code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Tuple = logging.get_logger(__name__) # TODO Update this lowerCAmelCase_: Any = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class a__ ( _a ): snake_case_ = "esm" def __init__( self, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=None, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1026, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=None, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, mask_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = emb_layer_norm_before lowercase__ = token_dropout lowercase__ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) lowercase__ = EsmFoldConfig() elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): lowercase__ = EsmFoldConfig(**_UpperCAmelCase ) lowercase__ = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) lowercase__ = get_default_vocab_list() else: lowercase__ = vocab_list else: lowercase__ = None lowercase__ = None if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", _UpperCAmelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = super().to_dict() if isinstance(self.esmfold_config, _UpperCAmelCase ): lowercase__ = self.esmfold_config.to_dict() return output @dataclass class a__ : snake_case_ = None snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = 0 snake_case_ = True snake_case_ = False snake_case_ = 128 snake_case_ = None def snake_case__ ( self ): '''simple docstring''' if self.trunk is None: lowercase__ = TrunkConfig() elif isinstance(self.trunk, _UpperCAmelCase ): lowercase__ = TrunkConfig(**self.trunk ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = asdict(self ) lowercase__ = self.trunk.to_dict() return output @dataclass class a__ : snake_case_ = 48 snake_case_ = 1024 snake_case_ = 128 snake_case_ = 32 snake_case_ = 32 snake_case_ = 32 snake_case_ = 0 snake_case_ = 0 snake_case_ = False snake_case_ = 4 snake_case_ = 128 snake_case_ = None def snake_case__ ( self ): '''simple docstring''' if self.structure_module is None: lowercase__ = StructureModuleConfig() elif isinstance(self.structure_module, _UpperCAmelCase ): lowercase__ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase__ = self.sequence_state_dim // self.sequence_head_width lowercase__ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = asdict(self ) lowercase__ = self.structure_module.to_dict() return output @dataclass class a__ : snake_case_ = 384 snake_case_ = 128 snake_case_ = 16 snake_case_ = 128 snake_case_ = 12 snake_case_ = 4 snake_case_ = 8 snake_case_ = 0.1 snake_case_ = 8 snake_case_ = 1 snake_case_ = 2 snake_case_ = 7 snake_case_ = 10 snake_case_ = 1e-8 snake_case_ = 1e5 def snake_case__ ( self ): '''simple docstring''' return asdict(self ) def __a ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __a ( A ): lowercase__ = filter(lambda A : p.requires_grad , model.parameters() ) lowercase__ = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_: str = logging.getLogger(__name__) def __a ( A , A ): if metric == "rouge2": lowercase__ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": lowercase__ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": lowercase__ = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": lowercase__ = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) lowercase__ = ModelCheckpoint( dirpath=A , filename=A , monitor=f'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __a ( A , A ): return EarlyStopping( monitor=f'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=A , verbose=A , ) class a__ ( pl.Callback ): def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = {F'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_UpperCAmelCase ) @rank_zero_only def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=True ): '''simple docstring''' logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowercase__ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results lowercase__ = Path(pl_module.hparams.output_dir ) if type_path == "test": lowercase__ = od / "test_results.txt" lowercase__ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase__ = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' lowercase__ = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_UpperCAmelCase ) generations_file.parent.mkdir(exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase, "a+" ) as writer: for key in sorted(_UpperCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue lowercase__ = metrics[key] if isinstance(_UpperCAmelCase, torch.Tensor ): lowercase__ = val.item() lowercase__ = F'''{key}: {val:.6f}\n''' writer.write(_UpperCAmelCase ) if not save_generations: return if "preds" in metrics: lowercase__ = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_UpperCAmelCase ) @rank_zero_only def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' try: lowercase__ = pl_module.model.model.num_parameters() except AttributeError: lowercase__ = pl_module.model.num_parameters() lowercase__ = count_trainable_parameters(_UpperCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' save_json(pl_module.metrics, pl_module.metrics_save_path ) return self._write_logs(_UpperCAmelCase, _UpperCAmelCase, "test" ) @rank_zero_only def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' save_json(pl_module.metrics, pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from typing import Any def __a ( A , A , A , A , A , ): '''simple docstring''' _validation( A , A , A , A , A , ) # Creates data structures and fill initial step lowercase__ = {} lowercase__ = {} for state in states_space: lowercase__ = observations_space[0] lowercase__ = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowercase__ = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(A ) ): lowercase__ = observations_space[o] lowercase__ = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowercase__ = "" lowercase__ = -1 for k_state in states_space: lowercase__ = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowercase__ = probability lowercase__ = k_state # Update probabilities and pointers dicts lowercase__ = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowercase__ = arg_max # The final observation lowercase__ = observations_space[len(A ) - 1] # argmax for given final observation lowercase__ = "" lowercase__ = -1 for k_state in states_space: lowercase__ = probabilities[(k_state, final_observation)] if probability > max_probability: lowercase__ = probability lowercase__ = k_state lowercase__ = arg_max # Process pointers backwards lowercase__ = last_state lowercase__ = [] for o in range(len(A ) - 1 , -1 , -1 ): result.append(A ) lowercase__ = pointers[previous, observations_space[o]] result.reverse() return result def __a ( A , A , A , A , A , ): '''simple docstring''' _validate_not_empty( A , A , A , A , A , ) _validate_lists(A , A ) _validate_dicts( A , A , A ) def __a ( A , A , A , A , A , ): '''simple docstring''' if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def __a ( A , A ): '''simple docstring''' _validate_list(A , "observations_space" ) _validate_list(A , "states_space" ) def __a ( A , A ): '''simple docstring''' if not isinstance(_object , A ): lowercase__ = f'''{var_name} must be a list''' raise ValueError(A ) else: for x in _object: if not isinstance(A , A ): lowercase__ = f'''{var_name} must be a list of strings''' raise ValueError(A ) def __a ( A , A , A , ): '''simple docstring''' _validate_dict(A , "initial_probabilities" , A ) _validate_nested_dict(A , "transition_probabilities" ) _validate_nested_dict(A , "emission_probabilities" ) def __a ( A , A ): '''simple docstring''' _validate_dict(_object , A , A ) for x in _object.values(): _validate_dict(A , A , A , A ) def __a ( A , A , A , A = False ): '''simple docstring''' if not isinstance(_object , A ): lowercase__ = f'''{var_name} must be a dict''' raise ValueError(A ) if not all(isinstance(A , A ) for x in _object ): lowercase__ = f'''{var_name} all keys must be strings''' raise ValueError(A ) if not all(isinstance(A , A ) for x in _object.values() ): lowercase__ = "nested dictionary " if nested else "" lowercase__ = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(A ) if __name__ == "__main__": from doctest import testmod testmod()
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase_: int = logging.get_logger(__name__) lowerCAmelCase_: Any = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "codegen" snake_case_ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, _UpperCAmelCase=5_0400, _UpperCAmelCase=2048, _UpperCAmelCase=2048, _UpperCAmelCase=4096, _UpperCAmelCase=28, _UpperCAmelCase=16, _UpperCAmelCase=64, _UpperCAmelCase=None, _UpperCAmelCase="gelu_new", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=1E-5, _UpperCAmelCase=0.02, _UpperCAmelCase=True, _UpperCAmelCase=5_0256, _UpperCAmelCase=5_0256, _UpperCAmelCase=False, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = n_ctx lowercase__ = n_positions lowercase__ = n_embd lowercase__ = n_layer lowercase__ = n_head lowercase__ = n_inner lowercase__ = rotary_dim lowercase__ = activation_function lowercase__ = resid_pdrop lowercase__ = embd_pdrop lowercase__ = attn_pdrop lowercase__ = layer_norm_epsilon lowercase__ = initializer_range lowercase__ = use_cache lowercase__ = bos_token_id lowercase__ = eos_token_id super().__init__( bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, tie_word_embeddings=_UpperCAmelCase, **_UpperCAmelCase ) class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = "default", _UpperCAmelCase = None, _UpperCAmelCase = False, ): '''simple docstring''' super().__init__(_UpperCAmelCase, task=_UpperCAmelCase, patching_specs=_UpperCAmelCase, use_past=_UpperCAmelCase ) if not getattr(self._config, "pad_token_id", _UpperCAmelCase ): # TODO: how to do that better? lowercase__ = 0 @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase, direction="inputs" ) lowercase__ = {0: "batch", 1: "past_sequence + sequence"} else: lowercase__ = {0: "batch", 1: "sequence"} return common_inputs @property def snake_case__ ( self ): '''simple docstring''' return self._config.n_layer @property def snake_case__ ( self ): '''simple docstring''' return self._config.n_head def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = -1, _UpperCAmelCase = -1, _UpperCAmelCase = False, _UpperCAmelCase = None, ): '''simple docstring''' lowercase__ = super(_UpperCAmelCase, self ).generate_dummy_inputs( _UpperCAmelCase, batch_size=_UpperCAmelCase, seq_length=_UpperCAmelCase, is_pair=_UpperCAmelCase, framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase__ , lowercase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowercase__ = seqlen + 2 lowercase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase__ = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__ = common_inputs["attention_mask"] if self.use_past: lowercase__ = ordered_inputs["attention_mask"].dtype lowercase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_UpperCAmelCase, _UpperCAmelCase, dtype=_UpperCAmelCase )], dim=1 ) return ordered_inputs @property def snake_case__ ( self ): '''simple docstring''' return 13
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_: Any = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "nllb-moe" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, _UpperCAmelCase=12_8112, _UpperCAmelCase=1024, _UpperCAmelCase=12, _UpperCAmelCase=4096, _UpperCAmelCase=16, _UpperCAmelCase=12, _UpperCAmelCase=4096, _UpperCAmelCase=16, _UpperCAmelCase=0.05, _UpperCAmelCase=0.05, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase="relu", _UpperCAmelCase=1024, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=2, _UpperCAmelCase=True, _UpperCAmelCase=False, _UpperCAmelCase="float32", _UpperCAmelCase=False, _UpperCAmelCase=128, _UpperCAmelCase=64, _UpperCAmelCase=4, _UpperCAmelCase=4, _UpperCAmelCase=0.001, _UpperCAmelCase=0.001, _UpperCAmelCase="all", _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=1.0, _UpperCAmelCase=0.2, _UpperCAmelCase=1, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=False, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = router_z_loss_coef lowercase__ = router_aux_loss_coef lowercase__ = decoder_sparse_step lowercase__ = encoder_sparse_step lowercase__ = num_experts lowercase__ = expert_capacity lowercase__ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowercase__ = router_dtype lowercase__ = router_ignore_padding_tokens lowercase__ = batch_prioritized_routing lowercase__ = second_expert_policy lowercase__ = normalize_router_prob_before_dropping lowercase__ = moe_eval_capacity_token_fraction lowercase__ = moe_token_dropout lowercase__ = output_router_logits super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, is_encoder_decoder=_UpperCAmelCase, decoder_start_token_id=_UpperCAmelCase, **_UpperCAmelCase, )
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=32, _UpperCAmelCase=2, _UpperCAmelCase=3, _UpperCAmelCase=16, _UpperCAmelCase=[1, 2, 1], _UpperCAmelCase=[2, 2, 4], _UpperCAmelCase=2, _UpperCAmelCase=2.0, _UpperCAmelCase=True, _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.1, _UpperCAmelCase="gelu", _UpperCAmelCase=False, _UpperCAmelCase=True, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-5, _UpperCAmelCase=True, _UpperCAmelCase=None, _UpperCAmelCase=True, _UpperCAmelCase=10, _UpperCAmelCase=8, _UpperCAmelCase=["stage1", "stage2", "stage3"], _UpperCAmelCase=[1, 2, 3], ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride lowercase__ = out_features lowercase__ = out_indices def snake_case__ ( self ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self ): '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = MaskFormerSwinModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = MaskFormerSwinBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_UpperCAmelCase ): lowercase__ = ["stem"] lowercase__ = MaskFormerSwinBackbone(config=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( _a , _a , unittest.TestCase ): snake_case_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) snake_case_ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def snake_case__ ( self ): '''simple docstring''' lowercase__ = MaskFormerSwinModelTester(self ) lowercase__ = ConfigTester(self, config_class=_UpperCAmelCase, embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ): '''simple docstring''' return def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) @unittest.skip("Swin does not use inputs_embeds" ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase, nn.Linear ) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) # Swin has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowercase__ = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_UpperCAmelCase ): lowercase__ = 0 return t def check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase={} ): with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase, return_dict=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = model(**_UpperCAmelCase, return_dict=_UpperCAmelCase, **_UpperCAmelCase ).to_tuple() def recursive_check(_UpperCAmelCase, _UpperCAmelCase ): if isinstance(_UpperCAmelCase, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_UpperCAmelCase, _UpperCAmelCase ): recursive_check(_UpperCAmelCase, _UpperCAmelCase ) elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(_UpperCAmelCase, _UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCAmelCase ), set_nan_tensor_to_zero(_UpperCAmelCase ), atol=1E-5 ), msg=( "Tuple and dict output are not equal. Difference:" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_UpperCAmelCase ).any()} and `inf`: {torch.isinf(_UpperCAmelCase )}. Dict has''' F''' `nan`: {torch.isnan(_UpperCAmelCase ).any()} and `inf`: {torch.isinf(_UpperCAmelCase )}.''' ), ) recursive_check(_UpperCAmelCase, _UpperCAmelCase ) for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, {"output_hidden_states": True} ) lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) lowercase__ = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, {"output_hidden_states": True} ) @require_torch class a__ ( unittest.TestCase , _a ): snake_case_ = (MaskFormerSwinBackbone,) if is_torch_available() else () snake_case_ = MaskFormerSwinConfig def snake_case__ ( self ): '''simple docstring''' lowercase__ = MaskFormerSwinModelTester(self ) def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: lowercase__ = backbone_class(_UpperCAmelCase ) backbone.to(_UpperCAmelCase ) backbone.eval() lowercase__ = backbone(**_UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, _UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowercase__ = backbone(**_UpperCAmelCase, output_hidden_states=_UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowercase__ , lowercase__ , lowercase__ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowercase__ = backbone(**_UpperCAmelCase, output_attentions=_UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import os from distutils.util import strtobool def __a ( A , A ): '''simple docstring''' for e in env_keys: lowercase__ = int(os.environ.get(A , -1 ) ) if val >= 0: return val return default def __a ( A , A=False ): '''simple docstring''' lowercase__ = os.environ.get(A , str(A ) ) return strtobool(A ) == 1 # As its name indicates `strtobool` actually returns an int... def __a ( A , A="no" ): '''simple docstring''' lowercase__ = os.environ.get(A , str(A ) ) return value
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" from datetime import datetime import requests def __a ( A ): '''simple docstring''' lowercase__ = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" lowercase__ = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(A ).content if __name__ == "__main__": lowerCAmelCase_: int = input("Enter Video/IGTV url: ").strip() lowerCAmelCase_: Tuple = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F'Done. Video saved to disk as {file_name}.')
