , A=None ): '''simple docstring''' lowercase__ = torch.load(A ) lowercase__ = WavLMConfigOrig(checkpoint["cfg"] ) lowercase__ = WavLMOrig(A ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: lowercase__ = WavLMConfig.from_pretrained(A ) else: lowercase__ = WavLMConfig() lowercase__ = WavLMModel(A ) recursively_load_weights(A , A ) hf_wavlm.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_: List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCAmelCase_: Dict = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
668
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class a__ : def __init__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = data lowercase__ = None class a__ : def __init__( self ): '''simple docstring''' lowercase__ = None lowercase__ = None def __iter__( self ): '''simple docstring''' lowercase__ = self.head while self.head: yield node.data lowercase__ = node.next if node == self.head: break def __len__( self ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self ): '''simple docstring''' return "->".join(str(_UpperCAmelCase ) for item in iter(self ) ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' self.insert_nth(len(self ), _UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' self.insert_nth(0, _UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError("list index out of range." ) lowercase__ = Node(_UpperCAmelCase ) if self.head is None: lowercase__ = new_node # first node points itself lowercase__ = lowercase__ = new_node elif index == 0: # insert at head lowercase__ = self.head lowercase__ = lowercase__ = new_node else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = new_node if index == len(self ) - 1: # insert at tail lowercase__ = new_node def snake_case__ ( self ): '''simple docstring''' return self.delete_nth(0 ) def snake_case__ ( self ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case__ ( self, _UpperCAmelCase = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError("list index out of range." ) lowercase__ = self.head if self.head == self.tail: # just one node lowercase__ = lowercase__ = None elif index == 0: # delete head node lowercase__ = self.tail.next.next lowercase__ = self.head.next else: lowercase__ = self.head for _ in range(index - 1 ): lowercase__ = temp.next lowercase__ = temp.next lowercase__ = temp.next.next if index == len(self ) - 1: # delete at tail lowercase__ = temp return delete_node.data def snake_case__ ( self ): '''simple docstring''' return len(self ) == 0 def __a ( ): '''simple docstring''' lowercase__ = CircularLinkedList() assert len(A ) == 0 assert circular_linked_list.is_empty() is True assert str(A ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(A ) == i circular_linked_list.insert_nth(A , i + 1 ) assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(A ) == "->".join(str(A ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(A ) == "->".join(str(A ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(A ) == "->".join(str(A ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
668
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_: Dict = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase_: List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
1
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __a ( A , A ): '''simple docstring''' lowercase__ = Mock() lowercase__ = conn, Mock() lowercase__ = iter([1, None] ) lowercase__ = lambda A : next(A ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=A ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
668
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_: List[str] = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) lowerCAmelCase_: Tuple = dataset.iloc[:, 1:2].values lowerCAmelCase_: str = dataset.iloc[:, 2].values lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: Dict = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_: Any = PolynomialFeatures(degree=4) lowerCAmelCase_: Tuple = poly_reg.fit_transform(X) lowerCAmelCase_: str = LinearRegression() pol_reg.fit(X_poly, y) def __a ( ): '''simple docstring''' plt.scatter(A , A , color="red" ) plt.plot(A , pol_reg.predict(poly_reg.fit_transform(A ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
668
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
1
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_: Any = logging.get_logger(__name__) lowerCAmelCase_: int = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def __a ( A , A , A , A ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: lowercase__ = TOKENIZER_CLASSES else: lowercase__ = {tokenizer_name: getattr(A , tokenizer_name + "Fast" )} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: lowercase__ = TOKENIZER_CLASSES[tokenizer_name] lowercase__ = True if checkpoint_name is None: lowercase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowercase__ = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer lowercase__ = tokenizer_class.from_pretrained(A , force_download=A ) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: lowercase__ , lowercase__ = checkpoint.split("/" ) lowercase__ = os.path.join(A , A ) elif add_prefix: lowercase__ = checkpoint lowercase__ = dump_path else: lowercase__ = None lowercase__ = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowercase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowercase__ = file_path.split(A )[-1][0] if next_char == "/": lowercase__ = os.path.join(A , A ) lowercase__ = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) lowercase__ = tokenizer.save_pretrained( A , legacy_format=A , filename_prefix=A ) logger.info(f'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(A ) logger.info(f'''=> removing {file_name}''' ) if __name__ == "__main__": lowerCAmelCase_: List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) lowerCAmelCase_: Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
668
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_: List[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Dict = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = ["CLIPFeatureExtractor"] lowerCAmelCase_: Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: int = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase_: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class a__ ( metaclass=_a ): snake_case_ = ["torch", "scipy"] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["torch", "scipy"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "scipy"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "scipy"] )
668
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
1
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase_: Optional[Any] = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase_: int = re.compile(R"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase_: int = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase_: Tuple = "\n{0} = None\n" lowerCAmelCase_: Any = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase_: Any = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def __a ( A ): '''simple docstring''' lowercase__ = _re_backend.findall(A ) if len(A ) == 0: return None return "_and_".join(A ) def __a ( ): '''simple docstring''' with open(os.path.join(A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase__ = f.readlines() # Get to the point we do the actual imports for type checking lowercase__ = 0 lowercase__ = {} # Go through the end of the file while line_index < len(A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowercase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while line_index < len(A ) and len(lines[line_index] ) > 1: lowercase__ = lines[line_index] lowercase__ = _re_single_line_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(A ) > 0: lowercase__ = objects else: line_index += 1 return backend_specific_objects def __a ( A , A ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(A ) elif name.islower(): return DUMMY_FUNCTION.format(A , A ) else: return DUMMY_CLASS.format(A , A ) def __a ( A=None ): '''simple docstring''' if backend_specific_objects is None: lowercase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowercase__ = {} for backend, objects in backend_specific_objects.items(): lowercase__ = "[" + ", ".join(f'''"{b}"''' for b in backend.split("_and_" ) ) + "]" lowercase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(A , A ) for o in objects] ) lowercase__ = dummy_file return dummy_files def __a ( A=False ): '''simple docstring''' lowercase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowercase__ = {"torch": "pt"} # Locate actual dummy modules and read their content. lowercase__ = os.path.join(A , "utils" ) lowercase__ = { backend: os.path.join(A , f'''dummy_{short_names.get(A , A )}_objects.py''' ) for backend in dummy_files.keys() } lowercase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(A ): with open(A , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase__ = f.read() else: lowercase__ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(A , A )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f'''diffusers.utils.dummy_{short_names.get(A , A )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": lowerCAmelCase_: Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase_: List[str] = parser.parse_args() check_dummies(args.fix_and_overwrite)
668
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_: Any = logging.get_logger(__name__) def __a ( A ): '''simple docstring''' lowercase__ = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowercase__ = 10_24 lowercase__ = 40_96 lowercase__ = 24 lowercase__ = 16 lowercase__ = [5, 11, 17, 23] lowercase__ = [2_56, 5_12, 10_24, 10_24] lowercase__ = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: lowercase__ = 7_68 lowercase__ = [1, 1, 1, 0.5] lowercase__ = [2_56, 5_12, 7_68, 7_68] lowercase__ = 1_50 lowercase__ = 16 lowercase__ = (1, 3_84, 3_84) lowercase__ = False lowercase__ = "project" if "ade" in checkpoint_url: lowercase__ = True lowercase__ = 7_68 lowercase__ = [1, 1, 1, 0.5] lowercase__ = 1_50 lowercase__ = 16 lowercase__ = "huggingface/label-files" lowercase__ = "ade20k-id2label.json" lowercase__ = json.load(open(cached_download(hf_hub_url(A , A , repo_type="dataset" ) ) , "r" ) ) lowercase__ = {int(A ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = [1, 1_50, 4_80, 4_80] return config, expected_shape def __a ( A ): '''simple docstring''' lowercase__ = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(A , A ) def __a ( A ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: lowercase__ = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: lowercase__ = name.replace("patch_embed" , "" ) if "pos_embed" in name: lowercase__ = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: lowercase__ = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: lowercase__ = name.replace("proj" , "projection" ) if "blocks" in name: lowercase__ = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: lowercase__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase__ = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: lowercase__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowercase__ = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: lowercase__ = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: lowercase__ = name.replace("scratch" , "neck" ) if "layer1_rn" in name: lowercase__ = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: lowercase__ = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: lowercase__ = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: lowercase__ = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: lowercase__ = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowercase__ = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: lowercase__ = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: lowercase__ = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: lowercase__ = name.replace("conv1" , "convolution1" ) if "conv2" in name: lowercase__ = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowercase__ = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowercase__ = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowercase__ = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowercase__ = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowercase__ = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowercase__ = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowercase__ = name.replace("pretrained" , "dpt" ) if "bn" in name: lowercase__ = name.replace("bn" , "batch_norm" ) if "head" in name: lowercase__ = name.replace("head" , "head.head" ) if "encoder.norm" in name: lowercase__ = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: lowercase__ = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: lowercase__ = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: lowercase__ = name.replace(".." , "." ) if "stem.conv" in name: lowercase__ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: lowercase__ = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: lowercase__ = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: lowercase__ = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: lowercase__ = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: lowercase__ = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowercase__ = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def __a ( A , A ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowercase__ = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[: config.hidden_size, :] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def __a ( ): '''simple docstring''' lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ , lowercase__ = get_dpt_config(A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowercase__ = torch.load(A , map_location="cpu" ) # remove certain keys remove_ignore_keys_(A ) # rename keys for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(A ) lowercase__ = val # read in qkv matrices read_in_q_k_v(A , A ) # load HuggingFace model lowercase__ = DPTForSemanticSegmentation(A ) if "ade" in checkpoint_url else DPTForDepthEstimation(A ) model.load_state_dict(A ) model.eval() # Check outputs on an image lowercase__ = 4_80 if "ade" in checkpoint_url else 3_84 lowercase__ = DPTImageProcessor(size=A ) lowercase__ = prepare_img() lowercase__ = image_processor(A , return_tensors="pt" ) # forward pass lowercase__ = model(**A ).logits if "ade" in checkpoint_url else model(**A ).predicted_depth if show_prediction: lowercase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(A ).mkdir(exist_ok=A ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": lowerCAmelCase_: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) lowerCAmelCase_: Optional[int] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
668
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
1
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __a ( A = True , *A , **A ): '''simple docstring''' if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) lowercase__ = False if main_process_only: lowercase__ = PartialState().local_process_index == 0 return _tqdm(*A , **A , disable=A )
668
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase_: Optional[Any] = numpy.array([0, 0]) lowerCAmelCase_: Optional[Any] = numpy.array([0.5, 0.8_660_254]) lowerCAmelCase_: List[str] = numpy.array([1, 0]) lowerCAmelCase_: Any = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __a ( A , A ): '''simple docstring''' lowercase__ = initial_vectors for _ in range(A ): lowercase__ = iteration_step(A ) return vectors def __a ( A ): '''simple docstring''' lowercase__ = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase__ = vectors[i + 1] new_vectors.append(A ) lowercase__ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __a ( A , A ): '''simple docstring''' lowercase__ = numpy.radians(A ) lowercase__ , lowercase__ = numpy.cos(A ), numpy.sin(A ) lowercase__ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(A , A ) def __a ( A ): '''simple docstring''' lowercase__ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase__ , lowercase__ = zip(*A ) plt.plot(A , A ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_: Any = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
668