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __a ( A , A , A ): '''simple docstring''' lowercase__ = RemBertConfig.from_json_file(A ) print("Building PyTorch model from configuration: {}".format(str(A ) ) ) lowercase__ = RemBertModel(A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(A , A , A ) # Save pytorch-model print("Save PyTorch model to {}".format(A ) ) torch.save(model.state_dict() , A ) if __name__ == "__main__": lowerCAmelCase_: int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase_: str = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class a__ ( unittest.TestCase ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase=13, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=99, _UpperCAmelCase=32, _UpperCAmelCase=5, _UpperCAmelCase=4, _UpperCAmelCase=37, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=16, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=4, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def snake_case__ ( self ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_UpperCAmelCase, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class a__ ( _a , unittest.TestCase ): snake_case_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("albert-base-v2" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxAlbertModel.from_pretrained("albert-base-v2" ) lowercase__ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] lowercase__ = (1, 11, 768) self.assertEqual(output.shape, _UpperCAmelCase ) lowercase__ = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], _UpperCAmelCase, atol=1E-4 ) )
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_: Tuple = logging.getLogger(__name__) @dataclass class a__ : snake_case_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) snake_case_ = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field(default=_a , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case_ = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class a__ : snake_case_ = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) snake_case_ = field( default=_a , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) snake_case_ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __a ( ): '''simple docstring''' lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) lowercase__ = import_module("tasks" ) try: lowercase__ = getattr(A , model_args.task_type ) lowercase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ = token_classification_task.get_labels(data_args.labels ) lowercase__ = dict(enumerate(A ) ) lowercase__ = len(A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , idalabel=A , labelaid={label: i for i, label in enumerate(A )} , cache_dir=model_args.cache_dir , ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A , A ) -> Tuple[List[int], List[int]]: lowercase__ = np.argmax(A , axis=2 ) lowercase__ , lowercase__ = preds.shape lowercase__ = [[] for _ in range(A )] lowercase__ = [[] for _ in range(A )] for i in range(A ): for j in range(A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A ) -> Dict: lowercase__ , lowercase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A , A ), "precision": precision_score(A , A ), "recall": recall_score(A , A ), "f1": fa_score(A , A ), } # Data collator lowercase__ = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ = Trainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate() lowercase__ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(A , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , A , A ) writer.write("%s = %s\n" % (key, value) ) results.update(A ) # Predict if training_args.do_predict: lowercase__ = TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ = trainer.predict(A ) lowercase__ , lowercase__ = align_predictions(A , A ) lowercase__ = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(A , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , A , A ) writer.write("%s = %s\n" % (key, value) ) # Save predictions lowercase__ = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(A , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(A , A , A ) return results def __a ( A ): '''simple docstring''' main() if __name__ == "__main__": main()
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py lowerCAmelCase_: Optional[Any] = "src/diffusers" # Matches is_xxx_available() lowerCAmelCase_: int = re.compile(R"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla lowerCAmelCase_: int = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") lowerCAmelCase_: Tuple = "\n{0} = None\n" lowerCAmelCase_: Any = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" lowerCAmelCase_: Any = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def __a ( A ): '''simple docstring''' lowercase__ = _re_backend.findall(A ) if len(A ) == 0: return None return "_and_".join(A ) def __a ( ): '''simple docstring''' with open(os.path.join(A , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase__ = f.readlines() # Get to the point we do the actual imports for type checking lowercase__ = 0 lowercase__ = {} # Go through the end of the file while line_index < len(A ): # If the line contains is_backend_available, we grab all objects associated with the `else` block lowercase__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 lowercase__ = [] # Until we unindent, add backend objects to the list while line_index < len(A ) and len(lines[line_index] ) > 1: lowercase__ = lines[line_index] lowercase__ = _re_single_line_import.search(A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(A ) > 0: lowercase__ = objects else: line_index += 1 return backend_specific_objects def __a ( A , A ): '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(A ) elif name.islower(): return DUMMY_FUNCTION.format(A , A ) else: return DUMMY_CLASS.format(A , A ) def __a ( A=None ): '''simple docstring''' if backend_specific_objects is None: lowercase__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename lowercase__ = {} for backend, objects in backend_specific_objects.items(): lowercase__ = "[" + ", ".join(f'''"{b}"''' for b in backend.split("_and_" ) ) + "]" lowercase__ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(A , A ) for o in objects] ) lowercase__ = dummy_file return dummy_files def __a ( A=False ): '''simple docstring''' lowercase__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py lowercase__ = {"torch": "pt"} # Locate actual dummy modules and read their content. lowercase__ = os.path.join(A , "utils" ) lowercase__ = { backend: os.path.join(A , f'''dummy_{short_names.get(A , A )}_objects.py''' ) for backend in dummy_files.keys() } lowercase__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(A ): with open(A , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase__ = f.read() else: lowercase__ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(A , A )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f'''diffusers.utils.dummy_{short_names.get(A , A )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": lowerCAmelCase_: Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowerCAmelCase_: List[str] = parser.parse_args() check_dummies(args.fix_and_overwrite)
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_: List[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Dict = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = ["CLIPFeatureExtractor"] lowerCAmelCase_: Optional[int] = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: int = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase_: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" def __a ( A , A ): '''simple docstring''' if digit_amount > 0: return round(number - int(A ) , A ) return number - int(A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase=12, _UpperCAmelCase=7, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=99, _UpperCAmelCase=32, _UpperCAmelCase=32, _UpperCAmelCase=2, _UpperCAmelCase=4, _UpperCAmelCase=37, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=0.02, _UpperCAmelCase=0, _UpperCAmelCase=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = projection_dim lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = scope lowercase__ = bos_token_id def snake_case__ ( self ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase__ = input_mask.numpy() lowercase__ , lowercase__ = input_mask.shape lowercase__ = np.random.randint(1, seq_length - 1, size=(batch_size,) ) for batch_idx, start_index in enumerate(_UpperCAmelCase ): lowercase__ = 1 lowercase__ = 0 lowercase__ = self.get_config() return config, input_ids, tf.convert_to_tensor(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = TFBlipTextModel(config=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, training=_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase, training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( _a , unittest.TestCase ): snake_case_ = (TFBlipTextModel,) if is_tf_available() else () snake_case_ = False snake_case_ = False snake_case_ = False def snake_case__ ( self ): '''simple docstring''' lowercase__ = BlipTextModelTester(self ) lowercase__ = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=37 ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def snake_case__ ( self ): '''simple docstring''' pass @slow def snake_case__ ( self ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFBlipTextModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=_UpperCAmelCase )
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __a ( A , A , A , A , A ): '''simple docstring''' with open(A ) as metadata_file: lowercase__ = json.load(A ) lowercase__ = LukeConfig(use_entity_aware_attention=A , **metadata["model_config"] ) # Load in the weights from the checkpoint_path lowercase__ = torch.load(A , map_location="cpu" ) # Load the entity vocab file lowercase__ = load_entity_vocab(A ) lowercase__ = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks lowercase__ = AddedToken("<ent>" , lstrip=A , rstrip=A ) lowercase__ = AddedToken("<ent2>" , lstrip=A , rstrip=A ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(A ) with open(os.path.join(A , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(A , A ) lowercase__ = LukeTokenizer.from_pretrained(A ) # Initialize the embeddings of the special tokens lowercase__ = state_dict["embeddings.word_embeddings.weight"] lowercase__ = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) lowercase__ = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) lowercase__ = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase__ = f'''encoder.layer.{layer_index}.attention.self.''' lowercase__ = state_dict[prefix + matrix_name] lowercase__ = state_dict[prefix + matrix_name] lowercase__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase__ = state_dict["entity_embeddings.entity_embeddings.weight"] lowercase__ = entity_emb[entity_vocab["[MASK]"]] lowercase__ = LukeModel(config=A ).eval() lowercase__ , lowercase__ = model.load_state_dict(A , strict=A ) if not (len(A ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'''Missing keys {', '.join(A )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" f''' {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}''' ) # Check outputs lowercase__ = LukeTokenizer.from_pretrained(A , task="entity_classification" ) lowercase__ = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) lowercase__ = (39, 42) lowercase__ = tokenizer(A , entity_spans=[span] , add_prefix_space=A , return_tensors="pt" ) lowercase__ = model(**A ) # Verify word hidden states if model_size == "large": lowercase__ = torch.Size((1, 42, 10_24) ) lowercase__ = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base lowercase__ = torch.Size((1, 42, 7_68) ) lowercase__ = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": lowercase__ = torch.Size((1, 1, 10_24) ) lowercase__ = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base lowercase__ = torch.Size((1, 1, 7_68) ) lowercase__ = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(A ) ) model.save_pretrained(A ) def __a ( A ): '''simple docstring''' lowercase__ = {} with open(A , "r" , encoding="utf-8" ) as f: for index, line in enumerate(A ): lowercase__ , lowercase__ = line.rstrip().split("\t" ) lowercase__ = index return entity_vocab if __name__ == "__main__": lowerCAmelCase_: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCAmelCase_: str = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" from collections import namedtuple lowerCAmelCase_: List[str] = namedtuple("from_to", "from_ to") lowerCAmelCase_: int = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_0_0_0), "kilolitre": from_to(1, 1), "gallon": from_to(0.00_454, 264.172), "cubicyard": from_to(0.76_455, 1.30_795), "cubicfoot": from_to(0.028, 35.3_147), "cup": from_to(0.000_236_588, 4_2_2_6.7_5), } def __a ( A , A , A ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ", ".join(A ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ", ".join(A ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" from __future__ import annotations def __a ( A , A , A ): '''simple docstring''' lowercase__ = list(range(len(A ) ) ) lowercase__ = [v / w for v, w in zip(A , A )] index.sort(key=lambda A : ratio[i] , reverse=A ) lowercase__ = 0 lowercase__ = [0] * len(A ) for i in index: if weight[i] <= capacity: lowercase__ = 1 max_value += value[i] capacity -= weight[i] else: lowercase__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCAmelCase_: Dict = logging.get_logger(__name__) def __a ( A , A ): '''simple docstring''' def run_func(A ): @wraps(A ) def run_in_eager_mode(*A , **A ): return func(*A , **A ) @wraps(A ) @tf.function(experimental_compile=A ) def run_in_graph_mode(*A , **A ): return func(*A , **A ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __a ( A , A , A ): '''simple docstring''' lowercase__ = random.Random() lowercase__ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(A , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class a__ ( _a ): snake_case_ = 42 snake_case_ = 42 snake_case_ = "TensorFlow" @property def snake_case__ ( self ): '''simple docstring''' return tf.__version__ def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowercase__ = self._prepare_inference_func(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return self._measure_speed(_inference ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowercase__ = self._prepare_train_func(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return self._measure_speed(_train ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], _UpperCAmelCase ) lowercase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowercase__ = self._prepare_inference_func(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return self._measure_memory(_inference ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], _UpperCAmelCase ) lowercase__ = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) lowercase__ = self._prepare_train_func(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return self._measure_memory(_train ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) lowercase__ = ( hasattr(_UpperCAmelCase, "architectures" ) and isinstance(config.architectures, _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase__ = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model lowercase__ = __import__("transformers", fromlist=[model_class] ) lowercase__ = getattr(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: lowercase__ = TF_MODEL_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently lowercase__ = config.vocab_size if hasattr(_UpperCAmelCase, "vocab_size" ) else config.encoder.vocab_size lowercase__ = random_input_ids(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_forward(): return model(_UpperCAmelCase, decoder_input_ids=_UpperCAmelCase, training=_UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_forward(): return model(_UpperCAmelCase, training=_UpperCAmelCase ) lowercase__ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) lowercase__ = ( hasattr(_UpperCAmelCase, "architectures" ) and isinstance(config.architectures, _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowercase__ = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model lowercase__ = __import__("transformers", fromlist=[model_class] ) lowercase__ = getattr(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: lowercase__ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently lowercase__ = config.vocab_size if hasattr(_UpperCAmelCase, "vocab_size" ) else config.encoder.vocab_size lowercase__ = random_input_ids(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_decoder_train(): lowercase__ = model(_UpperCAmelCase, decoder_input_ids=_UpperCAmelCase, labels=_UpperCAmelCase, training=_UpperCAmelCase )[0] lowercase__ = tf.gradients(_UpperCAmelCase, model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla ) def encoder_train(): lowercase__ = model(_UpperCAmelCase, labels=_UpperCAmelCase, training=_UpperCAmelCase )[0] lowercase__ = tf.gradients(_UpperCAmelCase, model.trainable_variables ) return gradients lowercase__ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(_UpperCAmelCase, repeat=1, number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowercase__ = timeit.repeat( _UpperCAmelCase, repeat=self.args.repeat, number=10, ) return min(_UpperCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) lowercase__ = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) lowercase__ = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() lowercase__ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowercase__ = nvml.nvmlDeviceGetMemoryInfo(_UpperCAmelCase ) lowercase__ = meminfo.used lowercase__ = Memory(_UpperCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) lowercase__ = None else: lowercase__ = measure_peak_memory_cpu(_UpperCAmelCase ) lowercase__ = Memory(_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: lowercase__ = stop_memory_tracing(_UpperCAmelCase ) if memory is None: lowercase__ = summary.total else: lowercase__ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=2_2050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __a ( A ): '''simple docstring''' return EnvironmentCommand() class a__ ( _a ): @staticmethod def snake_case__ ( _UpperCAmelCase ): '''simple docstring''' lowercase__ = parser.add_parser("env" ) download_parser.set_defaults(func=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = huggingface_hub.__version__ lowercase__ = "not installed" lowercase__ = "NA" if is_torch_available(): import torch lowercase__ = torch.__version__ lowercase__ = torch.cuda.is_available() lowercase__ = "not installed" if is_transformers_available(): import transformers lowercase__ = transformers.__version__ lowercase__ = "not installed" if is_accelerate_available(): import accelerate lowercase__ = accelerate.__version__ lowercase__ = "not installed" if is_xformers_available(): import xformers lowercase__ = xformers.__version__ lowercase__ = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": F'''{pt_version} ({pt_cuda_available})''', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(_UpperCAmelCase ) ) return info @staticmethod def snake_case__ ( _UpperCAmelCase ): '''simple docstring''' return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" def __a ( A = 10 , A = 10_00 , A = True ): assert ( isinstance(A , A ) and isinstance(A , A ) and isinstance(A , A ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def __a ( A , A ): return int((number_a + number_a) / 2 ) def __a ( A , A , A ): assert ( isinstance(A , A ) and isinstance(A , A ) and isinstance(A , A ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(A ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) lowercase__ = lower lowercase__ = higher lowercase__ = [] while True: lowercase__ = get_avg(A , A ) last_numbers.append(A ) if answer(A ) == "low": lowercase__ = number elif answer(A ) == "high": lowercase__ = number else: break print(f'''guess the number : {last_numbers[-1]}''' ) print(f'''details : {last_numbers!s}''' ) def __a ( ): lowercase__ = int(input("Enter lower value : " ).strip() ) lowercase__ = int(input("Enter high value : " ).strip() ) lowercase__ = int(input("Enter value to guess : " ).strip() ) guess_the_number(A , A , A ) if __name__ == "__main__": main()
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: Tuple = logging.get_logger(__name__) lowerCAmelCase_: str = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "transfo-xl" snake_case_ = ["mems"] snake_case_ = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, _UpperCAmelCase=26_7735, _UpperCAmelCase=[2_0000, 4_0000, 20_0000], _UpperCAmelCase=1024, _UpperCAmelCase=1024, _UpperCAmelCase=16, _UpperCAmelCase=64, _UpperCAmelCase=4096, _UpperCAmelCase=4, _UpperCAmelCase=False, _UpperCAmelCase=18, _UpperCAmelCase=1600, _UpperCAmelCase=1000, _UpperCAmelCase=True, _UpperCAmelCase=True, _UpperCAmelCase=0, _UpperCAmelCase=-1, _UpperCAmelCase=True, _UpperCAmelCase=0.1, _UpperCAmelCase=0.0, _UpperCAmelCase=True, _UpperCAmelCase="normal", _UpperCAmelCase=0.01, _UpperCAmelCase=0.01, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-5, _UpperCAmelCase=0, **_UpperCAmelCase, ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) @property def snake_case__ ( self ): '''simple docstring''' logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" from __future__ import annotations def __a ( A ): '''simple docstring''' lowercase__ = str(A ) return len(A ) == 9 and set(A ) == set("123456789" ) def __a ( ): '''simple docstring''' for base_num in range(99_99 , 49_99 , -1 ): lowercase__ = 10_00_02 * base_num if is_9_pandigital(A ): return candidate for base_num in range(3_33 , 99 , -1 ): lowercase__ = 1_00_20_03 * base_num if is_9_pandigital(A ): return candidate return None if __name__ == "__main__": print(F'{solution() = }')
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class a__ : def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' raise NotImplementedError() def snake_case__ ( self ): '''simple docstring''' raise NotImplementedError() class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = False, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = tokenizer lowercase__ = skip_prompt lowercase__ = decode_kwargs # variables used in the streaming process lowercase__ = [] lowercase__ = 0 lowercase__ = True def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: lowercase__ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase__ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase__ = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): lowercase__ = text[self.print_len :] lowercase__ = [] lowercase__ = 0 # If the last token is a CJK character, we print the characters. elif len(_UpperCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase__ = text[self.print_len :] self.print_len += len(_UpperCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase__ = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(_UpperCAmelCase ) self.on_finalized_text(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' if len(self.token_cache ) > 0: lowercase__ = self.tokenizer.decode(self.token_cache, **self.decode_kwargs ) lowercase__ = text[self.print_len :] lowercase__ = [] lowercase__ = 0 else: lowercase__ = "" lowercase__ = True self.on_finalized_text(_UpperCAmelCase, stream_end=_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = False ): '''simple docstring''' print(_UpperCAmelCase, flush=_UpperCAmelCase, end="" if not stream_end else None ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase ): '''simple docstring''' super().__init__(_UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = Queue() lowercase__ = None lowercase__ = timeout def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = False ): '''simple docstring''' self.text_queue.put(_UpperCAmelCase, timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout ) def __iter__( self ): '''simple docstring''' return self def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
700
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class a__ ( unittest.TestCase ): snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = hf_hub_download( repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = VideoClassificationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase, top_k=2 ) lowercase__ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' for example in examples: lowercase__ = video_classifier(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase, [ {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, {"score": ANY(_UpperCAmelCase ), "label": ANY(_UpperCAmelCase )}, ], ) @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase__ = VideoMAEFeatureExtractor( size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} ) lowercase__ = pipeline( "video-classification", model=_UpperCAmelCase, feature_extractor=_UpperCAmelCase, frame_sampling_rate=4 ) lowercase__ = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" ) lowercase__ = video_classifier(_UpperCAmelCase, top_k=2 ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ) lowercase__ = video_classifier( [ video_file_path, video_file_path, ], top_k=2, ) self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], [{"score": 0.5_199, "label": "LABEL_0"}, {"score": 0.4_801, "label": "LABEL_1"}], ], ) @require_tf def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class a__ ( _a ): snake_case_ = "microsoft/speecht5_tts" snake_case_ = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) snake_case_ = "text_reader" snake_case_ = SpeechTaProcessor snake_case_ = SpeechTaForTextToSpeech snake_case_ = SpeechTaHifiGan snake_case_ = ["text"] snake_case_ = ["audio"] def snake_case__ ( self ): '''simple docstring''' if self.post_processor is None: lowercase__ = "microsoft/speecht5_hifigan" super().setup() def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=None ): '''simple docstring''' lowercase__ = self.pre_processor(text=_UpperCAmelCase, return_tensors="pt", truncation=_UpperCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) lowercase__ = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation" ) lowercase__ = torch.tensor(embeddings_dataset[7305]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' with torch.no_grad(): return self.post_processor(_UpperCAmelCase ).cpu().detach()
701
"""simple docstring""" import itertools import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __a ( ): '''simple docstring''' lowercase__ = 2 while True: if is_prime(A ): yield num num += 1 def __a ( A = 1_00_01 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , A ) ) if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCAmelCase_: int = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") lowerCAmelCase_: str = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") lowerCAmelCase_: List[str] = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: lowerCAmelCase_: List[str] = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCAmelCase_: Optional[int] = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
702
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( _a ): def __init__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, _UpperCAmelCase = None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( _UpperCAmelCase, split=_UpperCAmelCase, features=_UpperCAmelCase, cache_dir=_UpperCAmelCase, keep_in_memory=_UpperCAmelCase, streaming=_UpperCAmelCase, num_proc=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase, _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase, data_files=_UpperCAmelCase, features=_UpperCAmelCase, **_UpperCAmelCase, ) def snake_case__ ( self ): '''simple docstring''' if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase, download_mode=_UpperCAmelCase, verification_mode=_UpperCAmelCase, base_path=_UpperCAmelCase, num_proc=self.num_proc, ) lowercase__ = self.builder.as_dataset( split=self.split, verification_mode=_UpperCAmelCase, in_memory=self.keep_in_memory ) return dataset
668