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_: Optional[Any] = get_logger(__name__) lowerCAmelCase_: int = Path(__file__).parent / "model_card_template.md" lowerCAmelCase_: Optional[int] = uuida().hex lowerCAmelCase_: Optional[int] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_: Dict = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_: str = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def __a ( A = None ): '''simple docstring''' lowercase__ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(A , A ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(A , A ): ua += "; " + user_agent return ua def __a ( A , A = None , A = None ): '''simple docstring''' if token is None: lowercase__ = HfFolder.get_token() if organization is None: lowercase__ = whoami(A )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __a ( A , A ): '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(A , "local_rank" ) and args.local_rank not in [-1, 0]: return lowercase__ = args.hub_token if hasattr(A , "hub_token" ) else None lowercase__ = get_full_repo_name(A , token=A ) lowercase__ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=A , model_name=A , repo_name=A , dataset_name=args.dataset_name if hasattr(A , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(A , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(A , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(A , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(A , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(A , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(A , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(A , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(A , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(A , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(A , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) lowercase__ = os.path.join(args.output_dir , "README.md" ) model_card.save(A ) def __a ( A , A = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase__ = str(Path(A ).as_posix() ) lowercase__ = re.search(r"snapshots/([^/]+)/" , A ) if search is None: return None lowercase__ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(A ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_: Optional[int] = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) lowerCAmelCase_: int = os.path.join(hf_cache_home, "diffusers") def __a ( A = None , A = None ): '''simple docstring''' if new_cache_dir is None: lowercase__ = DIFFUSERS_CACHE if old_cache_dir is None: lowercase__ = old_diffusers_cache lowercase__ = Path(A ).expanduser() lowercase__ = Path(A ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase__ = new_cache_dir / old_blob_path.relative_to(A ) new_blob_path.parent.mkdir(parents=A , exist_ok=A ) os.replace(A , A ) try: os.symlink(A , A ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_: Tuple = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): lowerCAmelCase_: str = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_: Dict = int(f.read()) except ValueError: lowerCAmelCase_: int = 0 if cache_version < 1: lowerCAmelCase_: Optional[int] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: lowerCAmelCase_: Optional[Any] = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' "the directory exists and can be written to." ) def __a ( A , A = None ): '''simple docstring''' if variant is not None: lowercase__ = weights_name.split("." ) lowercase__ = splits[:-1] + [variant] + splits[-1:] lowercase__ = ".".join(A ) return weights_name def __a ( A , *, A , A , A , A , A , A , A , A , A , A , A=None , ): '''simple docstring''' lowercase__ = str(A ) if os.path.isfile(A ): return pretrained_model_name_or_path elif os.path.isdir(A ): if os.path.isfile(os.path.join(A , A ) ): # Load from a PyTorch checkpoint lowercase__ = os.path.join(A , A ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(A , A , A ) ): lowercase__ = os.path.join(A , A , A ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(A ).base_version ) >= version.parse("0.20.0" ) ): try: lowercase__ = hf_hub_download( A , filename=_add_variant(A , A ) , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , use_auth_token=A , user_agent=A , subfolder=A , revision=revision or commit_hash , ) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , A , ) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(A , A )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(A , A )}\' so that the correct variant file can be added.''' , A , ) try: # 2. Load model file as usual lowercase__ = hf_hub_download( A , filename=A , cache_dir=A , force_download=A , proxies=A , resume_download=A , local_files_only=A , use_auth_token=A , user_agent=A , subfolder=A , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
668
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
1
"""simple docstring""" def __a ( A , A ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def __a ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
668
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
1
"""simple docstring""" from __future__ import annotations def __a ( A , A , A ): '''simple docstring''' if len(A ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(A ) or left < -len(A ) or right >= len(A ) or right < -len(A ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] lowercase__ = (left + right) >> 1 # the middle lowercase__ = find_max(A , A , A ) # find max in range[left, mid] lowercase__ = find_max(A , mid + 1 , A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
668
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
1
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __a ( A , A , A ): '''simple docstring''' lowercase__ = RemBertConfig.from_json_file(A ) print("Building PyTorch model from configuration: {}".format(str(A ) ) ) lowercase__ = RemBertModel(A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A , A , A ) # Save pytorch-model print("Save PyTorch model to {}".format(A ) ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_: int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_: str = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
668
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( A ): '''simple docstring''' lowercase__ , lowercase__ = image.size lowercase__ , lowercase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) lowercase__ = np.array(A ).astype(np.floataa ) / 255.0 lowercase__ = image[None].transpose(0 , 3 , 1 , 2 ) lowercase__ = torch.from_numpy(A ) return 2.0 * image - 1.0 class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' super().__init__() self.register_modules(vqvae=_UpperCAmelCase, unet=_UpperCAmelCase, scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self, _UpperCAmelCase = None, _UpperCAmelCase = 1, _UpperCAmelCase = 100, _UpperCAmelCase = 0.0, _UpperCAmelCase = None, _UpperCAmelCase = "pil", _UpperCAmelCase = True, ): '''simple docstring''' if isinstance(_UpperCAmelCase, PIL.Image.Image ): lowercase__ = 1 elif isinstance(_UpperCAmelCase, torch.Tensor ): lowercase__ = image.shape[0] else: raise ValueError(F'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase )}''' ) if isinstance(_UpperCAmelCase, PIL.Image.Image ): lowercase__ = preprocess(_UpperCAmelCase ) lowercase__ , lowercase__ = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase__ = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase__ = next(self.unet.parameters() ).dtype lowercase__ = randn_tensor(_UpperCAmelCase, generator=_UpperCAmelCase, device=self.device, dtype=_UpperCAmelCase ) lowercase__ = image.to(device=self.device, dtype=_UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCAmelCase, device=self.device ) lowercase__ = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for t in self.progress_bar(_UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. lowercase__ = torch.cat([latents, image], dim=1 ) lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase, _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase, _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE lowercase__ = self.vqvae.decode(_UpperCAmelCase ).sample lowercase__ = torch.clamp(_UpperCAmelCase, -1.0, 1.0 ) lowercase__ = image / 2 + 0.5 lowercase__ = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
668
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
1
"""simple docstring""" import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCAmelCase_: List[Any] = Mapping[str, np.ndarray] lowerCAmelCase_: Tuple = Mapping[str, Any] # Is a nested dict. lowerCAmelCase_: str = 0.01 @dataclasses.dataclass(frozen=_a ) class a__ : snake_case_ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. snake_case_ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. snake_case_ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. snake_case_ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. snake_case_ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions snake_case_ = None # Optional remark about the protein. Included as a comment in output PDB # files snake_case_ = None # Templates used to generate this protein (prediction-only) snake_case_ = None # Chain corresponding to each parent snake_case_ = None def __a ( A ): '''simple docstring''' lowercase__ = r"(\[[A-Z]+\]\n)" lowercase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowercase__ = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowercase__ = "X" # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowercase__ = np.array(A ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def __a ( A , A = 0 ): '''simple docstring''' lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(f'''REMARK {remark}''' ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowercase__ = ["N/A"] pdb_headers.append(f'''PARENT {' '.join(A )}''' ) return pdb_headers def __a ( A , A ): '''simple docstring''' lowercase__ = [] lowercase__ = pdb_str.split("\n" ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(f'''REMARK {remark}''' ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowercase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(A ) , ["N/A"] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [["N/A"]] def make_parent_line(A ) -> str: return f'''PARENT {' '.join(A )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ["N/A"] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def __a ( A ): '''simple docstring''' lowercase__ = residue_constants.restypes + ["X"] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) lowercase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(A ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = "ATOM" lowercase__ = atom_name if len(A ) == 4 else f''' {atom_name}''' lowercase__ = "" lowercase__ = "" lowercase__ = 1.00 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = "" lowercase__ = "A" if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( f'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' f'''{res_name_a:>3} {chain_tag:>1}''' f'''{residue_index[i]:>4}{insertion_code:>1} ''' f'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' f'''{occupancy:>6.2f}{b_factor:>6.2f} ''' f'''{element:>2}{charge:>2}''' ) pdb_lines.append(A ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = "TER" lowercase__ = ( f'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(A ) def __a ( A ): '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def __a ( A , A , A = None , A = None , A = None , A = None , A = None , ): '''simple docstring''' return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
668
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
1
"""simple docstring""" from functools import lru_cache def __a ( A ): '''simple docstring''' lowercase__ = 2 lowercase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(A ) if n > 1: factors.add(A ) return factors @lru_cache def __a ( A ): '''simple docstring''' return len(unique_prime_factors(A ) ) def __a ( A ): '''simple docstring''' return len(set(A ) ) in (0, 1) def __a ( A ): '''simple docstring''' lowercase__ = 2 while True: # Increment each value of a generated range lowercase__ = [base + i for i in range(A )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ = [upf_len(A ) for x in group] checker.append(A ) # If all numbers in the list are equal, return the group variable. if equality(A ): return group # Increment our base variable by 1 base += 1 def __a ( A = 4 ): '''simple docstring''' lowercase__ = run(A ) return results[0] if len(A ) else None if __name__ == "__main__": print(solution())
668
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_: List[str] = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class a__ ( _lowerCamelCase ): snake_case_ = "dpt" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=384, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=[2, 5, 8, 11], _UpperCAmelCase="project", _UpperCAmelCase=[4, 2, 1, 0.5], _UpperCAmelCase=[96, 192, 384, 768], _UpperCAmelCase=256, _UpperCAmelCase=-1, _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=255, _UpperCAmelCase=0.1, _UpperCAmelCase=[1, 1024, 24, 24], _UpperCAmelCase=[0, 1], _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**A__ ) lowercase__ = hidden_size lowercase__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) lowercase__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } lowercase__ = BitConfig(**A__ ) elif isinstance(A__, A__ ): logger.info("Initializing the config with a `BiT` backbone." ) lowercase__ = BitConfig(**A__ ) elif isinstance(A__, A__ ): lowercase__ = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) lowercase__ = backbone_featmap_shape lowercase__ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: lowercase__ = None lowercase__ = None lowercase__ = [] lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) lowercase__ = readout_type lowercase__ = reassemble_factors lowercase__ = neck_hidden_sizes lowercase__ = fusion_hidden_size lowercase__ = head_in_index lowercase__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = semantic_loss_ignore_index lowercase__ = semantic_classifier_dropout def snake_case__ ( self ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" def __a ( A = 4_00_00_00 ): '''simple docstring''' lowercase__ = [] lowercase__ , lowercase__ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__A ) lowercase__ , lowercase__ = b, a + b return sum(__A ) if __name__ == "__main__": print(F'{solution() = }')
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class a__ ( metaclass=snake_case__ ): snake_case_ = ["""torch""", """transformers""", """onnx"""] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) class a__ ( metaclass=snake_case__ ): snake_case_ = ["""torch""", """transformers""", """onnx"""] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) class a__ ( metaclass=snake_case__ ): snake_case_ = ["""torch""", """transformers""", """onnx"""] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) class a__ ( metaclass=snake_case__ ): snake_case_ = ["""torch""", """transformers""", """onnx"""] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) class a__ ( metaclass=snake_case__ ): snake_case_ = ["""torch""", """transformers""", """onnx"""] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) class a__ ( metaclass=snake_case__ ): snake_case_ = ["""torch""", """transformers""", """onnx"""] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["torch", "transformers", "onnx"] )
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCAmelCase_: Tuple = logging.get_logger(__name__) lowerCAmelCase_: str = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } lowerCAmelCase_: Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __a ( A , A , A , A , A ): '''simple docstring''' for attribute in key.split("." ): lowercase__ = getattr(A , A ) if weight_type is not None: lowercase__ = getattr(A , A ).shape else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __a ( A , A ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == "group" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: if "layer_norm_for_extract" in name and (".".join(name.split("." )[:-1] ) != key): # special case since naming is very similar continue lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(A )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" , A ) if "weight_g" in name: lowercase__ = "weight_g" elif "weight_v" in name: lowercase__ = "weight_v" elif "bias" in name: lowercase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = "weight" else: lowercase__ = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def __a ( A , A , A=None , A=None , A=True ): '''simple docstring''' if config_path is not None: lowercase__ = UniSpeechSatConfig.from_pretrained(A ) else: lowercase__ = UniSpeechSatConfig() lowercase__ = "" if is_finetuned: lowercase__ = UniSpeechSatForCTC(A ) else: lowercase__ = UniSpeechSatForPreTraining(A ) lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowercase__ = model[0].eval() recursively_load_weights(A , A ) hf_wavavec.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_: List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowerCAmelCase_: Dict = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" def __a ( A , A ): '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) else: return a * actual_power(_lowercase , int(b / 2 ) ) * actual_power(_lowercase , int(b / 2 ) ) def __a ( A , A ): '''simple docstring''' if b < 0: return 1 / actual_power(_lowercase , _lowercase ) return actual_power(_lowercase , _lowercase ) if __name__ == "__main__": print(power(-2, -3))
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_: Dict = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: List[str] = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: str = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase_: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_: str = logging.get_logger() @dataclass class a__ : snake_case_ = 42 snake_case_ = field(default_factory=UpperCAmelCase_ ) snake_case_ = field(default_factory=UpperCAmelCase_ ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = len(list(m.modules() ) ) == 1 or isinstance(_lowercase, nn.Convad ) or isinstance(_lowercase, nn.BatchNormad ) if has_not_submodules: self.traced.append(_lowercase ) def __call__( self, _UpperCAmelCase ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_lowercase ) [x.remove() for x in self.handles] return self @property def snake_case__ ( self ): '''simple docstring''' return list(filter(lambda _UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class a__ : snake_case_ = 42 snake_case_ = 42 snake_case_ = 0 snake_case_ = field(default_factory=UpperCAmelCase_ ) snake_case_ = field(default_factory=UpperCAmelCase_ ) def __call__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = Tracker(self.dest )(_lowercase ).parametrized lowercase__ = Tracker(self.src )(_lowercase ).parametrized lowercase__ = list(filter(lambda _UpperCAmelCase : type(_lowercase ) not in self.src_skip, _lowercase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : type(_lowercase ) not in self.dest_skip, _lowercase ) ) if len(_lowercase ) != len(_lowercase ): raise Exception( F'''Numbers of operations are different. Source module has {len(_lowercase )} operations while''' F''' destination module has {len(_lowercase )}.''' ) for dest_m, src_m in zip(_lowercase, _lowercase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) def __a ( A , A , A , A = True ): '''simple docstring''' print(f'''Converting {name}...''' ) with torch.no_grad(): lowercase__ = timm.create_model(A , pretrained=A ).eval() lowercase__ = ResNetForImageClassification(A ).eval() lowercase__ = ModuleTransfer(src=A , dest=A ) lowercase__ = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(A ) assert torch.allclose(from_model(A ) , our_model(A ).logits ), "The model logits don't match the original one." lowercase__ = f'''resnet{'-'.join(name.split('resnet' ) )}''' print(A ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=A , ) # we can use the convnext one lowercase__ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=A , ) print(f'''Pushed {checkpoint_name}''' ) def __a ( A , A = None , A = True ): '''simple docstring''' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 10_00 lowercase__ = (1, num_labels) lowercase__ = 'huggingface/label-files' lowercase__ = num_labels lowercase__ = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) lowercase__ = {int(A ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = partial(A , num_labels=A , idalabel=A , labelaid=A ) lowercase__ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 1_28, 2_56, 5_12] , layer_type="basic" ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[2_56, 5_12, 10_24, 20_48] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(A , names_to_config[model_name] , A , A ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(A , A , A , A ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase_: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowerCAmelCase_: Union[str, Any] = parser.parse_args() lowerCAmelCase_: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCAmelCase_: Optional[int] = logging.get_logger(__name__) lowerCAmelCase_: Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase_: Tuple = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } lowerCAmelCase_: Optional[int] = {"allegro/herbert-base-cased": 5_1_4} lowerCAmelCase_: List[Any] = {} class a__ ( __A ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = HerbertTokenizer def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase="<s>", _UpperCAmelCase="<unk>", _UpperCAmelCase="<pad>", _UpperCAmelCase="<mask>", _UpperCAmelCase="</s>", **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, _UpperCAmelCase, tokenizer_file=_UpperCAmelCase, cls_token=_UpperCAmelCase, unk_token=_UpperCAmelCase, pad_token=_UpperCAmelCase, mask_token=_UpperCAmelCase, sep_token=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase, token_ids_a=_UpperCAmelCase, already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(_UpperCAmelCase, name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_: List[Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: int = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase_: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_: List[str] = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" from importlib import import_module from .logging import get_logger lowerCAmelCase_: int = get_logger(__name__) class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self, __A, getattr(__A, __A ) ) lowercase__ = module._original_module if isinstance(__A, _PatchedModuleObj ) else module class a__ : snake_case_ = [] def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = obj lowercase__ = target lowercase__ = new lowercase__ = target.split("." )[0] lowercase__ = {} lowercase__ = attrs or [] def __enter__( self ): '''simple docstring''' lowercase__ = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__A ) ): try: lowercase__ = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): lowercase__ = getattr(self.obj, __A ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__A, _PatchedModuleObj ) and obj_attr._original_module is submodule) ): lowercase__ = obj_attr # patch at top level setattr(self.obj, __A, _PatchedModuleObj(__A, attrs=self.attrs ) ) lowercase__ = getattr(self.obj, __A ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__A, __A, _PatchedModuleObj(getattr(__A, __A, __A ), attrs=self.attrs ) ) lowercase__ = getattr(__A, __A ) # finally set the target attribute setattr(__A, __A, self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: lowercase__ = getattr(import_module(".".join(__A ) ), __A ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj, __A ) is attr_value: lowercase__ = getattr(self.obj, __A ) setattr(self.obj, __A, self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" lowercase__ = globals()["__builtins__"][target_attr] setattr(self.obj, __A, self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self, *_UpperCAmelCase ): '''simple docstring''' for attr in list(self.original ): setattr(self.obj, __A, self.original.pop(__A ) ) def snake_case__ ( self ): '''simple docstring''' self.__enter__() self._active_patches.append(self ) def snake_case__ ( self ): '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" from manim import * class a__ ( UpperCamelCase_ ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = Rectangle(height=0.5, width=0.5 ) lowercase__ = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0 ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*_a ).arrange(_a, buff=0 ) lowercase__ = VGroup(*_a ).arrange(_a, buff=0 ) lowercase__ = VGroup(_a, _a ).arrange(_a, buff=0 ) lowercase__ = Text("CPU", font_size=24 ) lowercase__ = Group(_a, _a ).arrange(_a, buff=0.5, aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) lowercase__ = [mem.copy() for i in range(1 )] lowercase__ = VGroup(*_a ).arrange(_a, buff=0 ) lowercase__ = Text("GPU", font_size=24 ) lowercase__ = Group(_a, _a ).arrange(_a, buff=0.5, aligned_edge=_a ) gpu.align_to(_a, _a ) gpu.set_x(gpu.get_x() - 1 ) self.add(_a ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*_a ).arrange(_a, buff=0 ) lowercase__ = Text("Model", font_size=24 ) lowercase__ = Group(_a, _a ).arrange(_a, buff=0.5, aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.play( Create(_a, run_time=1 ), Create(_a, run_time=1 ), Create(_a, run_time=1 ), ) lowercase__ = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=24, ) lowercase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=18, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_a, run_time=2.5 ), Write(_a ), Write(_a ) ) self.add(_a ) lowercase__ = [] lowercase__ = [] lowercase__ = [] for i, rect in enumerate(_a ): lowercase__ = Rectangle(height=0.46, width=0.46 ).set_stroke(width=0.0 ).set_fill(_a, opacity=0.7 ) cpu_target.move_to(_a ) cpu_target.generate_target() lowercase__ = 0.46 / 4 lowercase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.02, direction=_a ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=_a, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=_a, buff=0.0 ) cpu_targs.append(_a ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_a ) ) second_animations.append(MoveToTarget(_a, run_time=1.5 ) ) self.play(*_a ) self.play(*_a ) self.wait()
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class a__ ( metaclass=_snake_case ): snake_case_ = ['note_seq'] def __init__( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(self, ["note_seq"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["note_seq"] ) @classmethod def snake_case__ ( cls, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' requires_backends(cls, ["note_seq"] )
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import heapq import sys import numpy as np lowerCAmelCase_: List[Any] = tuple[int, int] class a__ : def __init__( self ): '''simple docstring''' lowercase__ = [] lowercase__ = set() def snake_case__ ( self ): '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float("inf" ) def snake_case__ ( self ): '''simple docstring''' return len(self.elements ) == 0 def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if item not in self.set: heapq.heappush(self.elements, (priority, item) ) self.set.add(_UpperCAmelCase ) else: # update # print("update", item) lowercase__ = [] ((lowercase__) , (lowercase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowercase__) , (lowercase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements, (pro, xxx) ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if item in self.set: self.set.remove(_UpperCAmelCase ) lowercase__ = [] ((lowercase__) , (lowercase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowercase__) , (lowercase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements, (prito, yyy) ) def snake_case__ ( self ): '''simple docstring''' return self.elements[0][1] def snake_case__ ( self ): '''simple docstring''' ((lowercase__) , (lowercase__)) = heapq.heappop(self.elements ) self.set.remove(_UpperCAmelCase ) return (priority, item) def __a ( A , A ): '''simple docstring''' lowercase__ = np.array(lowerCAmelCase__ ) lowercase__ = np.array(lowerCAmelCase__ ) return np.linalg.norm(a - b ) def __a ( A , A ): '''simple docstring''' return consistent_heuristic(lowerCAmelCase__ , lowerCAmelCase__ ) // t def __a ( A , A ): '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __a ( A , A , A , A ): '''simple docstring''' lowercase__ = g_function[start] + Wa * heuristics[i](lowerCAmelCase__ , lowerCAmelCase__ ) return ans def __a ( A , A , A ): '''simple docstring''' lowercase__ = np.chararray((n, n) ) for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): lowercase__ = "*" for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (j, (n - 1) - i) in blocks: lowercase__ = "#" lowercase__ = "-" lowercase__ = back_pointer[goal] while x != start: ((lowercase__) , (lowercase__)) = x # print(x) lowercase__ = "-" lowercase__ = back_pointer[x] lowercase__ = "-" for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) lowercase__ = back_pointer[goal] while x != start: print(lowerCAmelCase__ , end=" " ) lowercase__ = back_pointer[x] print(lowerCAmelCase__ ) sys.exit() def __a ( A ): '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __a ( A , A , A , A , A , A , A , A , ): '''simple docstring''' for itera in range(lowerCAmelCase__ ): open_list[itera].remove_element(lowerCAmelCase__ ) # print("s", s) # print("j", j) ((lowercase__) , (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCAmelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCAmelCase__ ) lowercase__ = -1 lowercase__ = float("inf" ) if valid(lowerCAmelCase__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(lowerCAmelCase__ , key(lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCAmelCase__ ): if key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) <= Wa * key( lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ): open_list[j].put( lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) def __a ( ): '''simple docstring''' lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCAmelCase_: Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCAmelCase_: Tuple = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] lowerCAmelCase_: int = make_common_ground() lowerCAmelCase_: Optional[Any] = blocks_blk # hyper parameters lowerCAmelCase_: Optional[int] = 1 lowerCAmelCase_: Dict = 1 lowerCAmelCase_: Union[str, Any] = 2_0 lowerCAmelCase_: Tuple = 3 # one consistent and two other inconsistent # start and end destination lowerCAmelCase_: Optional[int] = (0, 0) lowerCAmelCase_: Optional[Any] = (n - 1, n - 1) lowerCAmelCase_: Tuple = 1 def __a ( A , A , A ): '''simple docstring''' lowercase__ = {start: 0, goal: float("inf" )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(lowerCAmelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , lowerCAmelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: lowercase__ , lowercase__ = open_list[i].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) close_list_inad.append(lowerCAmelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: lowercase__ = open_list[0].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) close_list_anchor.append(lowerCAmelCase__ ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCAmelCase__ ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer UpperCAmelCase_: str = logging.get_logger(__name__) UpperCAmelCase_: Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_: int = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_: Any = { "distilbert-base-uncased": 5_1_2, "distilbert-base-uncased-distilled-squad": 5_1_2, "distilbert-base-cased": 5_1_2, "distilbert-base-cased-distilled-squad": 5_1_2, "distilbert-base-german-cased": 5_1_2, "distilbert-base-multilingual-cased": 5_1_2, } UpperCAmelCase_: Optional[Any] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class a__ ( __lowerCAmelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = ["input_ids", "attention_mask"] snake_case_ = DistilBertTokenizer def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=True, _UpperCAmelCase="[UNK]", _UpperCAmelCase="[SEP]", _UpperCAmelCase="[PAD]", _UpperCAmelCase="[CLS]", _UpperCAmelCase="[MASK]", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCamelCase, tokenizer_file=_UpperCamelCase, do_lower_case=_UpperCamelCase, unk_token=_UpperCamelCase, sep_token=_UpperCamelCase, pad_token=_UpperCamelCase, cls_token=_UpperCamelCase, mask_token=_UpperCamelCase, tokenize_chinese_chars=_UpperCamelCase, strip_accents=_UpperCamelCase, **_UpperCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase", _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents", _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars", _UpperCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(_UpperCamelCase, normalizer_state.pop("type" ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**_UpperCamelCase ) lowercase__ = do_lower_case def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(_UpperCamelCase, name=_UpperCamelCase ) return tuple(_UpperCamelCase )
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } lowerCAmelCase_: Tuple = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __a ( A ): '''simple docstring''' lowercase__ = {} with open(_lowerCamelCase , "r" ) as file: for line_number, line in enumerate(_lowerCamelCase ): lowercase__ = line.strip() if line: lowercase__ = line.split() lowercase__ = line_number lowercase__ = words[0] lowercase__ = value return result def __a ( A , A , A , A , A ): '''simple docstring''' for attribute in key.split("." ): lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ) lowercase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): lowercase__ = PARAM_MAPPING[full_name.split("." )[-1]] lowercase__ = 'param' if weight_type is not None and weight_type != "param": lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": lowercase__ = hf_pointer for attribute in hf_param_name.split("." ): lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ) lowercase__ = shape_pointer.shape # let's reduce dimension lowercase__ = value[0] else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ) lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase ): lowercase__ = PARAM_MAPPING[full_name.split("." )[-1]] lowercase__ = 'param' if weight_type is not None and weight_type != "param": lowercase__ = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": lowercase__ = '.'.join([key, hf_param_name] ) else: lowercase__ = key lowercase__ = value if 'lm_head' in full_key else value[0] lowerCAmelCase_: List[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __a ( A , A , A=None , A=None ): '''simple docstring''' lowercase__ = False for key, mapped_key in MAPPING.items(): lowercase__ = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(_lowerCamelCase )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: lowercase__ = 'weight_g' elif "weight_v" in name: lowercase__ = 'weight_v' elif "bias" in name: lowercase__ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = 'weight' else: lowercase__ = None if hf_dict is not None: rename_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return is_used return is_used def __a ( A , A , A ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase__ = True else: lowercase__ = load_wavaveca_layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def __a ( A , A , A=None , A=None , A=True , A=False ): '''simple docstring''' if config_path is not None: lowercase__ = WavaVecaConfig.from_pretrained(_lowerCamelCase ) else: lowercase__ = WavaVecaConfig() if is_seq_class: lowercase__ = read_txt_into_dict(_lowerCamelCase ) lowercase__ = idalabel lowercase__ = WavaVecaForSequenceClassification(_lowerCamelCase ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) feature_extractor.save_pretrained(_lowerCamelCase ) elif is_finetuned: if dict_path: lowercase__ = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(_lowerCamelCase , "vocab.json" ) if not os.path.isdir(_lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) lowercase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowercase__ = 0 lowercase__ = 1 with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) lowercase__ = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) lowercase__ = True if config.feat_extract_norm == 'layer' else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) lowercase__ = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) lowercase__ = WavaVecaForCTC(_lowerCamelCase ) else: lowercase__ = WavaVecaForPreTraining(_lowerCamelCase ) if is_finetuned or is_seq_class: lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase__ = argparse.Namespace(task="audio_pretraining" ) lowercase__ = fairseq.tasks.setup_task(_lowerCamelCase ) lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) lowercase__ = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_: int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) lowerCAmelCase_: List[Any] = parser.parse_args() lowerCAmelCase_: List[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class a__ ( unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): '''simple docstring''' lowercase__ = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowercase__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) lowercase__ = "A painting of a squirrel eating a burger" lowercase__ = torch.manual_seed(0 ) lowercase__ = sd_pipe([prompt], generator=__lowerCamelCase, guidance_scale=9.0, num_inference_steps=20, output_type="np" ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ): '''simple docstring''' lowercase__ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) lowercase__ = "A painting of a squirrel eating a burger" lowercase__ = torch.manual_seed(0 ) lowercase__ = sd_pipe([prompt], generator=__lowerCamelCase, guidance_scale=9.0, num_inference_steps=20, output_type="np" ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def snake_case__ ( self ): '''simple docstring''' lowercase__ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) lowercase__ = "A painting of a squirrel eating a burger" lowercase__ = torch.manual_seed(0 ) lowercase__ = sd_pipe( [prompt], generator=__lowerCamelCase, guidance_scale=7.5, num_inference_steps=15, output_type="np", use_karras_sigmas=__lowerCamelCase, ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _UpperCAmelCase ): snake_case_ = (DDPMParallelScheduler,) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**lowerCamelCase_ ) return config def snake_case__ ( self ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase_, beta_end=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase_, prediction_type=lowerCamelCase_, sample_max_value=lowerCamelCase_, ) def snake_case__ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea], dim=0 ) lowercase__ = torch.arange(lowerCamelCase_ )[0:3, None].repeat(1, lowerCamelCase_ ) lowercase__ = model(samples.flatten(0, 1 ), timesteps.flatten(0, 1 ) ) lowercase__ = scheduler.batch_step_no_noise(lowerCamelCase_, timesteps.flatten(0, 1 ), samples.flatten(0, 1 ) ) lowercase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual lowercase__ = model(lowerCamelCase_, lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = len(lowerCamelCase_ ) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0 ) for t in reversed(range(lowerCamelCase_ ) ): # 1. predict noise residual lowercase__ = model(lowerCamelCase_, lowerCamelCase_ ) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, generator=lowerCamelCase_ ).prev_sample lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) lowercase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) lowercase__ = scheduler.timesteps for i, timestep in enumerate(lowerCamelCase_ ): if i == len(lowerCamelCase_ ) - 1: lowercase__ = -1 else: lowercase__ = timesteps[i + 1] lowercase__ = scheduler.previous_timestep(lowerCamelCase_ ) lowercase__ = prev_t.item() self.assertEqual(lowerCamelCase_, lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = [100, 87, 50, 51, 0] with self.assertRaises(lowerCamelCase_, msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = [100, 87, 50, 1, 0] lowercase__ = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_, timesteps=lowerCamelCase_ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCamelCase_ ) lowercase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_, msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a__ ( _UpperCAmelCase ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=2, _UpperCAmelCase=99, _UpperCAmelCase=0, _UpperCAmelCase=32, _UpperCAmelCase=5, _UpperCAmelCase=4, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=12, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=3, _UpperCAmelCase=4, _UpperCAmelCase="last", _UpperCAmelCase=None, _UpperCAmelCase=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_lengths lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = gelu_activation lowercase__ = sinusoidal_embeddings lowercase__ = causal lowercase__ = asm lowercase__ = n_langs lowercase__ = vocab_size lowercase__ = n_special lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = summary_type lowercase__ = use_proj lowercase__ = scope def snake_case__ ( self ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_input_lengths: lowercase__ = ( ids_tensor([self.batch_size], vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.n_langs ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], 2 ).float() lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case__ ( self ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = FlaubertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, lengths=__UpperCamelCase, langs=__UpperCamelCase ) lowercase__ = model(__UpperCamelCase, langs=__UpperCamelCase ) lowercase__ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = FlaubertWithLMHeadModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, token_type_ids=__UpperCamelCase, labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = FlaubertForQuestionAnsweringSimple(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase ) lowercase__ = model(__UpperCamelCase, start_positions=__UpperCamelCase, end_positions=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = FlaubertForQuestionAnswering(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase ) lowercase__ = model( __UpperCamelCase, start_positions=__UpperCamelCase, end_positions=__UpperCamelCase, cls_index=__UpperCamelCase, is_impossible=__UpperCamelCase, p_mask=__UpperCamelCase, ) lowercase__ = model( __UpperCamelCase, start_positions=__UpperCamelCase, end_positions=__UpperCamelCase, cls_index=__UpperCamelCase, is_impossible=__UpperCamelCase, ) ((lowercase__) , ) = result_with_labels.to_tuple() lowercase__ = model(__UpperCamelCase, start_positions=__UpperCamelCase, end_positions=__UpperCamelCase ) ((lowercase__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, () ) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = FlaubertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase ) lowercase__ = model(__UpperCamelCase, labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = FlaubertForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = model(__UpperCamelCase, attention_mask=__UpperCamelCase, labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = FlaubertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = model( __UpperCamelCase, attention_mask=__UpperCamelCase, token_type_ids=__UpperCamelCase, labels=__UpperCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class a__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): snake_case_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case_ = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(__UpperCamelCase, __UpperCamelCase, return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase__ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=__UpperCamelCase ) lowercase__ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=__UpperCamelCase ) return inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaubertModelTester(self ) lowercase__ = ConfigTester(self, config_class=__UpperCamelCase, emb_dim=37 ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCamelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCamelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCamelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FlaubertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow @require_torch_gpu def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase__ = True lowercase__ = model_class(config=__UpperCamelCase ) lowercase__ = self._prepare_for_class(__UpperCamelCase, __UpperCamelCase ) lowercase__ = torch.jit.trace( __UpperCamelCase, (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCamelCase, os.path.join(__UpperCamelCase, "traced_model.pt" ) ) lowercase__ = torch.jit.load(os.path.join(__UpperCamelCase, "traced_model.pt" ), map_location=__UpperCamelCase ) loaded(inputs_dict["input_ids"].to(__UpperCamelCase ), inputs_dict["attention_mask"].to(__UpperCamelCase ) ) @require_torch class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): lowercase__ = model(__UpperCamelCase )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, __UpperCamelCase ) lowercase__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], __UpperCamelCase, atol=1E-4 ) )
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: Dict = logging.get_logger(__name__) lowerCAmelCase_: List[str] = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class a__ ( _a ): snake_case_ = """ibert""" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=1, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase="absolute", _UpperCAmelCase=False, _UpperCAmelCase="none", **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=snake_case_, bos_token_id=snake_case_, eos_token_id=snake_case_, **snake_case_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class a__ ( _a ): @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a__ ( SCREAMING_SNAKE_CASE__ ): snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "Pix2StructImageProcessor" snake_case_ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = False super().__init__(_lowercase, _lowercase ) def __call__( self, _UpperCAmelCase=None, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = False, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = 2048, _UpperCAmelCase = 0, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = True, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=_lowercase, add_special_tokens=_lowercase, padding=_lowercase, truncation=_lowercase, max_length=_lowercase, stride=_lowercase, pad_to_multiple_of=_lowercase, return_attention_mask=_lowercase, return_overflowing_tokens=_lowercase, return_special_tokens_mask=_lowercase, return_offsets_mapping=_lowercase, return_token_type_ids=_lowercase, return_length=_lowercase, verbose=_lowercase, return_tensors=_lowercase, **_lowercase, ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase__ = self.image_processor( _lowercase, return_tensors=_lowercase, max_patches=_lowercase, **_lowercase ) else: # add pixel_values and bbox lowercase__ = self.image_processor( _lowercase, return_tensors=_lowercase, max_patches=_lowercase, header_text=_lowercase, **_lowercase ) if text is not None and not self.image_processor.is_vqa: lowercase__ = self.tokenizer( text=_lowercase, add_special_tokens=_lowercase, padding=_lowercase, truncation=_lowercase, max_length=_lowercase, stride=_lowercase, pad_to_multiple_of=_lowercase, return_attention_mask=_lowercase, return_overflowing_tokens=_lowercase, return_special_tokens_mask=_lowercase, return_offsets_mapping=_lowercase, return_token_type_ids=_lowercase, return_length=_lowercase, verbose=_lowercase, return_tensors=_lowercase, **_lowercase, ) if "attention_mask" in text_encoding: lowercase__ = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase__ = text_encoding.pop("input_ids" ) else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(_lowercase ) return encoding_image_processor def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*_lowercase, **_lowercase ) def snake_case__ ( self, *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*_lowercase, **_lowercase ) @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
from decimal import Decimal, getcontext from math import ceil, factorial def __a ( A ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) lowercase__ = precision lowercase__ = ceil(precision / 14 ) lowercase__ = 42_68_80 * Decimal(1_00_05 ).sqrt() lowercase__ = 1 lowercase__ = 13_59_14_09 lowercase__ = Decimal(snake_case__ ) for k in range(1 , snake_case__ ): lowercase__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(snake_case__ ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_: List[Any] = 5_0 print(F'The first {n} digits of pi is: {pi(n)}')
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" import numpy class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowercase__ = numpy.random.rand( self.input_array.shape[1], 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowercase__ = numpy.random.rand( 4, 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowercase__ = numpy.random.rand(3, 1 ) # Real output values provided. lowercase__ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowercase__ = numpy.zeros(output_array.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = sigmoid( numpy.dot(self.input_array, self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowercase__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer, self.first_hidden_layer_and_second_hidden_layer_weights, ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowercase__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer, self.second_hidden_layer_and_output_layer_weights, ) ) return self.layer_between_second_hidden_layer_and_output def snake_case__ ( self ): '''simple docstring''' lowercase__ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T, 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ), ) lowercase__ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T, numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ), self.second_hidden_layer_and_output_layer_weights.T, ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ), ) lowercase__ = numpy.dot( self.input_array.T, numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ), self.second_hidden_layer_and_output_layer_weights.T, ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ), self.first_hidden_layer_and_second_hidden_layer_weights.T, ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ), ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for iteration in range(1, iterations + 1 ): lowercase__ = self.feedforward() self.back_propagation() if give_loss: lowercase__ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = input_arr lowercase__ = sigmoid( numpy.dot(self.array, self.input_layer_and_first_hidden_layer_weights ) ) lowercase__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer, self.first_hidden_layer_and_second_hidden_layer_weights, ) ) lowercase__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer, self.second_hidden_layer_and_output_layer_weights, ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __a ( A ): '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def __a ( A ): '''simple docstring''' return (value) * (1 - (value)) def __a ( ): '''simple docstring''' lowercase__ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowercase__ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowercase__ = TwoHiddenLayerNeuralNetwork( input_array=__SCREAMING_SNAKE_CASE , output_array=__SCREAMING_SNAKE_CASE ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__SCREAMING_SNAKE_CASE , iterations=10 , give_loss=__SCREAMING_SNAKE_CASE ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: Tuple = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class a__ ( _a ): snake_case_ = "gpt_neox" def __init__( self, _UpperCAmelCase=5_0432, _UpperCAmelCase=6144, _UpperCAmelCase=44, _UpperCAmelCase=64, _UpperCAmelCase=2_4576, _UpperCAmelCase="gelu", _UpperCAmelCase=0.25, _UpperCAmelCase=1_0000, _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.1, _UpperCAmelCase=2048, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-5, _UpperCAmelCase=True, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = rotary_pct lowercase__ = rotary_emb_base lowercase__ = attention_dropout lowercase__ = hidden_dropout lowercase__ = classifier_dropout lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = use_parallel_residual lowercase__ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def snake_case__ ( self ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling, _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) lowercase__ = self.rope_scaling.get("type", _UpperCAmelCase ) lowercase__ = self.rope_scaling.get("factor", _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCAmelCase_: int = logging.get_logger(__name__) class a__ : snake_case_ = 42 snake_case_ = None @staticmethod def snake_case__ ( ): '''simple docstring''' raise NotImplementedError def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' raise NotImplementedError def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' raise NotImplementedError def snake_case__ ( self ): '''simple docstring''' if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def snake_case__ ( cls ): '''simple docstring''' return F'''`pip install {cls.pip_package or cls.name}`''' class a__ ( UpperCamelCase_ ): snake_case_ = "optuna" @staticmethod def snake_case__ ( ): '''simple docstring''' return is_optuna_available() def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return run_hp_search_optuna(__A, __A, __A, **__A ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return default_hp_space_optuna(__A ) class a__ ( UpperCamelCase_ ): snake_case_ = "ray" snake_case_ = "'ray[tune]'" @staticmethod def snake_case__ ( ): '''simple docstring''' return is_ray_available() def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return run_hp_search_ray(__A, __A, __A, **__A ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return default_hp_space_ray(__A ) class a__ ( UpperCamelCase_ ): snake_case_ = "sigopt" @staticmethod def snake_case__ ( ): '''simple docstring''' return is_sigopt_available() def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return run_hp_search_sigopt(__A, __A, __A, **__A ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return default_hp_space_sigopt(__A ) class a__ ( UpperCamelCase_ ): snake_case_ = "wandb" @staticmethod def snake_case__ ( ): '''simple docstring''' return is_wandb_available() def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' return run_hp_search_wandb(__A, __A, __A, **__A ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return default_hp_space_wandb(__A ) lowerCAmelCase_: Union[str, Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __a ( ): '''simple docstring''' lowercase__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(snake_case_ ) > 0: lowercase__ = available_backends[0].name if len(snake_case_ ) > 1: logger.info( f'''{len(snake_case_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: Optional[int] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class a__ ( lowercase__ ): snake_case_ = "ibert" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=1, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase="absolute", _UpperCAmelCase=False, _UpperCAmelCase="none", **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = quant_mode lowercase__ = force_dequant class a__ ( lowercase__ ): @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Dict = logging.get_logger(__name__) lowerCAmelCase_: int = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class a__ ( __SCREAMING_SNAKE_CASE ): snake_case_ = "openai-gpt" snake_case_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, _UpperCAmelCase=4_0478, _UpperCAmelCase=512, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1E-5, _UpperCAmelCase=0.02, _UpperCAmelCase="cls_index", _UpperCAmelCase=True, _UpperCAmelCase=None, _UpperCAmelCase=True, _UpperCAmelCase=0.1, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = afn lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = summary_type lowercase__ = summary_use_proj lowercase__ = summary_activation lowercase__ = summary_first_dropout lowercase__ = summary_proj_to_labels super().__init__(**_a )