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __a ( A , A , A ): '''simple docstring''' lowercase__ = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") lowercase__ = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(A ): os.makedirs(A ) lowercase__ = model.state_dict() def to_tf_var_name(A ): for patt, repl in iter(A ): lowercase__ = name.replace(A , A ) return f'''bert/{name}''' def create_tf_var(A , A , A ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=A , shape=tensor.shape , name=A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(A ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=A , name=A , session=A ) tf.keras.backend.set_value(A , A ) lowercase__ = session.run(A ) print(f'''Successfully created {tf_name}: {np.allclose(A , A )}''' ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(A , os.path.join(A , model_name.replace("-" , "_" ) + ".ckpt" ) ) def __a ( A=None ): '''simple docstring''' lowercase__ = argparse.ArgumentParser() parser.add_argument("--model_name" , type=A , required=A , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=A , default=A , required=A , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=A , required=A , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=A , required=A , help="Directory in which to save tensorflow model" ) lowercase__ = parser.parse_args(A ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
"""simple docstring""" from math import isqrt def __a ( A ): '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(A ) + 1 ) ) def __a ( A = 10**6 ): '''simple docstring''' lowercase__ = 0 lowercase__ = 1 lowercase__ = 7 while prime_candidate < max_prime: primes_count += is_prime(A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
704
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
668
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Tuple = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: str = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: List[Any] = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): snake_case_ = MgpstrTokenizer snake_case_ = False snake_case_ = {} snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase__ = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = "tester" lowercase__ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) lowercase__ = tokenizer.encode([special_token], add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ), 1 ) lowercase__ = tokenizer.decode(_UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ , lowercase__ = self.get_input_output_texts(_UpperCAmelCase ) lowercase__ = tokenizer.tokenize(_UpperCAmelCase ) lowercase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ), 0 ) lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual(text_a.replace(" ", "" ), _UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def snake_case__ ( self ): '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def snake_case__ ( self ): '''simple docstring''' pass
668
0
"""simple docstring""" from __future__ import annotations def __a ( A ): '''simple docstring''' if len(A ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) lowercase__ = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
668
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __a ( A ): '''simple docstring''' if isinstance(A , collections.abc.Iterable ): return x return (x, x) @require_flax class a__ : def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = np.abs((a - b) ).max() self.assertLessEqual(_UpperCAmelCase, _UpperCAmelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(_UpperCAmelCase ) lowercase__ = model(input_ids=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase ) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], config.projection_dim) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, **_UpperCAmelCase ): '''simple docstring''' lowercase__ , lowercase__ = self.get_vision_text_model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = {"vision_model": vision_model, "text_model": text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCAmelCase ) lowercase__ = model(input_ids=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase ) self.assertEqual(output["text_embeds"].shape, (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape, (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, **_UpperCAmelCase ): '''simple docstring''' lowercase__ , lowercase__ = self.get_vision_text_model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = {"vision_model": vision_model, "text_model": text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCAmelCase ) lowercase__ = model(input_ids=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase ) lowercase__ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase ) lowercase__ = model(input_ids=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase ) lowercase__ = after_output[0] lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase, 1E-3 ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, **_UpperCAmelCase ): '''simple docstring''' lowercase__ , lowercase__ = self.get_vision_text_model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = {"vision_model": vision_model, "text_model": text_model} lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCAmelCase ) lowercase__ = model( input_ids=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, output_attentions=_UpperCAmelCase ) lowercase__ = output.vision_model_output.attentions self.assertEqual(len(_UpperCAmelCase ), vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = to_atuple(vision_model.config.image_size ) lowercase__ = to_atuple(vision_model.config.patch_size ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase__ = output.text_model_output.attentions self.assertEqual(len(_UpperCAmelCase ), text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' pt_model.to(_UpperCAmelCase ) pt_model.eval() # prepare inputs lowercase__ = inputs_dict lowercase__ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase__ = pt_model(**_UpperCAmelCase ).to_tuple() lowercase__ = fx_model(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4] ): self.assert_almost_equals(_UpperCAmelCase, pt_output.numpy(), 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase, from_pt=_UpperCAmelCase ) lowercase__ = fx_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ), "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4] ): self.assert_almost_equals(_UpperCAmelCase, pt_output.numpy(), 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase, from_flax=_UpperCAmelCase ) pt_model_loaded.to(_UpperCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): lowercase__ = pt_model_loaded(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ), "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4] ): self.assert_almost_equals(_UpperCAmelCase, pt_output_loaded.numpy(), 4E-2 ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel(_UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(_UpperCAmelCase ) lowercase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), _UpperCAmelCase ) lowercase__ = fx_state self.check_pt_flax_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = VisionTextDualEncoderModel(_UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel(_UpperCAmelCase ) lowercase__ = load_flax_weights_in_pytorch_model(_UpperCAmelCase, fx_model.params ) self.check_pt_flax_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() self.check_save_load(**_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_UpperCAmelCase ) @is_pt_flax_cross_test def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ = config_inputs_dict.pop("vision_config" ) lowercase__ = config_inputs_dict.pop("text_config" ) lowercase__ = config_inputs_dict self.check_equivalence_pt_to_flax(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) self.check_equivalence_flax_to_pt(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.get_pretrained_model_and_inputs() lowercase__ = model_a(**_UpperCAmelCase ) lowercase__ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_UpperCAmelCase ) lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase ) lowercase__ = model_a(**_UpperCAmelCase ) lowercase__ = after_outputs[0] lowercase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase, 1E-5 ) @require_flax class a__ ( _a , unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert", vision_from_pt=_UpperCAmelCase, text_from_pt=_UpperCAmelCase, ) lowercase__ = 13 lowercase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase__ = ids_tensor([batch_size, 4], model.config.text_config.vocab_size ) lowercase__ = random_attention_mask([batch_size, 4] ) lowercase__ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = FlaxViTModel(_UpperCAmelCase ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) return vision_model, text_model def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxViTModelTester(self ) lowercase__ = FlaxBertModelTester(self ) lowercase__ = vit_model_tester.prepare_config_and_inputs() lowercase__ = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ = vision_config_and_inputs lowercase__ , lowercase__ , lowercase__ , lowercase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class a__ ( _a , unittest.TestCase ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip", "hf-internal-testing/tiny-bert", vision_from_pt=_UpperCAmelCase, text_from_pt=_UpperCAmelCase, ) lowercase__ = 13 lowercase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase__ = ids_tensor([batch_size, 4], model.config.text_config.vocab_size ) lowercase__ = random_attention_mask([batch_size, 4] ) lowercase__ = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = FlaxCLIPVisionModel(_UpperCAmelCase ) lowercase__ = FlaxBertModel(_UpperCAmelCase ) return vision_model, text_model def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxCLIPVisionModelTester(self ) lowercase__ = FlaxBertModelTester(self ) lowercase__ = clip_model_tester.prepare_config_and_inputs() lowercase__ = bert_model_tester.prepare_config_and_inputs() lowercase__ , lowercase__ = vision_config_and_inputs lowercase__ , lowercase__ , lowercase__ , lowercase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", logit_scale_init_value=1.0 ) lowercase__ = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase__ = processor( text=["una foto di un gatto", "una foto di un cane"], images=_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors="np" ) lowercase__ = model(**_UpperCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) lowercase__ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image, _UpperCAmelCase, atol=1E-3 ) )
707
"""simple docstring""" from typing import Any import numpy as np def __a ( A ): '''simple docstring''' return np.array_equal(A , matrix.conjugate().T ) def __a ( A , A ): '''simple docstring''' lowercase__ = v.conjugate().T lowercase__ = v_star.dot(A ) assert isinstance(A , np.ndarray ) return (v_star_dot.dot(A )) / (v_star.dot(A )) def __a ( ): '''simple docstring''' lowercase__ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase__ = np.array([[1], [2], [3]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' print(rayleigh_quotient(A , A ) ) lowercase__ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A ), f'''{a} is not hermitian.''' assert rayleigh_quotient(A , A ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
668
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: Optional[int] = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "swinv2" snake_case_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, _UpperCAmelCase=224, _UpperCAmelCase=4, _UpperCAmelCase=3, _UpperCAmelCase=96, _UpperCAmelCase=[2, 2, 6, 2], _UpperCAmelCase=[3, 6, 12, 24], _UpperCAmelCase=7, _UpperCAmelCase=4.0, _UpperCAmelCase=True, _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.1, _UpperCAmelCase="gelu", _UpperCAmelCase=False, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-5, _UpperCAmelCase=32, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = len(_UpperCAmelCase ) lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) lowercase__ = (0, 0, 0, 0)
708
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class a__ ( _a , unittest.TestCase ): snake_case_ = PriorTransformer snake_case_ = "hidden_states" @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) @property def snake_case__ ( self ): '''simple docstring''' return (4, 8) def snake_case__ ( self ): '''simple docstring''' lowercase__ = { "num_attention_heads": 2, "attention_head_dim": 4, "num_layers": 2, "embedding_dim": 8, "num_embeddings": 7, "additional_embeddings": 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = PriorTransformer.from_pretrained( "hf-internal-testing/prior-dummy", output_loading_info=_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertEqual(len(loading_info["missing_keys"] ), 0 ) model.to(_UpperCAmelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__ ( self ): '''simple docstring''' lowercase__ , lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["hidden_states", "timestep"] self.assertListEqual(arg_names[:2], _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy" ) lowercase__ = model.to(_UpperCAmelCase ) if hasattr(_UpperCAmelCase, "set_default_attn_processor" ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(_UpperCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] ) self.assertTrue(torch_all_close(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-2 ) ) @slow class a__ ( unittest.TestCase ): def snake_case__ ( self, _UpperCAmelCase=1, _UpperCAmelCase=768, _UpperCAmelCase=77, _UpperCAmelCase=0 ): '''simple docstring''' torch.manual_seed(_UpperCAmelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(_UpperCAmelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(_UpperCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]], [37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]], # fmt: on ] ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior" ) model.to(_UpperCAmelCase ) lowercase__ = self.get_dummy_seed_input(seed=_UpperCAmelCase ) with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(_UpperCAmelCase ) lowercase__ = torch.tensor(_UpperCAmelCase ) assert torch_all_close(_UpperCAmelCase, _UpperCAmelCase, atol=1E-3 )
668
0
"""simple docstring""" from __future__ import annotations def __a ( A ): '''simple docstring''' return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" lowerCAmelCase_: Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def __a ( A ): '''simple docstring''' if not isinstance(A , A ): lowercase__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A ) lowercase__ = "".join(bin(A )[2:].zfill(8 ) for byte in data ) lowercase__ = len(A ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b"=" * ((6 - len(A ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A ) % 6) else: lowercase__ = b"" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(A ) , 6 ) ).encode() + padding ) def __a ( A ): '''simple docstring''' if not isinstance(A , A ) and not isinstance(A , A ): lowercase__ = ( "argument should be a bytes-like object or ASCII string, " f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A , A ): try: lowercase__ = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowercase__ = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = "".join( bin(B64_CHARSET.index(A ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(A ) , 8 ) ] return bytes(A ) if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
710
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __a ( A , A , A = "x" , A = 10**-10 , A = 1 , ): '''simple docstring''' lowercase__ = symbols(A ) lowercase__ = lambdify(A , A ) lowercase__ = lambdify(A , diff(A , A ) ) lowercase__ = starting_point while True: if diff_function(A ) != 0: lowercase__ = prev_guess - multiplicity * func(A ) / diff_function( A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( "The root of log(y) - 1 = 0 is ", F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F'{newton_raphson("exp(x) - 1", 1_0, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
668
0
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig lowerCAmelCase_: Dict = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class a__ ( _a ): snake_case_ = "ernie_m" snake_case_ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self, _UpperCAmelCase = 25_0002, _UpperCAmelCase = 768, _UpperCAmelCase = 12, _UpperCAmelCase = 12, _UpperCAmelCase = 3072, _UpperCAmelCase = "gelu", _UpperCAmelCase = 0.1, _UpperCAmelCase = 0.1, _UpperCAmelCase = 514, _UpperCAmelCase = 0.02, _UpperCAmelCase = 1, _UpperCAmelCase = 1E-05, _UpperCAmelCase=None, _UpperCAmelCase=False, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = classifier_dropout lowercase__ = is_decoder lowercase__ = act_dropout
711
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_: Union[str, Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Union[str, Any] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Any = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Tuple = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_: Optional[Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowerCAmelCase_: Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCAmelCase_: Optional[Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = "vision-encoder-decoder" snake_case_ = True def __init__( self, **_UpperCAmelCase ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) lowercase__ = kwargs.pop("encoder" ) lowercase__ = encoder_config.pop("model_type" ) lowercase__ = kwargs.pop("decoder" ) lowercase__ = decoder_config.pop("model_type" ) lowercase__ = AutoConfig.for_model(_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = AutoConfig.for_model(_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = True @classmethod def snake_case__ ( cls, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase__ = True lowercase__ = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.encoder.to_dict() lowercase__ = self.decoder.to_dict() lowercase__ = self.__class__.model_type return output class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4 @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class a__ ( _a ): @property def snake_case__ ( self ): '''simple docstring''' lowercase__ = OrderedDict() lowercase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} lowercase__ = {0: "batch", 1: "past_decoder_sequence + sequence"} lowercase__ = {0: "batch", 1: "encoder_sequence"} return common_inputs def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase = -1, _UpperCAmelCase = -1, _UpperCAmelCase = False, _UpperCAmelCase = None, ): '''simple docstring''' import torch lowercase__ = OrderedDict() lowercase__ = super().generate_dummy_inputs( _UpperCAmelCase, batch_size=_UpperCAmelCase, seq_length=_UpperCAmelCase, is_pair=_UpperCAmelCase, framework=_UpperCAmelCase ) lowercase__ , lowercase__ = dummy_input["input_ids"].shape lowercase__ = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase__ = dummy_input.pop("input_ids" ) lowercase__ = dummy_input.pop("attention_mask" ) lowercase__ = torch.zeros(_UpperCAmelCase ) return common_inputs class a__ ( _a ): @property def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = "default" ): '''simple docstring''' lowercase__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_UpperCAmelCase, _UpperCAmelCase )
712
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_: Union[str, Any] = logging.get_logger(__name__) class a__ ( _a ): snake_case_ = ["audio_values", "audio_mask"] def __init__( self, _UpperCAmelCase=2048, _UpperCAmelCase=1, _UpperCAmelCase=[16, 16], _UpperCAmelCase=128, _UpperCAmelCase=4_4100, _UpperCAmelCase=86, _UpperCAmelCase=2048, _UpperCAmelCase=0.0, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( feature_size=_UpperCAmelCase, sampling_rate=_UpperCAmelCase, padding_value=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = spectrogram_length lowercase__ = num_channels lowercase__ = patch_size lowercase__ = feature_size // self.patch_size[1] lowercase__ = n_fft lowercase__ = sampling_rate // hop_length_to_sampling_rate lowercase__ = sampling_rate lowercase__ = padding_value lowercase__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=_UpperCAmelCase, min_frequency=0.0, max_frequency=22_050.0, sampling_rate=_UpperCAmelCase, norm="slaney", mel_scale="slaney", ).T def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = spectrogram( _UpperCAmelCase, window_function(self.n_fft, "hann" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel="dB", db_range=80.0, ) lowercase__ = log_spec[:, :-1] lowercase__ = log_spec - 20.0 lowercase__ = np.clip(log_spec / 40.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self, _UpperCAmelCase, _UpperCAmelCase = None, _UpperCAmelCase = True, _UpperCAmelCase = None, _UpperCAmelCase = False, _UpperCAmelCase = False, **_UpperCAmelCase, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase__ = isinstance(_UpperCAmelCase, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase__ = is_batched_numpy or ( isinstance(_UpperCAmelCase, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase, np.ndarray ): lowercase__ = np.asarray(_UpperCAmelCase, dtype=np.floataa ) elif isinstance(_UpperCAmelCase, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], _UpperCAmelCase ): lowercase__ = [np.asarray(_UpperCAmelCase, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowercase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): lowercase__ = audio_features[i] lowercase__ = feature # return as BatchFeature if return_attention_mask: lowercase__ = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase__ = {"audio_values": padded_audio_features} lowercase__ = BatchFeature(data=_UpperCAmelCase, tensor_type=_UpperCAmelCase ) return encoded_inputs
668
0
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCAmelCase_: List[str] = True except ImportError: lowerCAmelCase_: Dict = False try: from torch.hub import _get_torch_home lowerCAmelCase_: Dict = _get_torch_home() except ImportError: lowerCAmelCase_: Union[str, Any] = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) lowerCAmelCase_: List[str] = os.path.join(torch_cache_home, "transformers") lowerCAmelCase_: Dict = "https://cdn.huggingface.co" lowerCAmelCase_: List[str] = "https://s3.amazonaws.com/models.huggingface.co/bert" lowerCAmelCase_: str = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) lowerCAmelCase_: Any = os.path.join(PATH, "config.yaml") lowerCAmelCase_: Union[str, Any] = os.path.join(PATH, "attributes.txt") lowerCAmelCase_: Dict = os.path.join(PATH, "objects.txt") lowerCAmelCase_: int = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) lowerCAmelCase_: List[str] = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) lowerCAmelCase_: Optional[int] = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) lowerCAmelCase_: Any = "pytorch_model.bin" lowerCAmelCase_: Optional[int] = "config.yaml" def __a ( A=OBJECTS , A=ATTRIBUTES ): '''simple docstring''' lowercase__ = [] with open(A ) as f: for object in f.readlines(): vg_classes.append(object.split("," )[0].lower().strip() ) lowercase__ = [] with open(A ) as f: for object in f.readlines(): vg_attrs.append(object.split("," )[0].lower().strip() ) return vg_classes, vg_attrs def __a ( A ): '''simple docstring''' lowercase__ = OrderedDict() with open(A , "rb" ) as f: lowercase__ = pkl.load(A )["model"] for k in copy.deepcopy(list(ckp.keys() ) ): lowercase__ = ckp.pop(A ) if isinstance(A , np.ndarray ): lowercase__ = torch.tensor(A ) else: assert isinstance(A , torch.tensor ), type(A ) lowercase__ = v return r class a__ : snake_case_ = {} def __init__( self, _UpperCAmelCase, _UpperCAmelCase = "root", _UpperCAmelCase=0 ): '''simple docstring''' lowercase__ = name lowercase__ = level lowercase__ = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowercase__ = copy.deepcopy(_UpperCAmelCase ) lowercase__ = copy.deepcopy(_UpperCAmelCase ) if isinstance(_UpperCAmelCase, _UpperCAmelCase ): lowercase__ = Config(_UpperCAmelCase, name=_UpperCAmelCase, level=level + 1 ) lowercase__ = v setattr(self, _UpperCAmelCase, _UpperCAmelCase ) lowercase__ = d def __repr__( self ): '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = val lowercase__ = val lowercase__ = key.split("." ) lowercase__ = len(_UpperCAmelCase ) - 1 lowercase__ = self._pointer if len(_UpperCAmelCase ) > 1: for i, l in enumerate(_UpperCAmelCase ): if hasattr(self, _UpperCAmelCase ) and isinstance(getattr(self, _UpperCAmelCase ), _UpperCAmelCase ): setattr(getattr(self, _UpperCAmelCase ), ".".join(levels[i:] ), _UpperCAmelCase ) if l == last_level: lowercase__ = val else: lowercase__ = pointer[l] def snake_case__ ( self ): '''simple docstring''' return self._pointer def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' with open(F'''{file_name}''', "w" ) as stream: dump(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' with open(F'''{file_name}''', "w" ) as stream: json.dump(_UpperCAmelCase, _UpperCAmelCase ) @staticmethod def snake_case__ ( _UpperCAmelCase ): '''simple docstring''' with open(_UpperCAmelCase ) as stream: lowercase__ = load(_UpperCAmelCase, Loader=_UpperCAmelCase ) return data def __str__( self ): '''simple docstring''' lowercase__ = " " if self._name != "root": lowercase__ = F'''{t * (self._level-1)}{self._name}:\n''' else: lowercase__ = "" lowercase__ = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_UpperCAmelCase, _UpperCAmelCase ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(_UpperCAmelCase ).__name__})\n''' lowercase__ = level return r[:-1] @classmethod def snake_case__ ( cls, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' lowercase__ , lowercase__ = cls.get_config_dict(_UpperCAmelCase, **_UpperCAmelCase ) return cls(_UpperCAmelCase ) @classmethod def snake_case__ ( cls, _UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = kwargs.pop("cache_dir", _UpperCAmelCase ) lowercase__ = kwargs.pop("force_download", _UpperCAmelCase ) lowercase__ = kwargs.pop("resume_download", _UpperCAmelCase ) lowercase__ = kwargs.pop("proxies", _UpperCAmelCase ) lowercase__ = kwargs.pop("local_files_only", _UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): lowercase__ = os.path.join(_UpperCAmelCase, _UpperCAmelCase ) elif os.path.isfile(_UpperCAmelCase ) or is_remote_url(_UpperCAmelCase ): lowercase__ = pretrained_model_name_or_path else: lowercase__ = hf_bucket_url(_UpperCAmelCase, filename=_UpperCAmelCase, use_cdn=_UpperCAmelCase ) try: # Load from URL or cache if already cached lowercase__ = cached_path( _UpperCAmelCase, cache_dir=_UpperCAmelCase, force_download=_UpperCAmelCase, proxies=_UpperCAmelCase, resume_download=_UpperCAmelCase, local_files_only=_UpperCAmelCase, ) # Load config dict if resolved_config_file is None: raise EnvironmentError lowercase__ = Config.load_yaml(_UpperCAmelCase ) except EnvironmentError: lowercase__ = "Can't load config for" raise EnvironmentError(_UpperCAmelCase ) if resolved_config_file == config_file: print("loading configuration file from path" ) else: print("loading configuration file cache" ) return Config.load_yaml(_UpperCAmelCase ), kwargs def __a ( A ): '''simple docstring''' lowercase__ = torch.load("dump.pt" , map_location=in_tensor.device ) lowercase__ = in_tensor.numpy() lowercase__ = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(A , A , rtol=0.01 , atol=0.1 ), ( f'''{sum([1 for x in np.isclose(A , A , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %''' " element-wise mismatch" ) raise Exception("tensors are all good" ) # Hugging face functions below def __a ( A ): '''simple docstring''' lowercase__ = urlparse(A ) return parsed.scheme in ("http", "https") def __a ( A , A , A=True ): '''simple docstring''' lowercase__ = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowercase__ = "/" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __a ( A , A , A=None , A=0 , A=None , ): '''simple docstring''' lowercase__ = "python/{}".