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __a ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(snake_case__ ) lowercase__ = cos(snake_case__ ) lowercase__ = _sin / (2 * q_factor) lowercase__ = (1 - _cos) / 2 lowercase__ = 1 - _cos lowercase__ = 1 + alpha lowercase__ = -2 * _cos lowercase__ = 1 - alpha lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __a ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(snake_case__ ) lowercase__ = cos(snake_case__ ) lowercase__ = _sin / (2 * q_factor) lowercase__ = (1 + _cos) / 2 lowercase__ = -1 - _cos lowercase__ = 1 + alpha lowercase__ = -2 * _cos lowercase__ = 1 - alpha lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __a ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(snake_case__ ) lowercase__ = cos(snake_case__ ) lowercase__ = _sin / (2 * q_factor) lowercase__ = _sin / 2 lowercase__ = 0 lowercase__ = -ba lowercase__ = 1 + alpha lowercase__ = -2 * _cos lowercase__ = 1 - alpha lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __a ( A , A , A = 1 / sqrt(2 ) ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(snake_case__ ) lowercase__ = cos(snake_case__ ) lowercase__ = _sin / (2 * q_factor) lowercase__ = 1 - alpha lowercase__ = -2 * _cos lowercase__ = 1 + alpha lowercase__ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __a ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(snake_case__ ) lowercase__ = cos(snake_case__ ) lowercase__ = _sin / (2 * q_factor) lowercase__ = 10 ** (gain_db / 40) lowercase__ = 1 + alpha * big_a lowercase__ = -2 * _cos lowercase__ = 1 - alpha * big_a lowercase__ = 1 + alpha / big_a lowercase__ = -2 * _cos lowercase__ = 1 - alpha / big_a lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __a ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(snake_case__ ) lowercase__ = cos(snake_case__ ) lowercase__ = _sin / (2 * q_factor) lowercase__ = 10 ** (gain_db / 40) lowercase__ = (big_a + 1) - (big_a - 1) * _cos lowercase__ = (big_a + 1) + (big_a - 1) * _cos lowercase__ = (big_a - 1) - (big_a + 1) * _cos lowercase__ = (big_a - 1) + (big_a + 1) * _cos lowercase__ = 2 * sqrt(snake_case__ ) * alpha lowercase__ = big_a * (pmc + aaa) lowercase__ = 2 * big_a * mpc lowercase__ = big_a * (pmc - aaa) lowercase__ = ppmc + aaa lowercase__ = -2 * pmpc lowercase__ = ppmc - aaa lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __a ( A , A , A , A = 1 / sqrt(2 ) , ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(snake_case__ ) lowercase__ = cos(snake_case__ ) lowercase__ = _sin / (2 * q_factor) lowercase__ = 10 ** (gain_db / 40) lowercase__ = (big_a + 1) - (big_a - 1) * _cos lowercase__ = (big_a + 1) + (big_a - 1) * _cos lowercase__ = (big_a - 1) - (big_a + 1) * _cos lowercase__ = (big_a - 1) + (big_a + 1) * _cos lowercase__ = 2 * sqrt(snake_case__ ) * alpha lowercase__ = big_a * (ppmc + aaa) lowercase__ = -2 * big_a * pmpc lowercase__ = big_a * (ppmc - aaa) lowercase__ = pmc + aaa lowercase__ = 2 * mpc lowercase__ = pmc - aaa lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class a__ ( _a , unittest.TestCase ): snake_case_ = CanineTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return CanineTokenizer.from_pretrained("google/canine-s" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained(self.tmpdirname, **__lowerCAmelCase ) lowercase__ = 1024 return tokenizer @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.canine_tokenizer lowercase__ = ["Life is like a box of chocolates.", "You never know what you\'re gonna get."] # fmt: off lowercase__ = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowercase__ = tokenizer(__lowerCAmelCase, padding=__lowerCAmelCase, return_tensors="pt" ) self.assertIsInstance(__lowerCAmelCase, __lowerCAmelCase ) lowercase__ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCAmelCase, __lowerCAmelCase ) self.assertEqual((2, 39), batch.input_ids.shape ) self.assertEqual((2, 39), batch.attention_mask.shape ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.canine_tokenizer lowercase__ = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] lowercase__ = tokenizer(__lowerCAmelCase, padding=__lowerCAmelCase, return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids", __lowerCAmelCase ) self.assertIn("attention_mask", __lowerCAmelCase ) self.assertIn("token_type_ids", __lowerCAmelCase ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.canine_tokenizer lowercase__ = [ "What\'s the weater?", "It\'s about 25 degrees.", ] lowercase__ = tokenizer( text_target=__lowerCAmelCase, max_length=32, padding="max_length", truncation=__lowerCAmelCase, return_tensors="pt" ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) lowercase__ = after_tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase, __lowerCAmelCase ) shutil.rmtree(__lowerCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowercase__ = chr(0Xe007 ) additional_special_tokens.append(__lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) tokenizer.save_pretrained(__lowerCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase ) lowercase__ = after_tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase, __lowerCAmelCase ) self.assertIn(__lowerCAmelCase, after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(__lowerCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(__lowerCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_clean_sequence(__lowerCAmelCase ) # a special token for Canine can be defined as follows: lowercase__ = 0Xe005 lowercase__ = chr(__lowerCAmelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ), 1 ) lowercase__ = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=__lowerCAmelCase ) lowercase__ = tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) lowercase__ = tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) lowercase__ = tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase, input_encoded + special_token_id ) lowercase__ = tokenizer.decode(__lowerCAmelCase, skip_special_tokens=__lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = chr(0Xe005 ) lowercase__ = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=__lowerCAmelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) lowercase__ = tokenizer.tokenize(__lowerCAmelCase ) lowercase__ = tokenizer.tokenize(__lowerCAmelCase ) self.assertEqual(len(__lowerCAmelCase ), 1 ) self.assertEqual(len(__lowerCAmelCase ), 1 ) self.assertEqual(token_a[0], __lowerCAmelCase ) self.assertEqual(token_a[0], __lowerCAmelCase ) @require_tokenizers def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: lowercase__ = 0Xe006 lowercase__ = chr(__lowerCAmelCase ) lowercase__ = AddedToken(__lowerCAmelCase, lstrip=__lowerCAmelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCAmelCase ) tokenizer.from_pretrained(__lowerCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(__lowerCAmelCase ) # a special token for Canine can be defined as follows: lowercase__ = 0Xe006 lowercase__ = chr(__lowerCAmelCase ) lowercase__ = [new_token_a] lowercase__ = [new_token_a] with open(os.path.join(__lowerCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(__lowerCAmelCase, __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(__lowerCAmelCase, __lowerCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained(__lowerCAmelCase, extra_ids=0 ) self.assertIn(__lowerCAmelCase, tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ), ) lowercase__ = 0Xe007 lowercase__ = chr(__lowerCAmelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = [AddedToken(__lowerCAmelCase, lstrip=__lowerCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( __lowerCAmelCase, additional_special_tokens=__lowerCAmelCase, extra_ids=0 ) self.assertIn(__lowerCAmelCase, tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "hello world" if self.space_between_special_tokens: lowercase__ = "[CLS] hello world [SEP]" else: lowercase__ = input lowercase__ = tokenizer.encode(__lowerCAmelCase, add_special_tokens=__lowerCAmelCase ) lowercase__ = tokenizer.decode(__lowerCAmelCase, spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCAmelCase, [output, output.lower()] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = "a" lowercase__ = ord(__lowerCAmelCase ) for attr in attributes_list: setattr(__lowerCAmelCase, attr + "_id", __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase, __lowerCAmelCase ), __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase, attr + "_id" ), __lowerCAmelCase ) setattr(__lowerCAmelCase, attr + "_id", __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase, __lowerCAmelCase ), __lowerCAmelCase ) self.assertEqual(getattr(__lowerCAmelCase, attr + "_id" ), __lowerCAmelCase ) setattr(__lowerCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(__lowerCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(__lowerCAmelCase, "additional_special_tokens_ids" ), [] ) lowercase__ = 0Xe006 lowercase__ = chr(__lowerCAmelCase ) setattr(__lowerCAmelCase, "additional_special_tokens_ids", [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCAmelCase, "additional_special_tokens" ), [additional_special_token] ) self.assertListEqual(getattr(__lowerCAmelCase, "additional_special_tokens_ids" ), [additional_special_token_id] ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
def __a ( A ): '''simple docstring''' lowercase__ = len(UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowercase__ = arr[i + 1], arr[i] return arr if __name__ == "__main__": lowerCAmelCase_: List[Any] = list(range(1_0, 0, -1)) print(F'Original: {arr}. Sorted: {odd_even_transposition(arr)}')
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_: int = get_tests_dir("fixtures/test_sentencepiece.model") lowerCAmelCase_: int = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} lowerCAmelCase_: Optional[int] = '''>>zh<<''' lowerCAmelCase_: Any = '''Helsinki-NLP/''' if is_torch_available(): lowerCAmelCase_: Optional[Any] = '''pt''' elif is_tf_available(): lowerCAmelCase_: Any = '''tf''' else: lowerCAmelCase_: int = '''jax''' @require_sentencepiece class a__ ( a__ , unittest.TestCase ): snake_case_ = MarianTokenizer snake_case_ = False snake_case_ = True def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowercase__ = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__ ) ) ) ) lowercase__ = Path(self.tmpdirname ) save_json(lowerCAmelCase__, save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(lowerCAmelCase__, save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase__, save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(lowerCAmelCase__, save_dir / VOCAB_FILES_NAMES["target_spm"] ) lowercase__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__ ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return ( "This is a test", "This is a test", ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = "</s>" lowercase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ), lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ), lowerCAmelCase__ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "</s>" ) self.assertEqual(vocab_keys[1], "<unk>" ) self.assertEqual(vocab_keys[-1], "<pad>" ) self.assertEqual(len(lowerCAmelCase__ ), 9 ) def snake_case__ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 9 ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) lowercase__ = en_de_tokenizer(["I am a small frog"], return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(lowerCAmelCase__, batch.input_ids[0] ) lowercase__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase__ ) lowercase__ = [x.name for x in Path(lowerCAmelCase__ ).glob("*" )] self.assertIn("source.spm", lowerCAmelCase__ ) MarianTokenizer.from_pretrained(lowerCAmelCase__ ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = tok( ["I am a small frog" * 1000, "I am a small frog"], padding=lowerCAmelCase__, truncation=lowerCAmelCase__, return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__, lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape, (2, 512) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizer() lowercase__ = tok(["I am a tiny frog", "I am a small frog"], padding=lowerCAmelCase__, return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__, lowerCAmelCase__ ) self.assertEqual(batch_smaller.input_ids.shape, (2, 10) ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = {"input_ids": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__, model_name="Helsinki-NLP/opus-mt-en-de", revision="1a8c2263da11e68e50938f97e10cd57820bd504c", decode_kwargs={"use_source_tokenizer": True}, ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) lowercase__ = "Tämä on testi" lowercase__ = "This is a test" lowercase__ = [76, 7, 2047, 2] lowercase__ = [69, 12, 11, 940, 2] lowercase__ = tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = tokenizer(text_target=lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = tokenizer.decode(lowerCAmelCase__, skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__, lowerCAmelCase__ )
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __a ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase__ = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , UpperCAmelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __a ( ): '''simple docstring''' assert _test_patching.open is open lowercase__ = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , UpperCAmelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __a ( ): '''simple docstring''' lowercase__ = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , UpperCAmelCase__ ): pass def __a ( ): '''simple docstring''' lowercase__ = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , UpperCAmelCase__ ) is None with patch_submodule(_test_patching , "len" , UpperCAmelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def __a ( ): '''simple docstring''' lowercase__ = "__test_patch_submodule_start_and_stop_mock__" lowercase__ = patch_submodule(_test_patching , "open" , UpperCAmelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __a ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase__ = "__test_patch_submodule_successive_join__" lowercase__ = "__test_patch_submodule_successive_dirname__" lowercase__ = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , UpperCAmelCase__ ): with patch_submodule(_test_patching , "os.rename" , UpperCAmelCase__ ): with patch_submodule(_test_patching , "os.path.dirname" , UpperCAmelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , UpperCAmelCase__ ): with patch_submodule(_test_patching , "os.path.join" , UpperCAmelCase__ ): with patch_submodule(_test_patching , "os.path.dirname" , UpperCAmelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __a ( ): '''simple docstring''' lowercase__ = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , UpperCAmelCase__ ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , UpperCAmelCase__ ): pass
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __a ( A ): '''simple docstring''' lowercase__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def __a ( A ): '''simple docstring''' lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) lowercase__ = emb.weight.data return lin_layer def __a ( A ): '''simple docstring''' lowercase__ = torch.load(_snake_case , map_location="cpu" ) lowercase__ = mam_aaa["args"] or mam_aaa["cfg"]["model"] lowercase__ = mam_aaa["model"] remove_ignore_keys_(_snake_case ) lowercase__ = state_dict["encoder.embed_tokens.weight"].shape[0] lowercase__ = MaMaaaConfig( vocab_size=_snake_case , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) lowercase__ = state_dict["decoder.embed_tokens.weight"] lowercase__ = MaMaaaForConditionalGeneration(_snake_case ) model.model.load_state_dict(_snake_case , strict=_snake_case ) lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase_: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowerCAmelCase_: str = parser.parse_args() lowerCAmelCase_: Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_: Optional[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase_: Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = state_dict.pop(_lowercase ) lowercase__ = val def __a ( A ): '''simple docstring''' lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) lowercase__ = value else: lowercase__ = value return new_state_dict def __a ( A ): '''simple docstring''' lowercase__ = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:2_56, :] lowercase__ = in_proj_bias[:2_56] lowercase__ = in_proj_weight[2_56:5_12, :] lowercase__ = in_proj_bias[2_56:5_12] lowercase__ = in_proj_weight[-2_56:, :] lowercase__ = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:2_56, :] lowercase__ = in_proj_bias[:2_56] lowercase__ = in_proj_weight[2_56:5_12, :] lowercase__ = in_proj_bias[2_56:5_12] lowercase__ = in_proj_weight[-2_56:, :] lowercase__ = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowercase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ = in_proj_weight_cross_attn[:2_56, :] lowercase__ = in_proj_bias_cross_attn[:2_56] lowercase__ = in_proj_weight_cross_attn[2_56:5_12, :] lowercase__ = in_proj_bias_cross_attn[2_56:5_12] lowercase__ = in_proj_weight_cross_attn[-2_56:, :] lowercase__ = in_proj_bias_cross_attn[-2_56:] def __a ( A , A ): '''simple docstring''' lowercase__ = image.size lowercase__ = max(_lowercase , _lowercase ) lowercase__ = 8_00 if '''detection''' in checkpoint_url else 10_00 lowercase__ = target_max_size / current_max_size lowercase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __a ( A ): '''simple docstring''' lowercase__ = F.to_tensor(_lowercase ) lowercase__ = F.normalize(_lowercase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __a ( A , A , A ): '''simple docstring''' logger.info("Converting model..." ) # load original state dict lowercase__ = torch.hub.load_state_dict_from_url(_lowercase , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) lowercase__ = rename_backbone_keys(_lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = '''model.''' for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowercase__ = state_dict.pop(_lowercase ) lowercase__ = val # create HuggingFace model and load state dict lowercase__ = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowercase__ = 15 lowercase__ = 2 lowercase__ = {0: '''table''', 1: '''table rotated'''} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} else: lowercase__ = 1_25 lowercase__ = 6 lowercase__ = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) lowercase__ = TableTransformerForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # verify our conversion lowercase__ = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' lowercase__ = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=_lowercase ) lowercase__ = Image.open(_lowercase ).convert("RGB" ) lowercase__ = normalize(resize(_lowercase , _lowercase ) ).unsqueeze(0 ) lowercase__ = model(_lowercase ) if "detection" in checkpoint_url: lowercase__ = (1, 15, 3) lowercase__ = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) lowercase__ = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: lowercase__ = (1, 1_25, 7) lowercase__ = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) lowercase__ = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _lowercase , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowercase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) lowercase__ = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(_lowercase ) image_processor.push_to_hub(_lowercase ) if __name__ == "__main__": lowerCAmelCase_: str = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase_: Optional[int] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" import argparse import os import re import packaging.version lowerCAmelCase_: Dict = "examples/" lowerCAmelCase_: Dict = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } lowerCAmelCase_: str = { "init": "src/transformers/__init__.py", "setup": "setup.py", } lowerCAmelCase_: List[str] = "README.md" def __a ( A , A , A ): '''simple docstring''' with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase__ = f.read() lowercase__ , lowercase__ = REPLACE_PATTERNS[pattern] lowercase__ = replace.replace("VERSION" , __UpperCamelCase ) lowercase__ = re_pattern.sub(__UpperCamelCase , __UpperCamelCase ) with open(__UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(__UpperCamelCase ) def __a ( A ): '''simple docstring''' for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase , pattern="examples" ) def __a ( A , A=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def __a ( ): '''simple docstring''' lowercase__ = "🤗 Transformers currently provides the following architectures" lowercase__ = "1. Want to contribute a new model?" with open(__UpperCamelCase , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase__ = f.readlines() # Find the start of the list. lowercase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowercase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): lowercase__ = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(__UpperCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__UpperCamelCase ) def __a ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r" ) as f: lowercase__ = f.read() lowercase__ = REPLACE_PATTERNS["init"][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def __a ( A=False ): '''simple docstring''' lowercase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: lowercase__ = default_version.base_version elif patch: lowercase__ = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowercase__ = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowercase__ = input(f'''Which version are you releasing? [{default_version}]''' ) if len(__UpperCamelCase ) == 0: lowercase__ = default_version print(f'''Updating version to {version}.''' ) global_version_update(__UpperCamelCase , patch=__UpperCamelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def __a ( ): '''simple docstring''' lowercase__ = get_version() lowercase__ = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowercase__ = current_version.base_version # Check with the user we got that right. lowercase__ = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(__UpperCamelCase ) == 0: lowercase__ = dev_version print(f'''Updating version to {version}.''' ) global_version_update(__UpperCamelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase_: Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") lowerCAmelCase_: Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a__ ( UpperCAmelCase__ ): snake_case_ = 42 snake_case_ = 42 class a__ ( UpperCAmelCase__ , UpperCAmelCase__ ): snake_case_ = 1 @register_to_config def __init__( self, _UpperCAmelCase = 2000, _UpperCAmelCase = 0.15, _UpperCAmelCase = 0.01, _UpperCAmelCase = 1348.0, _UpperCAmelCase = 1E-5, _UpperCAmelCase = 1, ): '''simple docstring''' lowercase__ = sigma_max # setable values lowercase__ = None self.set_sigmas(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None ): '''simple docstring''' return sample def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase__ = torch.linspace(1, _UpperCAmelCase, _UpperCAmelCase, device=_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None ): '''simple docstring''' lowercase__ = sigma_min if sigma_min is not None else self.config.sigma_min lowercase__ = sigma_max if sigma_max is not None else self.config.sigma_max lowercase__ = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase__ = torch.exp(torch.linspace(math.log(_UpperCAmelCase ), math.log(_UpperCAmelCase ), _UpperCAmelCase ) ) lowercase__ = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) lowercase__ = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase__ = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase__ = timesteps.to(self.discrete_sigmas.device ) lowercase__ = self.discrete_sigmas[timesteps].to(sample.device ) lowercase__ = self.get_adjacent_sigma(_UpperCAmelCase, _UpperCAmelCase ).to(sample.device ) lowercase__ = torch.zeros_like(_UpperCAmelCase ) lowercase__ = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase__ = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase__ = diffusion.unsqueeze(-1 ) lowercase__ = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase__ = randn_tensor( sample.shape, layout=sample.layout, generator=_UpperCAmelCase, device=sample.device, dtype=sample.dtype ) lowercase__ = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase__ = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_UpperCAmelCase, prev_sample_mean=_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase__ = randn_tensor(sample.shape, layout=sample.layout, generator=_UpperCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase__ = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() lowercase__ = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() lowercase__ = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase__ = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase__ = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase__ = step_size.unsqueeze(-1 ) lowercase__ = sample + step_size * model_output lowercase__ = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = timesteps.to(original_samples.device ) lowercase__ = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase__ = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_UpperCAmelCase ) * sigmas[:, None, None, None] ) lowercase__ = noise + original_samples return noisy_samples def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class a__ ( lowercase__ ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = params lowercase__ = np.array(__lowercase ) lowercase__ = np.array([len(__lowercase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self, _UpperCAmelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def snake_case__ ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.params.max_model_input_size lowercase__ = self.lengths > max_len logger.info(F'''Splitting {sum(__lowercase )} too long sequences.''' ) def divide_chunks(_UpperCAmelCase, _UpperCAmelCase ): return [l[i : i + n] for i in range(0, len(__lowercase ), __lowercase )] lowercase__ = [] lowercase__ = [] if self.params.mlm: lowercase__ , lowercase__ = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: lowercase__ , lowercase__ = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids, self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__ = [] for sub_s in divide_chunks(seq_, max_len - 2 ): if sub_s[0] != cls_id: lowercase__ = np.insert(__lowercase, 0, __lowercase ) if sub_s[-1] != sep_id: lowercase__ = np.insert(__lowercase, len(__lowercase ), __lowercase ) assert len(__lowercase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__lowercase ) new_tok_ids.extend(__lowercase ) new_lengths.extend([len(__lowercase ) for l in sub_seqs] ) lowercase__ = np.array(__lowercase ) lowercase__ = np.array(__lowercase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = len(self ) lowercase__ = self.lengths > 11 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def snake_case__ ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase__ = self.params.special_tok_ids["unk_token"] lowercase__ = len(self ) lowercase__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__ = (unk_occs / self.lengths) < 0.5 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def snake_case__ ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [t[0] for t in batch] lowercase__ = [t[1] for t in batch] assert len(__lowercase ) == len(__lowercase ) # Max for paddings lowercase__ = max(__lowercase ) # Pad token ids if self.params.mlm: lowercase__ = self.params.special_tok_ids["pad_token"] else: lowercase__ = self.params.special_tok_ids["unk_token"] lowercase__ = [list(t.astype(__lowercase ) ) + [pad_idx] * (max_seq_len_ - len(__lowercase )) for t in token_ids] assert len(tk_ ) == len(__lowercase ) assert all(len(__lowercase ) == max_seq_len_ for t in tk_ ) lowercase__ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__ = torch.tensor(__lowercase ) # (bs) return tk_t, lg_t
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import sys import turtle def __a ( A , A ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def __a ( A , A , A , A , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) triangle(_lowerCAmelCase , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , get_mid(_lowerCAmelCase , _lowerCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) lowerCAmelCase_: int = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") lowerCAmelCase_: Tuple = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCAmelCase_: List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class a__ ( datasets.BuilderConfig ): snake_case_ = 10000 snake_case_ = None snake_case_ = None class a__ ( datasets.ArrowBasedBuilder ): snake_case_ = ParquetConfig def snake_case__ ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowercase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase, (str, list, tuple) ): lowercase__ = data_files if isinstance(_UpperCAmelCase, _UpperCAmelCase ): lowercase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files} )] lowercase__ = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase, _UpperCAmelCase ): lowercase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_UpperCAmelCase ): with open(_UpperCAmelCase, "rb" ) as f: lowercase__ = datasets.Features.from_arrow_schema(pq.read_schema(_UpperCAmelCase ) ) break splits.append(datasets.SplitGenerator(name=_UpperCAmelCase, gen_kwargs={"files": files} ) ) return splits def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ = table_cast(_UpperCAmelCase, self.info.features.arrow_schema ) return pa_table def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase, "rb" ) as f: lowercase__ = pq.ParquetFile(_UpperCAmelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size, columns=self.config.columns ) ): lowercase__ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_UpperCAmelCase ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_UpperCAmelCase )}: {e}''' ) raise
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" lowerCAmelCase_: Optional[Any] = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase_: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_: str = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class a__ ( __a ): snake_case_ = "mctct" def __init__( self, _UpperCAmelCase=8065, _UpperCAmelCase=1536, _UpperCAmelCase=36, _UpperCAmelCase=6144, _UpperCAmelCase=4, _UpperCAmelCase=384, _UpperCAmelCase=920, _UpperCAmelCase=1E-5, _UpperCAmelCase=0.3, _UpperCAmelCase="relu", _UpperCAmelCase=0.02, _UpperCAmelCase=0.3, _UpperCAmelCase=0.3, _UpperCAmelCase=1, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=1, _UpperCAmelCase=0.3, _UpperCAmelCase=1, _UpperCAmelCase=(7,), _UpperCAmelCase=(3,), _UpperCAmelCase=80, _UpperCAmelCase=1, _UpperCAmelCase=None, _UpperCAmelCase="sum", _UpperCAmelCase=False, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**lowerCAmelCase_, pad_token_id=lowerCAmelCase_, bos_token_id=lowerCAmelCase_, eos_token_id=lowerCAmelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = num_attention_heads lowercase__ = attention_head_dim lowercase__ = max_position_embeddings lowercase__ = layer_norm_eps lowercase__ = layerdrop lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = conv_glu_dim lowercase__ = conv_dropout lowercase__ = num_conv_layers lowercase__ = input_feat_per_channel lowercase__ = input_channels lowercase__ = conv_channels lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # prevents config testing fail with exporting to json lowercase__ = list(lowerCAmelCase_ ) lowercase__ = list(lowerCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a__ ( unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDModel( sample_size=(32, 64), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("AttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "AttnUpBlock2D"), ) return model @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), cross_attention_dim=10, ) return model @property def snake_case__ ( self ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = AutoencoderKL( sample_size=(128, 64), in_channels=1, out_channels=1, latent_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"), up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"), ) lowercase__ = UNetaDModel( sample_size=(64, 32), in_channels=1, out_channels=1, layers_per_block=2, block_out_channels=(128, 128), down_block_types=("AttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "AttnUpBlock2D"), ) return vqvae, unet @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase__ = Mel( x_res=self.dummy_unet.config.sample_size[1], y_res=self.dummy_unet.config.sample_size[0], ) lowercase__ = DDPMScheduler() lowercase__ = AudioDiffusionPipeline(vqvae=__a, unet=self.dummy_unet, mel=__a, scheduler=__a ) lowercase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ = torch.Generator(device=__a ).manual_seed(42 ) lowercase__ = pipe(generator=__a, steps=4 ) lowercase__ = output.audios[0] lowercase__ = output.images[0] lowercase__ = torch.Generator(device=__a ).manual_seed(42 ) lowercase__ = pipe(generator=__a, steps=4, return_dict=__a ) lowercase__ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes(), dtype="uint8" )[:10] lowercase__ = np.frombuffer(image_from_tuple.tobytes(), dtype="uint8" )[:10] lowercase__ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase__ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1], y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0], ) lowercase__ = DDIMScheduler() lowercase__ = self.dummy_vqvae_and_unet lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=dummy_vqvae_and_unet[1], mel=__a, scheduler=__a ) lowercase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) np.random.seed(0 ) lowercase__ = np.random.uniform(-1, 1, ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase__ = torch.Generator(device=__a ).manual_seed(42 ) lowercase__ = pipe(raw_audio=__a, generator=__a, start_step=5, steps=10 ) lowercase__ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase__ = np.frombuffer(image.tobytes(), dtype="uint8" )[:10] lowercase__ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase__ = self.dummy_unet_condition lowercase__ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0], unet=__a, mel=__a, scheduler=__a ) lowercase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) np.random.seed(0 ) lowercase__ = torch.rand((1, 1, 10) ) lowercase__ = pipe(generator=__a, encoding=__a ) lowercase__ = output.images[0] lowercase__ = np.frombuffer(image.tobytes(), dtype="uint8" )[:10] lowercase__ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class a__ ( unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): '''simple docstring''' lowercase__ = torch_device lowercase__ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ = torch.Generator(device=__a ).manual_seed(42 ) lowercase__ = pipe(generator=__a ) lowercase__ = output.audios[0] lowercase__ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase__ = np.frombuffer(image.tobytes(), dtype="uint8" )[:10] lowercase__ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Any = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: List[Any] = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: str = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase_: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
import os import sys import transformers lowerCAmelCase_: Tuple = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from __future__ import annotations lowerCAmelCase_: Dict = 1.6021E-19 # units = C def __a ( A , A , A , ): '''simple docstring''' if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCAmelCase_: Optional[int] = logging.getLogger() def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument("-f" ) lowercase__ = parser.parse_args() return args.f class a__ ( __snake_case ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = logging.StreamHandler(sys.stdout ) logger.addHandler(__UpperCamelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0, "run_glue_deebert.py" ) with patch.object(__UpperCamelCase, "argv", __UpperCamelCase ): lowercase__ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__UpperCamelCase, 0.666 ) @slow @require_torch_non_multi_gpu def snake_case__ ( self ): '''simple docstring''' lowercase__ = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(__UpperCamelCase ) lowercase__ = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(__UpperCamelCase ) lowercase__ = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(__UpperCamelCase )
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class a__ ( a__ ): def __init__( self, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = path_or_paths lowercase__ = split if split or isinstance(lowercase__, lowercase__ ) else '''train''' lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def snake_case__ ( self ): '''simple docstring''' pass class a__ ( a__ ): def __init__( self, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = features lowercase__ = cache_dir lowercase__ = keep_in_memory lowercase__ = streaming lowercase__ = num_proc lowercase__ = kwargs @abstractmethod def snake_case__ ( self ): '''simple docstring''' pass