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(A , A ): ua += "; " + "; ".join("{}/{}".format(A , A ) for k, v in user_agent.items() ) elif isinstance(A , A ): ua += "; " + user_agent lowercase__ = {"user-agent": ua} if resume_size > 0: lowercase__ = "bytes=%d-" % (resume_size,) lowercase__ = requests.get(A , stream=A , proxies=A , headers=A ) if response.status_code == 4_16: # Range not satisfiable return lowercase__ = response.headers.get("Content-Length" ) lowercase__ = resume_size + int(A ) if content_length is not None else None lowercase__ = tqdm( unit="B" , unit_scale=A , total=A , initial=A , desc="Downloading" , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(A ) ) temp_file.write(A ) progress.close() def __a ( A , A=None , A=False , A=None , A=10 , A=False , A=None , A=False , ): '''simple docstring''' if cache_dir is None: lowercase__ = TRANSFORMERS_CACHE if isinstance(A , A ): lowercase__ = str(A ) os.makedirs(A , exist_ok=A ) lowercase__ = None if not local_files_only: try: lowercase__ = requests.head(A , allow_redirects=A , proxies=A , timeout=A ) if response.status_code == 2_00: lowercase__ = response.headers.get("ETag" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowercase__ = url_to_filename(A , A ) # get cache path to put the file lowercase__ = os.path.join(A , A ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(A ): return cache_path else: lowercase__ = [ file for file in fnmatch.filter(os.listdir(A ) , filename + ".*" ) if not file.endswith(".json" ) and not file.endswith(".lock" ) ] if len(A ) > 0: return os.path.join(A , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(A ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowercase__ = cache_path + ".lock" with FileLock(A ): # If the download just completed while the lock was activated. if os.path.exists(A ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowercase__ = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(A , "a+b" ) as f: yield f lowercase__ = _resumable_file_manager if os.path.exists(A ): lowercase__ = os.stat(A ).st_size else: lowercase__ = 0 else: lowercase__ = partial(tempfile.NamedTemporaryFile , dir=A , delete=A ) lowercase__ = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( "%s not found in cache or force_download set to True, downloading to %s" , A , temp_file.name , ) http_get( A , A , proxies=A , resume_size=A , user_agent=A , ) os.replace(temp_file.name , A ) lowercase__ = {"url": url, "etag": etag} lowercase__ = cache_path + ".json" with open(A , "w" ) as meta_file: json.dump(A , A ) return cache_path def __a ( A , A=None ): '''simple docstring''' lowercase__ = url.encode("utf-8" ) lowercase__ = shaaaa(A ) lowercase__ = url_hash.hexdigest() if etag: lowercase__ = etag.encode("utf-8" ) lowercase__ = shaaaa(A ) filename += "." + etag_hash.hexdigest() if url.endswith(".h5" ): filename += ".h5" return filename def __a ( A , A=None , A=False , A=None , A=False , A=None , A=False , A=False , A=False , ): '''simple docstring''' if cache_dir is None: lowercase__ = TRANSFORMERS_CACHE if isinstance(A , A ): lowercase__ = str(A ) if isinstance(A , A ): lowercase__ = str(A ) if is_remote_url(A ): # URL, so get it from the cache (downloading if necessary) lowercase__ = get_from_cache( A , cache_dir=A , force_download=A , proxies=A , resume_download=A , user_agent=A , local_files_only=A , ) elif os.path.exists(A ): # File, and it exists. lowercase__ = url_or_filename elif urlparse(A ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(A ) ) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(A ) ) if extract_compressed_file: if not is_zipfile(A ) and not tarfile.is_tarfile(A ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowercase__ , lowercase__ = os.path.split(A ) lowercase__ = output_file.replace("." , "-" ) + "-extracted" lowercase__ = os.path.join(A , A ) if os.path.isdir(A ) and os.listdir(A ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowercase__ = output_path + ".lock" with FileLock(A ): shutil.rmtree(A , ignore_errors=A ) os.makedirs(A ) if is_zipfile(A ): with ZipFile(A , "r" ) as zip_file: zip_file.extractall(A ) zip_file.close() elif tarfile.is_tarfile(A ): lowercase__ = tarfile.open(A ) tar_file.extractall(A ) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(A ) ) return output_path_extracted return output_path def __a ( A , A="," ): '''simple docstring''' assert isinstance(A , A ) if os.path.isfile(A ): with open(A ) as f: lowercase__ = eval(f.read() ) else: lowercase__ = requests.get(A ) try: lowercase__ = requests.json() except Exception: lowercase__ = req.content.decode() assert data is not None, "could not connect" try: lowercase__ = eval(A ) except Exception: lowercase__ = data.split("\n" ) req.close() return data def __a ( A ): '''simple docstring''' lowercase__ = requests.get(A ) lowercase__ = np.array(Image.open(BytesIO(response.content ) ) ) return img def __a ( A ): '''simple docstring''' lowercase__ = url.split("/" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(A ) with open(A , "rb" ) as stream: lowercase__ = pkl.load(A ) lowercase__ = weights.pop("model" ) lowercase__ = {} for k, v in model.items(): lowercase__ = torch.from_numpy(A ) if "running_var" in k: lowercase__ = torch.tensor([0] ) lowercase__ = k.replace("running_var" , "num_batches_tracked" ) lowercase__ = zero return new def __a ( ): '''simple docstring''' print(f'''{os.path.abspath(os.path.join(A , os.pardir ) )}/demo.ipynb''' ) def __a ( A , A="RGB" ): '''simple docstring''' assert isinstance(A , A ) if os.path.isfile(A ): lowercase__ = cva.imread(A ) else: lowercase__ = get_image_from_url(A ) assert img is not None, f'''could not connect to: {im}''' lowercase__ = cva.cvtColor(A , cva.COLOR_BGR2RGB ) if input_format == "RGB": lowercase__ = img[:, :, ::-1] return img def __a ( A , A=1 ): '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(A ) , A ))
713
"""simple docstring""" from __future__ import annotations import math def __a ( A ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCAmelCase_: Optional[Any] = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)] def __a ( A ): '''simple docstring''' if not isinstance(A , A ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) lowercase__ = [] for num in range(len(A ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A ) == n: return list_nums return [] def __a ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
668
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def snake_case__ ( *_UpperCAmelCase, **_UpperCAmelCase ): '''simple docstring''' pass def __a ( A ): '''simple docstring''' lowercase__ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __a ( A ): '''simple docstring''' lowercase__ = np.array(A ) lowercase__ = npimg.shape return {"hash": hashimage(A ), "shape": shape} @is_pipeline_test @require_vision @require_torch class a__ ( unittest.TestCase ): snake_case_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) snake_case_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = MaskGenerationPipeline(model=_UpperCAmelCase, image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def snake_case__ ( self ): '''simple docstring''' pass @slow @require_torch def snake_case__ ( self ): '''simple docstring''' lowercase__ = pipeline("mask-generation", model="facebook/sam-vit-huge" ) lowercase__ = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", points_per_batch=256 ) # Shortening by hashing lowercase__ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9_967}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9_909}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9_879}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9_834}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9_716}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9_612}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9_599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9_552}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9_532}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9_516}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9_499}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9_483}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9_464}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9_408}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9_335}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9_326}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9_262}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8_999}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8_986}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8_984}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8_873}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8_871} ], ) # fmt: on @require_torch @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = "facebook/sam-vit-huge" lowercase__ = pipeline("mask-generation", model=_UpperCAmelCase ) lowercase__ = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg", pred_iou_thresh=1, points_per_batch=256 ) # Shortening by hashing lowercase__ = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase, decimals=4 ), [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_210}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_053}, ], )
714
"""simple docstring""" import os import sys lowerCAmelCase_: Any = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase_: Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __a ( *A , **A ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
668
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_: List[Any] = logging.get_logger(__name__) UpperCAmelCase_: Optional[Any] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class a__ ( _a ): snake_case_ = "canine" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=1_6384, _UpperCAmelCase=16, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0Xe000, _UpperCAmelCase=0Xe001, _UpperCAmelCase=4, _UpperCAmelCase=4, _UpperCAmelCase=8, _UpperCAmelCase=1_6384, _UpperCAmelCase=128, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase ) lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps # Character config: lowercase__ = downsampling_rate lowercase__ = upsampling_kernel_size lowercase__ = num_hash_functions lowercase__ = num_hash_buckets lowercase__ = local_transformer_stride
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase_: List[str] = "true" def __a ( A , A=82 , A=16 ): '''simple docstring''' set_seed(42 ) lowercase__ = RegressionModel() lowercase__ = deepcopy(A ) lowercase__ = RegressionDataset(length=A ) lowercase__ = DataLoader(A , batch_size=A ) model.to(accelerator.device ) lowercase__ , lowercase__ = accelerator.prepare(A , A ) return model, ddp_model, dataloader def __a ( A , A=False ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) lowercase__ = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(A ): lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs with accelerator.main_process_first(): lowercase__ = dataset.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , ) lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): if use_longest: return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return DataLoader(A , shuffle=A , collate_fn=A , batch_size=16 ) def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator(dispatch_batches=A , split_batches=A ) lowercase__ = get_dataloader(A , not dispatch_batches ) lowercase__ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=A ) lowercase__ , lowercase__ = accelerator.prepare(A , A ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __a ( A , A , A ): '''simple docstring''' lowercase__ = [] for batch in dataloader: lowercase__ , lowercase__ = batch.values() with torch.no_grad(): lowercase__ = model(A ) lowercase__ , lowercase__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowercase__ , lowercase__ = [], [] for logit, targ in logits_and_targets: logits.append(A ) targs.append(A ) lowercase__ , lowercase__ = torch.cat(A ), torch.cat(A ) return logits, targs def __a ( A , A=82 , A=False , A=False , A=16 ): '''simple docstring''' lowercase__ , lowercase__ , lowercase__ = get_basic_setup(A , A , A ) lowercase__ , lowercase__ = generate_predictions(A , A , A ) assert ( len(A ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A )}''' def __a ( A = False , A = False ): '''simple docstring''' lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ , lowercase__ = get_mrpc_setup(A , A ) # First do baseline lowercase__ , lowercase__ , lowercase__ = setup["no"] model.to(A ) model.eval() for batch in dataloader: batch.to(A ) with torch.inference_mode(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=A , references=batch["labels"] ) lowercase__ = metric.compute() # Then do distributed lowercase__ , lowercase__ , lowercase__ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__ = batch["labels"] lowercase__ , lowercase__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=A , references=A ) lowercase__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __a ( ): '''simple docstring''' lowercase__ = Accelerator(split_batches=A , dispatch_batches=A ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(A , A ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowercase__ = Accelerator(split_batches=A , dispatch_batches=A ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(A , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) lowercase__ = Accelerator() test_torch_metrics(A , 5_12 ) accelerator.state._reset_state() def __a ( A ): '''simple docstring''' main() if __name__ == "__main__": main()
716
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
668
0