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class a__ : def __init__( self ): '''simple docstring''' lowercase__ = {} def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = {} def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if nodea not in self.connections: self.add_node(lowercase__ ) if nodea not in self.connections: self.add_node(lowercase__ ) lowercase__ = probability def snake_case__ ( self ): '''simple docstring''' return list(self.connections ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = 0 lowercase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def __a ( A , A , A ): '''simple docstring''' lowercase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase__ = Counter(graph.get_nodes() ) lowercase__ = start for _ in range(SCREAMING_SNAKE_CASE__ ): lowercase__ = graph.transition(SCREAMING_SNAKE_CASE__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a__ ( __SCREAMING_SNAKE_CASE ): snake_case_ = 42 class a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self, _UpperCAmelCase = 3, _UpperCAmelCase = 3, _UpperCAmelCase = ("DownEncoderBlock2D",), _UpperCAmelCase = ("UpDecoderBlock2D",), _UpperCAmelCase = (64,), _UpperCAmelCase = 1, _UpperCAmelCase = "silu", _UpperCAmelCase = 3, _UpperCAmelCase = 32, _UpperCAmelCase = 256, _UpperCAmelCase = 32, _UpperCAmelCase = None, _UpperCAmelCase = 0.18_215, _UpperCAmelCase = "group", ): '''simple docstring''' super().__init__() # pass init params to Encoder lowercase__ = Encoder( in_channels=__snake_case, out_channels=__snake_case, down_block_types=__snake_case, block_out_channels=__snake_case, layers_per_block=__snake_case, act_fn=__snake_case, norm_num_groups=__snake_case, double_z=__snake_case, ) lowercase__ = vq_embed_dim if vq_embed_dim is not None else latent_channels lowercase__ = nn.Convad(__snake_case, __snake_case, 1 ) lowercase__ = VectorQuantizer(__snake_case, __snake_case, beta=0.25, remap=__snake_case, sane_index_shape=__snake_case ) lowercase__ = nn.Convad(__snake_case, __snake_case, 1 ) # pass init params to Decoder lowercase__ = Decoder( in_channels=__snake_case, out_channels=__snake_case, up_block_types=__snake_case, block_out_channels=__snake_case, layers_per_block=__snake_case, act_fn=__snake_case, norm_num_groups=__snake_case, norm_type=__snake_case, ) @apply_forward_hook def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = True ): '''simple docstring''' lowercase__ = self.encoder(__snake_case ) lowercase__ = self.quant_conv(__snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=__snake_case ) @apply_forward_hook def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = False, _UpperCAmelCase = True ): '''simple docstring''' if not force_not_quantize: lowercase__ = self.quantize(__snake_case ) else: lowercase__ = h lowercase__ = self.post_quant_conv(__snake_case ) lowercase__ = self.decoder(__snake_case, quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__snake_case ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = True ): '''simple docstring''' lowercase__ = sample lowercase__ = self.encode(__snake_case ).latents lowercase__ = self.decode(__snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__snake_case )
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def __a ( A , A , A ): '''simple docstring''' lowercase__ = state_dict.pop(A ) lowercase__ = val def __a ( A ): '''simple docstring''' lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) lowercase__ = value else: lowercase__ = value return new_state_dict def __a ( A ): '''simple docstring''' lowercase__ = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:2_56, :] lowercase__ = in_proj_bias[:2_56] lowercase__ = in_proj_weight[2_56:5_12, :] lowercase__ = in_proj_bias[2_56:5_12] lowercase__ = in_proj_weight[-2_56:, :] lowercase__ = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:2_56, :] lowercase__ = in_proj_bias[:2_56] lowercase__ = in_proj_weight[2_56:5_12, :] lowercase__ = in_proj_bias[2_56:5_12] lowercase__ = in_proj_weight[-2_56:, :] lowercase__ = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowercase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ = in_proj_weight_cross_attn[:2_56, :] lowercase__ = in_proj_bias_cross_attn[:2_56] lowercase__ = in_proj_weight_cross_attn[2_56:5_12, :] lowercase__ = in_proj_bias_cross_attn[2_56:5_12] lowercase__ = in_proj_weight_cross_attn[-2_56:, :] lowercase__ = in_proj_bias_cross_attn[-2_56:] def __a ( A , A ): '''simple docstring''' lowercase__ , lowercase__ = image.size lowercase__ = max(A , A ) lowercase__ = 8_00 if "detection" in checkpoint_url else 10_00 lowercase__ = target_max_size / current_max_size lowercase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __a ( A ): '''simple docstring''' lowercase__ = F.to_tensor(A ) lowercase__ = F.normalize(A , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __a ( A , A , A ): '''simple docstring''' logger.info("Converting model..." ) # load original state dict lowercase__ = torch.hub.load_state_dict_from_url(A , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(A , A , A ) lowercase__ = rename_backbone_keys(A ) # query, key and value matrices need special treatment read_in_q_k_v(A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowercase__ = state_dict.pop(A ) lowercase__ = val # create HuggingFace model and load state dict lowercase__ = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowercase__ = 15 lowercase__ = 2 lowercase__ = {0: "table", 1: "table rotated"} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} else: lowercase__ = 1_25 lowercase__ = 6 lowercase__ = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = DetrImageProcessor( format="coco_detection" , max_size=8_00 if "detection" in checkpoint_url else 10_00 ) lowercase__ = TableTransformerForObjectDetection(A ) model.load_state_dict(A ) model.eval() # verify our conversion lowercase__ = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" lowercase__ = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=A ) lowercase__ = Image.open(A ).convert("RGB" ) lowercase__ = normalize(resize(A , A ) ).unsqueeze(0 ) lowercase__ = model(A ) if "detection" in checkpoint_url: lowercase__ = (1, 15, 3) lowercase__ = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) lowercase__ = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: lowercase__ = (1, 1_25, 7) lowercase__ = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) lowercase__ = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , A , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) lowercase__ = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(A ) image_processor.push_to_hub(A ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" from __future__ import annotations def __a ( A = 4 ): '''simple docstring''' lowercase__ = abs(lowercase_ ) or 4 return [[1 + x + y * row_size for x in range(lowercase_ )] for y in range(lowercase_ )] def __a ( A ): '''simple docstring''' return reverse_row(transpose(lowercase_ ) ) # OR.. transpose(reverse_column(matrix)) def __a ( A ): '''simple docstring''' return reverse_row(reverse_column(lowercase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def __a ( A ): '''simple docstring''' return reverse_column(transpose(lowercase_ ) ) # OR.. transpose(reverse_row(matrix)) def __a ( A ): '''simple docstring''' lowercase__ = [list(lowercase_ ) for x in zip(*lowercase_ )] return matrix def __a ( A ): '''simple docstring''' lowercase__ = matrix[::-1] return matrix def __a ( A ): '''simple docstring''' lowercase__ = [x[::-1] for x in matrix] return matrix def __a ( A ): '''simple docstring''' for i in matrix: print(*lowercase_ ) if __name__ == "__main__": lowerCAmelCase_: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) lowerCAmelCase_: Optional[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) lowerCAmelCase_: Optional[int] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase_: List[str] = "<<<<<<< This should probably be modified because it mentions: " lowerCAmelCase_: List[str] = "=======\n>>>>>>>\n" lowerCAmelCase_: Tuple = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] lowerCAmelCase_: Optional[Any] = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value(\'\1\')"), (R"tfds\.features\.Text\(\)", R"datasets.Value(\'string\')"), (R"tfds\.features\.Text\(", R"datasets.Value(\'string\'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def __a ( A ): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class a__ ( UpperCAmelCase_ ): @staticmethod def snake_case__ ( _UpperCAmelCase ): '''simple docstring''' lowercase__ = parser.add_parser( "convert", help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.", ) train_parser.add_argument( "--tfds_path", type=_snake_case, required=_snake_case, help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.", ) train_parser.add_argument( "--datasets_directory", type=_snake_case, required=_snake_case, help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=_snake_case ) def __init__( self, _UpperCAmelCase, _UpperCAmelCase, *_UpperCAmelCase ): '''simple docstring''' lowercase__ = get_logger("datasets-cli/converting" ) lowercase__ = tfds_path lowercase__ = datasets_directory def snake_case__ ( self ): '''simple docstring''' if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(_snake_case ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) lowercase__ = os.path.join(_snake_case, _snake_case ) lowercase__ = os.path.join(_snake_case, _snake_case ) if not os.path.isfile(_snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(_snake_case, encoding="utf-8" ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here lowercase__ = "" continue elif "from absl import logging" in out_line: lowercase__ = "from datasets import logging\n" elif "getLogger" in out_line: lowercase__ = out_line.replace("getLogger", "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda _UpperCAmelCase : e in out_line, _snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_snake_case ) + "\n" ) out_lines.append(_snake_case ) out_lines.append(_snake_case ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(_snake_case, _snake_case, _snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)", _snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) lowercase__ = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(_snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace(".py", "" ) lowercase__ = os.path.join(_snake_case, _snake_case ) lowercase__ = os.path.join(_snake_case, _snake_case ) os.makedirs(_snake_case, exist_ok=_snake_case ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_snake_case ) if needs_manual_update: with_manual_update.append(_snake_case ) with open(_snake_case, "w", encoding="utf-8" ) as f: f.writelines(_snake_case ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(_snake_case ) lowercase__ = imports_to_builder_map[f_name.replace(".py", "" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(_snake_case, _snake_case ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Dict = logging.get_logger(__name__) class a__ ( _lowerCAmelCase ): snake_case_ = 'timm_backbone' def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=3, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowercase__ = backbone lowercase__ = num_channels lowercase__ = features_only lowercase__ = use_pretrained_backbone lowercase__ = True lowercase__ = out_indices if out_indices is not None else (-1,)
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = jnp.ones((batch_size, length) ) / length return scores def snake_case__ ( self ): '''simple docstring''' lowercase__ = None lowercase__ = 20 lowercase__ = self._get_uniform_logits(batch_size=2, length=_a ) # tweak scores to not be uniform anymore lowercase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowercase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowercase__ = jax.nn.softmax(_a, axis=-1 ) lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowercase__ = jax.nn.softmax(temp_dist_warper_sharper(_a, scores.copy(), cur_len=_a ), axis=-1 ) lowercase__ = jax.nn.softmax(temp_dist_warper_smoother(_a, scores.copy(), cur_len=_a ), axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = None lowercase__ = 10 lowercase__ = 2 # create ramp distribution lowercase__ = np.broadcast_to(np.arange(_a )[None, :], (batch_size, vocab_size) ).copy() lowercase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = top_k_warp(_a, _a, cur_len=_a ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist(), 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist(), 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowercase__ = 5 lowercase__ = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3 ) lowercase__ = np.broadcast_to(np.arange(_a )[None, :], (batch_size, length) ).copy() lowercase__ = top_k_warp_safety_check(_a, _a, cur_len=_a ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist(), [2, 2] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = None lowercase__ = 10 lowercase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowercase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) lowercase__ = np.exp(top_p_warp(_a, _a, cur_len=_a ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowercase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_a, _a, atol=1E-3 ) ) # check edge cases with negative and extreme logits lowercase__ = np.broadcast_to(np.arange(_a )[None, :], (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowercase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowercase__ = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0 ) lowercase__ = top_p_warp(_a, _a, cur_len=_a ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist(), [3, 2] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=_a ) # check that min length is applied at length 5 lowercase__ = ids_tensor((batch_size, 20), vocab_size=20 ) lowercase__ = 5 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = min_dist_processor(_a, _a, cur_len=_a ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = 15 lowercase__ = min_dist_processor(_a, _a, cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) # check that all scores are -inf except the bos_token_id score lowercase__ = ids_tensor((batch_size, 1), vocab_size=20 ) lowercase__ = 1 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = logits_processor(_a, _a, cur_len=_a ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowercase__ = 3 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = logits_processor(_a, _a, cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = 5 lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_a, eos_token_id=_a ) # check that all scores are -inf except the eos_token_id when max_length is reached lowercase__ = ids_tensor((batch_size, 4), vocab_size=20 ) lowercase__ = 4 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = logits_processor(_a, _a, cur_len=_a ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowercase__ = 3 lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = logits_processor(_a, _a, cur_len=_a ) self.assertFalse(jnp.isinf(_a ).any() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 10 lowercase__ = 15 lowercase__ = 2 lowercase__ = 1 lowercase__ = 15 # dummy input_ids and scores lowercase__ = ids_tensor((batch_size, sequence_length), _a ) lowercase__ = input_ids.copy() lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = scores.copy() # instantiate all dist processors lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=_a ) lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_a, eos_token_id=_a ) lowercase__ = 10 # no processor list lowercase__ = temp_dist_warp(_a, _a, cur_len=_a ) lowercase__ = top_k_warp(_a, _a, cur_len=_a ) lowercase__ = top_p_warp(_a, _a, cur_len=_a ) lowercase__ = min_dist_proc(_a, _a, cur_len=_a ) lowercase__ = bos_dist_proc(_a, _a, cur_len=_a ) lowercase__ = eos_dist_proc(_a, _a, cur_len=_a ) # with processor list lowercase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase__ = processor(_a, _a, cur_len=_a ) # scores should be equal self.assertTrue(jnp.allclose(_a, _a, atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 10 lowercase__ = 15 lowercase__ = 2 lowercase__ = 1 lowercase__ = 15 # dummy input_ids and scores lowercase__ = ids_tensor((batch_size, sequence_length), _a ) lowercase__ = input_ids.copy() lowercase__ = self._get_uniform_logits(_a, _a ) lowercase__ = scores.copy() # instantiate all dist processors lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase__ = FlaxTopKLogitsWarper(3 ) lowercase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=_a ) lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_a ) lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_a, eos_token_id=_a ) lowercase__ = 10 # no processor list def run_no_processor_list(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): lowercase__ = temp_dist_warp(_a, _a, cur_len=_a ) lowercase__ = top_k_warp(_a, _a, cur_len=_a ) lowercase__ = top_p_warp(_a, _a, cur_len=_a ) lowercase__ = min_dist_proc(_a, _a, cur_len=_a ) lowercase__ = bos_dist_proc(_a, _a, cur_len=_a ) lowercase__ = eos_dist_proc(_a, _a, cur_len=_a ) return scores # with processor list def run_processor_list(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): lowercase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase__ = processor(_a, _a, cur_len=_a ) return scores lowercase__ = jax.jit(_a ) lowercase__ = jax.jit(_a ) lowercase__ = jitted_run_no_processor_list(_a, _a, _a ) lowercase__ = jitted_run_processor_list(_a, _a, _a ) # scores should be equal self.assertTrue(jnp.allclose(_a, _a, atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist() )
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=UpperCamelCase__, image_processor=UpperCamelCase__, top_k=2 ) lowercase__ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(UpperCamelCase__ ) self.assertEqual( UpperCamelCase__, [ {"score": ANY(UpperCamelCase__ ), "label": ANY(UpperCamelCase__ )}, {"score": ANY(UpperCamelCase__ ), "label": ANY(UpperCamelCase__ )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=UpperCamelCase__, feature_extractor=UpperCamelCase__, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(UpperCamelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase__, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(UpperCamelCase__, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a__ ( lowerCAmelCase__ , unittest.TestCase ): snake_case_ = CpmAntTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def snake_case__ ( self ): '''simple docstring''' lowercase__ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) lowercase__ = "今天天气真好!" lowercase__ = ["今天", "天气", "真", "好", "!"] lowercase__ = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase, _lowerCamelCase ) lowercase__ = "今天天气真好!" lowercase__ = [tokenizer.bos_token] + tokens lowercase__ = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ), _lowerCamelCase ) lowercase__ = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase, _lowerCamelCase )