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase_: int = logging.get_logger(__name__) lowerCAmelCase_: List[str] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowerCAmelCase_: Tuple = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __a ( A , A , A , A , A ): '''simple docstring''' for attribute in key.split("." ): lowercase__ = getattr(A , A ) if weight_type is not None: lowercase__ = getattr(A , A ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def __a ( A , A ): '''simple docstring''' lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == "group" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(A )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" , A ) if "weight_g" in name: lowercase__ = "weight_g" elif "weight_v" in name: lowercase__ = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: lowercase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ = "weight" else: lowercase__ = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __a ( A , A , A , A , A ): '''simple docstring''' lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def __a ( A , A , A=None ): '''simple docstring''' lowercase__ = torch.load(A ) lowercase__ = WavLMConfigOrig(checkpoint["cfg"] ) lowercase__ = WavLMOrig(A ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: lowercase__ = WavLMConfig.from_pretrained(A ) else: lowercase__ = WavLMConfig() lowercase__ = WavLMModel(A ) recursively_load_weights(A , A ) hf_wavlm.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase_: List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCAmelCase_: Dict = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_: List[Any] = logging.get_logger(__name__) lowerCAmelCase_: int = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class a__ ( _a ): snake_case_ = "markuplm" def __init__( self, _UpperCAmelCase=3_0522, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=512, _UpperCAmelCase=2, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=0, _UpperCAmelCase=0, _UpperCAmelCase=2, _UpperCAmelCase=256, _UpperCAmelCase=1024, _UpperCAmelCase=216, _UpperCAmelCase=1001, _UpperCAmelCase=32, _UpperCAmelCase=50, _UpperCAmelCase="absolute", _UpperCAmelCase=True, _UpperCAmelCase=None, **_UpperCAmelCase, ): '''simple docstring''' super().__init__( pad_token_id=_UpperCAmelCase, bos_token_id=_UpperCAmelCase, eos_token_id=_UpperCAmelCase, **_UpperCAmelCase, ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout # additional properties lowercase__ = max_depth lowercase__ = max_xpath_tag_unit_embeddings lowercase__ = max_xpath_subs_unit_embeddings lowercase__ = tag_pad_id lowercase__ = subs_pad_id lowercase__ = xpath_unit_hidden_size
668
0
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
718
"""simple docstring""" lowerCAmelCase_: Union[str, Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase_: List[str] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase_: Dict = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase_: Optional[int] = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase_: Tuple = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase_: str = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase_: int = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
668
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( _a ): snake_case_ = (IPNDMScheduler,) snake_case_ = (("num_inference_steps", 50),) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = {"num_train_timesteps": 1000} config.update(**_UpperCAmelCase ) return config def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self, _UpperCAmelCase=0, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] if time_step is None: lowercase__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) lowercase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = new_scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**_UpperCAmelCase ) lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowercase__ = model(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ).prev_sample return sample def snake_case__ ( self ): '''simple docstring''' lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop("num_inference_steps", _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**_UpperCAmelCase ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase, "set_timesteps" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase, "set_timesteps" ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.timesteps[5] lowercase__ = scheduler.timesteps[6] lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample lowercase__ = scheduler.step(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape, sample.shape ) self.assertEqual(output_a.shape, output_a.shape ) def snake_case__ ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase, time_step=_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.full_loop() lowercase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 254_0529 ) < 10
719
"""simple docstring""" from __future__ import annotations def __a ( A , A ): '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
668
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_: str = logging.get_logger(__name__) lowerCAmelCase_: List[Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class a__ ( _a ): snake_case_ = "data2vec-vision" def __init__( self, _UpperCAmelCase=768, _UpperCAmelCase=12, _UpperCAmelCase=12, _UpperCAmelCase=3072, _UpperCAmelCase="gelu", _UpperCAmelCase=0.0, _UpperCAmelCase=0.0, _UpperCAmelCase=0.02, _UpperCAmelCase=1E-12, _UpperCAmelCase=224, _UpperCAmelCase=16, _UpperCAmelCase=3, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=False, _UpperCAmelCase=0.1, _UpperCAmelCase=0.1, _UpperCAmelCase=True, _UpperCAmelCase=[3, 5, 7, 11], _UpperCAmelCase=[1, 2, 3, 6], _UpperCAmelCase=True, _UpperCAmelCase=0.4, _UpperCAmelCase=256, _UpperCAmelCase=1, _UpperCAmelCase=False, _UpperCAmelCase=255, **_UpperCAmelCase, ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class a__ ( _a ): snake_case_ = version.parse("1.11" ) @property def snake_case__ ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case__ ( self ): '''simple docstring''' return 1E-4
720
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
668
0
"""simple docstring""" from collections import deque class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = process_name # process name lowercase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowercase__ = arrival_time lowercase__ = burst_time # remaining burst time lowercase__ = 0 # total time of the process wait in ready queue lowercase__ = 0 # time from arrival time to completion time class a__ : def __init__( self, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, ): '''simple docstring''' lowercase__ = number_of_queues # time slice of queues that round robin algorithm applied lowercase__ = time_slices # unfinished process is in this ready_queue lowercase__ = queue # current time lowercase__ = current_time # finished process is in this sequence queue lowercase__ = deque() def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' return [q.burst_time for q in queue] def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def snake_case__ ( self, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of finished process while len(_UpperCAmelCase ) != 0: lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_UpperCAmelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowercase__ = 0 # set the process's turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # set the completion time lowercase__ = self.current_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase ): '''simple docstring''' lowercase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_UpperCAmelCase ) ): lowercase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_UpperCAmelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowercase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_UpperCAmelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowercase__ = 0 # set the finish time lowercase__ = self.current_time # update the process' turnaround time because it is finished lowercase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_UpperCAmelCase ) self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def snake_case__ ( self ): '''simple docstring''' for i in range(self.number_of_queues - 1 ): lowercase__ , lowercase__ = self.round_robin( self.ready_queue, self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCAmelCase_: Optional[int] = Process("P1", 0, 5_3) lowerCAmelCase_: Union[str, Any] = Process("P2", 0, 1_7) lowerCAmelCase_: str = Process("P3", 0, 6_8) lowerCAmelCase_: int = Process("P4", 0, 2_4) lowerCAmelCase_: Dict = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCAmelCase_: Any = Process("P1", 0, 5_3) lowerCAmelCase_: Tuple = Process("P2", 0, 1_7) lowerCAmelCase_: Optional[int] = Process("P3", 0, 6_8) lowerCAmelCase_: List[Any] = Process("P4", 0, 2_4) lowerCAmelCase_: Union[str, Any] = 3 lowerCAmelCase_: Any = [1_7, 2_5] lowerCAmelCase_: Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCAmelCase_: Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) lowerCAmelCase_: Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
721
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_: Dict = "pt" elif is_tf_available(): lowerCAmelCase_: Dict = "tf" else: lowerCAmelCase_: str = "jax" class a__ ( _a , unittest.TestCase ): snake_case_ = ByTaTokenizer snake_case_ = False def snake_case__ ( self ): '''simple docstring''' super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def snake_case__ ( self, **_UpperCAmelCase ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def snake_case__ ( self, _UpperCAmelCase, _UpperCAmelCase=False, _UpperCAmelCase=20, _UpperCAmelCase=5 ): '''simple docstring''' lowercase__ = [] for i in range(len(_UpperCAmelCase ) ): try: lowercase__ = tokenizer.decode([i], clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda _UpperCAmelCase : re.match(R"^[ a-zA-Z]+$", t[1] ), _UpperCAmelCase ) ) lowercase__ = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1], add_special_tokens=_UpperCAmelCase ), _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(_UpperCAmelCase, clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=_UpperCAmelCase ) + " " + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: lowercase__ = " " + output_txt lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowercase__ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = "Unicode €." lowercase__ = tokenizer(_UpperCAmelCase ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "Unicode €.</s>" ) lowercase__ = tokenizer("e è é ê ë" ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"], _UpperCAmelCase ) # decoding lowercase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ), "e è é ê ë</s>" ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertEqual((2, 37), batch.input_ids.shape ) self.assertEqual((2, 37), batch.attention_mask.shape ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowercase__ = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids", _UpperCAmelCase ) self.assertIn("attention_mask", _UpperCAmelCase ) self.assertNotIn("decoder_input_ids", _UpperCAmelCase ) self.assertNotIn("decoder_attention_mask", _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = [ "Summary of the text.", "Another summary.", ] lowercase__ = tokenizer( text_target=_UpperCAmelCase, max_length=32, padding="max_length", truncation=_UpperCAmelCase, return_tensors=_UpperCAmelCase ) self.assertEqual(32, targets["input_ids"].shape[1] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.ta_base_tokenizer lowercase__ = ["A long paragraph for summarization. </s>"] lowercase__ = ["Summary of the text. </s>"] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(_UpperCAmelCase, text_target=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase, batch["input_ids"][0] ) self.assertEqual(_UpperCAmelCase, batch["labels"][0] ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length, 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowercase__ = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) lowercase__ = after_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length, 42 ) lowercase__ = tokenizer.__class__.from_pretrained(_UpperCAmelCase, model_max_length=43 ) self.assertEqual(tokenizer.model_max_length, 43 ) shutil.rmtree(_UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), encoding="utf-8" ) as json_file: lowercase__ = json.load(_UpperCAmelCase ) lowercase__ = [F'''<extra_id_{i}>''' for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] lowercase__ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(_UpperCAmelCase, "special_tokens_map.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase, "tokenizer_config.json" ), "w", encoding="utf-8" ) as outfile: json.dump(_UpperCAmelCase, _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, ) self.assertIn( "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ), ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=_UpperCAmelCase )] lowercase__ = tokenizer_class.from_pretrained( _UpperCAmelCase, additional_special_tokens=_UpperCAmelCase, ) self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"], tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ), ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer_class.from_pretrained(_UpperCAmelCase ) self.assertTrue(tokenizer.decode([255] ) == "" ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers(fast=_UpperCAmelCase, do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] lowercase__ = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) def snake_case__ ( self ): '''simple docstring''' lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowercase__ = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( _UpperCAmelCase, skip_special_tokens=_UpperCAmelCase ) for attr in attributes_list: setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, attr + "_id", _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) self.assertEqual(getattr(_UpperCAmelCase, attr + "_id" ), _UpperCAmelCase ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [] ) setattr(_UpperCAmelCase, "additional_special_tokens_ids", [token_id_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens" ), [token_to_test_setters] ) self.assertListEqual(getattr(_UpperCAmelCase, "additional_special_tokens_ids" ), [token_id_to_test_setters] )
668