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a__ ( unittest.TestCase ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase=7, _UpperCAmelCase=3, _UpperCAmelCase=18, _UpperCAmelCase=30, _UpperCAmelCase=400, _UpperCAmelCase=True, _UpperCAmelCase=None, _UpperCAmelCase=True, ): '''simple docstring''' lowercase__ = size if size is not None else {"height": 18, "width": 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = apply_ocr def snake_case__ ( self ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a__ ( _A , unittest.TestCase ): snake_case_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def snake_case__ ( self ): '''simple docstring''' lowercase__ = LayoutLMvaImageProcessingTester(self ) @property def snake_case__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase, "do_resize" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "size" ) ) self.assertTrue(hasattr(_UpperCAmelCase, "apply_ocr" ) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"height": 18, "width": 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42} ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) self.assertIsInstance(encoding.words, _UpperCAmelCase ) self.assertIsInstance(encoding.boxes, _UpperCAmelCase ) # Test batched lowercase__ = image_processing(_UpperCAmelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase, numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(_UpperCAmelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=_UpperCAmelCase, torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(_UpperCAmelCase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = LayoutLMvaImageProcessor() from datasets import load_dataset lowercase__ = load_dataset("hf-internal-testing/fixtures_docvqa", split="test" ) lowercase__ = Image.open(ds[0]["file"] ).convert("RGB" ) lowercase__ = image_processing(_UpperCAmelCase, return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowercase__ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 lowercase__ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, _UpperCAmelCase ) self.assertListEqual(encoding.boxes, _UpperCAmelCase ) # with apply_OCR = False lowercase__ = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) lowercase__ = image_processing(_UpperCAmelCase, return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 224, 224) )
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import os from pathlib import Path def __a ( A , A , A ): '''simple docstring''' lowercase__ = { "en": "Machine learning is great, isn\'t it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowercase__ = f'''{src_lang}-{tgt_lang}''' lowercase__ = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(a__ , exist_ok=a__ ) lowercase__ = os.path.join(a__ , "README.md" ) print(f'''Generating {path}''' ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(a__ ) # make sure we are under the root of the project lowerCAmelCase_: List[Any] = Path(__file__).resolve().parent.parent.parent lowerCAmelCase_: Optional[Any] = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: Dict = model_name.split("-") lowerCAmelCase_: Union[str, Any] = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" from __future__ import annotations from math import pi def __a ( A , A , A ): '''simple docstring''' if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import os import sys import unittest lowerCAmelCase_: Union[str, Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase_: List[str] = os.path.join(git_repo_path, "src", "transformers") lowerCAmelCase_: Any = ''' {0} = None ''' lowerCAmelCase_: Dict = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' lowerCAmelCase_: str = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class a__ ( unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(__SCREAMING_SNAKE_CASE ) lowercase__ = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(__SCREAMING_SNAKE_CASE, "tokenizers" ) lowercase__ = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(__SCREAMING_SNAKE_CASE, "tensorflow_text" ) lowercase__ = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(__SCREAMING_SNAKE_CASE, "sentencepiece_and_tokenizers" ) lowercase__ = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(__SCREAMING_SNAKE_CASE, "sentencepiece_and_tensorflow_text" ) lowercase__ = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(__SCREAMING_SNAKE_CASE, "sentencepiece_and_tokenizers_and_vision" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch", __SCREAMING_SNAKE_CASE ) self.assertIn("tensorflow_text", __SCREAMING_SNAKE_CASE ) self.assertIn("sentencepiece_and_tokenizers", __SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel", objects["torch"] ) self.assertIn("TFBertModel", objects["tf"] ) self.assertIn("FlaxBertModel", objects["flax"] ) self.assertIn("BertModel", objects["torch"] ) self.assertIn("TFBertTokenizer", objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer", objects["sentencepiece_and_tokenizers"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = create_dummy_object("CONSTANT", "\'torch\'" ) self.assertEqual(__SCREAMING_SNAKE_CASE, "\nCONSTANT = None\n" ) lowercase__ = create_dummy_object("function", "\'torch\'" ) self.assertEqual( __SCREAMING_SNAKE_CASE, "\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n" ) lowercase__ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n" lowercase__ = create_dummy_object("FakeClass", "\'torch\'" ) self.assertEqual(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" lowercase__ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"], __SCREAMING_SNAKE_CASE )
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase_: int = 6_3_7_8_1_3_7.0 lowerCAmelCase_: Optional[Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 lowerCAmelCase_: List[Any] = 6_3_7_8_1_3_7 def __a ( A , A , A , A ): '''simple docstring''' lowercase__ = (AXIS_A - AXIS_B) / AXIS_A lowercase__ = atan((1 - flattening) * tan(radians(A ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(A ) ) ) lowercase__ = radians(A ) lowercase__ = radians(A ) # Equation lowercase__ = sin((phi_a - phi_a) / 2 ) lowercase__ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowercase__ = sqrt(sin_sq_phi + (cos(A ) * cos(A ) * sin_sq_lambda) ) return 2 * RADIUS * asin(A ) if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=99, _UpperCAmelCase=16, _UpperCAmelCase=36, _UpperCAmelCase=6, _UpperCAmelCase=6, _UpperCAmelCase=6, _UpperCAmelCase=37, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=16, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=3, _UpperCAmelCase=4, _UpperCAmelCase=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = embedding_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_hidden_groups lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def snake_case__ ( self ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, num_hidden_groups=self.num_hidden_groups, ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = AlbertModel(config=__A ) model.to(__A ) model.eval() lowercase__ = model(__A, attention_mask=__A, token_type_ids=__A ) lowercase__ = model(__A, token_type_ids=__A ) lowercase__ = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = AlbertForPreTraining(config=__A ) model.to(__A ) model.eval() lowercase__ = model( __A, attention_mask=__A, token_type_ids=__A, labels=__A, sentence_order_label=__A, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = AlbertForMaskedLM(config=__A ) model.to(__A ) model.eval() lowercase__ = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = AlbertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() lowercase__ = model( __A, attention_mask=__A, token_type_ids=__A, start_positions=__A, end_positions=__A, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = AlbertForSequenceClassification(__A ) model.to(__A ) model.eval() lowercase__ = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = AlbertForTokenClassification(config=__A ) model.to(__A ) model.eval() lowercase__ = model(__A, attention_mask=__A, token_type_ids=__A, labels=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = AlbertForMultipleChoice(config=__A ) model.to(__A ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = model( __A, attention_mask=__A, token_type_ids=__A, labels=__A, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( _a , _a , unittest.TestCase ): snake_case_ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(__A, __A, return_labels=__A ) if return_labels: if model_class in get_values(__A ): lowercase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=__A ) lowercase__ = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=__A ) return inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ = AlbertModelTester(self ) lowercase__ = ConfigTester(self, config_class=__A, hidden_size=37 ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*__A ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = AlbertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = AlbertModel.from_pretrained("albert-base-v2" ) lowercase__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase__ = model(__A, attention_mask=__A )[0] lowercase__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, __A ) lowercase__ = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], __A, atol=1E-4 ) )
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" import os def __a ( A ): lowercase__ = len(grid[0] ) lowercase__ = len(_lowerCamelCase ) lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_lowerCamelCase ): for j in range(n_rows - 3 ): lowercase__ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase__ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase__ = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase__ = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase__ = max( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if max_product > largest: lowercase__ = max_product return largest def __a ( ): lowercase__ = [] with open(os.path.dirname(_lowerCamelCase ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowercase__ = [[int(_lowerCamelCase ) for i in grid[j]] for j in range(len(_lowerCamelCase ) )] return largest_product(_lowerCamelCase ) if __name__ == "__main__": print(solution())
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import functools def __a ( A , A ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ) or not all(isinstance(lowercase_ , lowercase_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase_ ) != 3 or not all(isinstance(lowercase_ , lowercase_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase_ ) == 0: return 0 if min(lowercase_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase_ ) >= 3_66: raise ValueError("All days elements should be less than 366" ) lowercase__ = set(lowercase_ ) @functools.cache def dynamic_programming(A ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: List[Any] = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: List[Any] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCAmelCase_: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase_: Tuple = logging.get_logger(__name__) lowerCAmelCase_: Dict = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase_: Union[str, Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __a ( A , A , A , A , A ): '''simple docstring''' for attribute in key.split("." ): lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: lowercase__ = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __a ( A , A ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor lowercase__ = hf_model.adapter for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase__ = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(_lowerCamelCase )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" , _lowerCamelCase ) if "weight_g" in name: lowercase__ = "weight_g" elif "weight_v" in name: lowercase__ = "weight_v" elif "bias" in name: lowercase__ = "bias" elif "weight" in name: lowercase__ = "weight" else: lowercase__ = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def __a ( A , A , A , A ): '''simple docstring''' lowercase__ = full_name.split("adaptor." )[-1] lowercase__ = name.split("." ) if items[1].isdigit(): lowercase__ = int(items[1] ) else: lowercase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' lowercase__ = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' lowercase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' lowercase__ = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' lowercase__ = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' lowercase__ = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' lowercase__ = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def __a ( A ): '''simple docstring''' lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) lowercase__ = emb.weight.data return lin_layer @torch.no_grad() def __a ( A , A , A , A , A , A , A , A , A , A , A , ): '''simple docstring''' lowercase__ = WavaVecaConfig.from_pretrained( _lowerCamelCase , add_adapter=_lowerCamelCase , adapter_stride=_lowerCamelCase , adapter_kernel_size=_lowerCamelCase , use_auth_token=_lowerCamelCase , output_hidden_size=_lowerCamelCase , ) lowercase__ = MBartConfig.from_pretrained(_lowerCamelCase ) # load model lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) lowercase__ = model[0].eval() # load feature extractor lowercase__ = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , use_auth_token=_lowerCamelCase ) # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(_lowerCamelCase ) recursively_load_weights_wavaveca(model.encoder , _lowerCamelCase ) # load decoder weights lowercase__ = MBartForCausalLM(_lowerCamelCase ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCamelCase ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase__ = SpeechEncoderDecoderModel(encoder=_lowerCamelCase , decoder=_lowerCamelCase ) lowercase__ = False lowercase__ = MBartaaTokenizer(_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = "mbart50" lowercase__ = "wav2vec2" lowercase__ = tokenizer.eos_token_id lowercase__ = 25_00_04 lowercase__ = tokenizer.eos_token_id lowercase__ = SpeechEncoderDecoderConfig.from_dict(_lowerCamelCase ) hf_wavavec.save_pretrained(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_: Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_0_2_4, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=2_5_0_0_0_4, type=int, help="`decoder_start_token_id` of model config") lowerCAmelCase_: Optional[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from __future__ import annotations from collections import deque class a__ : def __init__( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_UpperCAmelCase ) self.set_fail_transitions() def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(_UpperCAmelCase, _UpperCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(_UpperCAmelCase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_UpperCAmelCase ) lowercase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(_UpperCAmelCase, self.adlist[child]["value"] ) is None and state != 0 ): lowercase__ = self.adlist[state]["fail_state"] lowercase__ = self.find_next_state( _UpperCAmelCase, self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(_UpperCAmelCase ) ): while ( self.find_next_state(_UpperCAmelCase, string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["fail_state"] lowercase__ = self.find_next_state(_UpperCAmelCase, string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(_UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: Union[str, Any] = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class a__ ( _UpperCAmelCase ): snake_case_ = "ctrl" snake_case_ = ["past_key_values"] snake_case_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, _UpperCAmelCase=24_6534, _UpperCAmelCase=256, _UpperCAmelCase=1280, _UpperCAmelCase=8192, _UpperCAmelCase=48, _UpperCAmelCase=16, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1E-6, _UpperCAmelCase=0.02, _UpperCAmelCase=True, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = dff lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache super().__init__(**lowercase__ )
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" from itertools import product def __a ( A , A ): '''simple docstring''' lowercase__ = sides_number lowercase__ = max_face_number * dice_number lowercase__ = [0] * (max_total + 1) lowercase__ = 1 lowercase__ = range(SCREAMING_SNAKE_CASE_ , max_face_number + 1 ) for dice_numbers in product(SCREAMING_SNAKE_CASE_ , repeat=SCREAMING_SNAKE_CASE_ ): lowercase__ = sum(SCREAMING_SNAKE_CASE_ ) totals_frequencies[total] += 1 return totals_frequencies def __a ( ): '''simple docstring''' lowercase__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase__ = 0 lowercase__ = 9 lowercase__ = 4 * 9 lowercase__ = 6 for peter_total in range(SCREAMING_SNAKE_CASE_ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase__ = (4**9) * (6**6) lowercase__ = peter_wins_count / total_games_number lowercase__ = round(SCREAMING_SNAKE_CASE_ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" from __future__ import annotations def __a ( A ): '''simple docstring''' lowercase__ = str(__lowercase ) return len(__lowercase ) == 9 and set(__lowercase ) == set("123456789" ) def __a ( ): '''simple docstring''' for base_num in range(99_99 , 49_99 , -1 ): lowercase__ = 10_00_02 * base_num if is_9_pandigital(__lowercase ): return candidate for base_num in range(3_33 , 99 , -1 ): lowercase__ = 1_00_20_03 * base_num if is_9_pandigital(__lowercase ): return candidate return None if __name__ == "__main__": print(F'{solution() = }')
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" def __a ( A ): '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise TypeError("Input value must be an \'int\' type" ) lowercase__ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0