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] ="""markuplm""" def __init__( self : Dict , UpperCamelCase : Optional[int]=3_05_22 , UpperCamelCase : List[Any]=7_68 , UpperCamelCase : Tuple=12 , UpperCamelCase : Optional[Any]=12 , UpperCamelCase : str=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Any=5_12 , UpperCamelCase : List[Any]=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : List[str]=0 , UpperCamelCase : str=2 , UpperCamelCase : List[Any]=2_56 , UpperCamelCase : Tuple=10_24 , UpperCamelCase : int=2_16 , UpperCamelCase : Optional[int]=10_01 , UpperCamelCase : int=32 , UpperCamelCase : Tuple=50 , UpperCamelCase : Dict="absolute" , UpperCamelCase : Optional[int]=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Optional[int] , ): '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = vocab_size _snake_case : str = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : List[str] = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[Any] = attention_probs_dropout_prob _snake_case : Tuple = max_position_embeddings _snake_case : List[Any] = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : Any = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Optional[Any] = use_cache _snake_case : str = classifier_dropout # additional properties _snake_case : Optional[Any] = max_depth _snake_case : List[Any] = max_xpath_tag_unit_embeddings _snake_case : str = max_xpath_subs_unit_embeddings _snake_case : Dict = tag_pad_id _snake_case : Tuple = subs_pad_id _snake_case : Optional[int] = xpath_unit_hidden_size
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: bool = False )-> str: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Expected string as input, found {type(lowerCAmelCase )}""" raise ValueError(lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = F"""Expected boolean as use_pascal parameter, found {type(lowerCAmelCase )}""" raise ValueError(lowerCAmelCase ) _snake_case : str = input_str.split('_' ) _snake_case : str = 0 if use_pascal else 1 _snake_case : Any = words[start_index:] _snake_case : List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] _snake_case : List[Any] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any =["""input_features""", """is_longer"""] def __init__( self : Tuple , UpperCamelCase : Tuple=64 , UpperCamelCase : int=4_80_00 , UpperCamelCase : List[Any]=4_80 , UpperCamelCase : List[Any]=10 , UpperCamelCase : Any=10_24 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Optional[int]=False , UpperCamelCase : float = 0 , UpperCamelCase : float = 1_40_00 , UpperCamelCase : int = None , UpperCamelCase : str = "fusion" , UpperCamelCase : str = "repeatpad" , **UpperCamelCase : str , ): '''simple docstring''' super().__init__( feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , return_attention_mask=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = top_db _snake_case : Dict = truncation _snake_case : Any = padding _snake_case : Tuple = fft_window_size _snake_case : Optional[Any] = (fft_window_size >> 1) + 1 _snake_case : Optional[Any] = hop_length _snake_case : str = max_length_s _snake_case : Union[str, Any] = max_length_s * sampling_rate _snake_case : str = sampling_rate _snake_case : List[str] = frequency_min _snake_case : List[str] = frequency_max _snake_case : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase , min_frequency=UpperCamelCase , max_frequency=UpperCamelCase , sampling_rate=UpperCamelCase , norm=UpperCamelCase , mel_scale='htk' , ) _snake_case : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase , min_frequency=UpperCamelCase , max_frequency=UpperCamelCase , sampling_rate=UpperCamelCase , norm='slaney' , mel_scale='slaney' , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = copy.deepcopy(self.__dict__ ) _snake_case : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : np.array , UpperCamelCase : Optional[np.array] = None ): '''simple docstring''' _snake_case : List[Any] = spectrogram( UpperCamelCase , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase , log_mel='dB' , ) return log_mel_spectrogram.T def UpperCamelCase_ ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : Dict = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _snake_case : Tuple = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _snake_case : List[Any] = [0] # randomly choose index for each part _snake_case : Tuple = np.random.choice(ranges[0] ) _snake_case : Tuple = np.random.choice(ranges[1] ) _snake_case : Union[str, Any] = np.random.choice(ranges[2] ) _snake_case : Dict = mel[idx_front : idx_front + chunk_frames, :] _snake_case : Dict = mel[idx_middle : idx_middle + chunk_frames, :] _snake_case : Tuple = mel[idx_back : idx_back + chunk_frames, :] _snake_case : Any = torch.tensor(mel[None, None, :] ) _snake_case : List[str] = torch.nn.functional.interpolate( UpperCamelCase , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase ) _snake_case : Optional[Any] = mel_shrink[0][0].numpy() _snake_case : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCamelCase_ ( self : str , UpperCamelCase : np.array , UpperCamelCase : Any , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _snake_case : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _snake_case : Optional[Any] = len(UpperCamelCase ) - max_length _snake_case : Tuple = np.random.randint(0 , overflow + 1 ) _snake_case : Any = waveform[idx : idx + max_length] _snake_case : Union[str, Any] = self._np_extract_fbank_features(UpperCamelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _snake_case : int = self._np_extract_fbank_features(UpperCamelCase , self.mel_filters ) _snake_case : Dict = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _snake_case : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _snake_case : List[str] = np.stack([mel, mel, mel, mel] , axis=0 ) _snake_case : int = False else: _snake_case : Optional[Any] = self._random_mel_fusion(UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : Dict = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: _snake_case : int = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _snake_case : Optional[Any] = int(max_length / len(UpperCamelCase ) ) _snake_case : Union[str, Any] = np.stack(np.tile(UpperCamelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _snake_case : Optional[int] = int(max_length / len(UpperCamelCase ) ) _snake_case : Union[str, Any] = np.stack(np.tile(UpperCamelCase , UpperCamelCase ) ) _snake_case : List[Any] = np.pad(UpperCamelCase , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _snake_case : List[Any] = self._np_extract_fbank_features(UpperCamelCase , self.mel_filters ) _snake_case : List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _snake_case : Optional[int] = self._np_extract_fbank_features(UpperCamelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase : str = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : Tuple , ): '''simple docstring''' _snake_case : Tuple = truncation if truncation is not None else self.truncation _snake_case : Optional[int] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _snake_case : int = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _snake_case : Union[str, Any] = is_batched_numpy or ( isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _snake_case : Tuple = [np.asarray(UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ): _snake_case : Optional[Any] = np.asarray(UpperCamelCase , dtype=np.floataa ) elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case : List[Any] = [np.asarray(UpperCamelCase )] # convert to mel spectrogram, truncate and pad if needed. _snake_case : Any = [ self._get_input_mel(UpperCamelCase , max_length if max_length else self.nb_max_samples , UpperCamelCase , UpperCamelCase ) for waveform in raw_speech ] _snake_case : Dict = [] _snake_case : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase ) is_longer.append(UpperCamelCase ) if truncation == "fusion" and sum(UpperCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _snake_case : str = np.random.randint(0 , len(UpperCamelCase ) ) _snake_case : List[Any] = True if isinstance(input_mel[0] , UpperCamelCase ): _snake_case : Union[str, Any] = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _snake_case : int = [[longer] for longer in is_longer] _snake_case : int = {'input_features': input_mel, 'is_longer': is_longer} _snake_case : Optional[Any] = BatchFeature(UpperCamelCase ) if return_tensors is not None: _snake_case : Any = input_features.convert_to_tensors(UpperCamelCase ) return input_features
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> List[Any]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase , int(b / 2 ) ) * actual_power(lowerCAmelCase , int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase , int(b / 2 ) ) * actual_power(lowerCAmelCase , int(b / 2 ) ) def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> float: if b < 0: return 1 / actual_power(lowerCAmelCase , lowerCAmelCase ) return actual_power(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any ="""pegasus""" a_ : List[Any] =["""past_key_values"""] a_ : Any ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Tuple , UpperCamelCase : Optional[int]=5_02_65 , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : Any=12 , UpperCamelCase : Tuple=40_96 , UpperCamelCase : Tuple=16 , UpperCamelCase : int=12 , UpperCamelCase : Optional[int]=40_96 , UpperCamelCase : Tuple=16 , UpperCamelCase : str=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : List[Any]=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict="gelu" , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : str=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Dict=0.02 , UpperCamelCase : str=0 , UpperCamelCase : Any=False , UpperCamelCase : List[str]=0 , UpperCamelCase : Optional[int]=1 , UpperCamelCase : int=1 , **UpperCamelCase : str , ): '''simple docstring''' _snake_case : int = vocab_size _snake_case : Optional[int] = max_position_embeddings _snake_case : Dict = d_model _snake_case : List[str] = encoder_ffn_dim _snake_case : int = encoder_layers _snake_case : Optional[Any] = encoder_attention_heads _snake_case : Optional[Any] = decoder_ffn_dim _snake_case : Optional[Any] = decoder_layers _snake_case : List[str] = decoder_attention_heads _snake_case : str = dropout _snake_case : Union[str, Any] = attention_dropout _snake_case : List[str] = activation_dropout _snake_case : Optional[Any] = activation_function _snake_case : Dict = init_std _snake_case : str = encoder_layerdrop _snake_case : Optional[int] = decoder_layerdrop _snake_case : Optional[int] = use_cache _snake_case : Union[str, Any] = encoder_layers _snake_case : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , **UpperCamelCase , ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return self.d_model
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
import warnings from functools import wraps from typing import Callable def lowerCamelCase_ ( lowerCAmelCase: Callable )-> Callable: @wraps(lowerCAmelCase ) def _inner_fn(*lowerCAmelCase: str , **lowerCAmelCase: Optional[Any] ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , lowerCAmelCase , ) return fn(*lowerCAmelCase , **lowerCAmelCase ) return _inner_fn
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Any =["""speech"""] def __init__( self : int , *UpperCamelCase : int , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['speech'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple =["""speech"""] def __init__( self : str , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(self , ['speech'] )
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Dict: _snake_case : Union[str, Any] = 1 _snake_case : Tuple = 2 while i * i <= n: _snake_case : str = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def lowerCamelCase_ ( )-> Any: _snake_case : Tuple = 1 _snake_case : Any = 1 while True: i += 1 t_num += i if count_divisors(lowerCAmelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> float: return base * power(lowerCAmelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") lowerCAmelCase_ = int(input("""Enter the base: """).strip()) lowerCAmelCase_ = int(input("""Enter the exponent: """).strip()) lowerCAmelCase_ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCAmelCase_ = 1 / result print(F"""{base} to the power of {exponent} is {result}""")
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[int]=13 , UpperCamelCase : int=32 , UpperCamelCase : Any=2 , UpperCamelCase : Dict=3 , UpperCamelCase : List[Any]=16 , UpperCamelCase : Dict=[1, 2, 1] , UpperCamelCase : Tuple=[2, 2, 4] , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=2.0 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : List[str]=0.0 , UpperCamelCase : str=0.0 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Tuple=False , UpperCamelCase : Any=True , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : List[str]=1e-5 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=True , UpperCamelCase : Any=10 , UpperCamelCase : int=8 , ): '''simple docstring''' _snake_case : List[str] = parent _snake_case : Dict = batch_size _snake_case : Dict = image_size _snake_case : List[Any] = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : str = embed_dim _snake_case : Dict = depths _snake_case : Any = num_heads _snake_case : List[Any] = window_size _snake_case : Optional[Any] = mlp_ratio _snake_case : Optional[Any] = qkv_bias _snake_case : Optional[int] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Union[str, Any] = drop_path_rate _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = use_absolute_embeddings _snake_case : Union[str, Any] = patch_norm _snake_case : Dict = layer_norm_eps _snake_case : Tuple = initializer_range _snake_case : Dict = is_training _snake_case : List[str] = scope _snake_case : Optional[Any] = use_labels _snake_case : List[Any] = type_sequence_label_size _snake_case : int = encoder_stride def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : str = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Dict , UpperCamelCase : int , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : List[Any] = SwinvaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[Any] = model(UpperCamelCase ) _snake_case : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _snake_case : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Any = SwinvaForMaskedImageModeling(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : List[Any] = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _snake_case : Tuple = 1 _snake_case : Optional[int] = SwinvaForMaskedImageModeling(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case : str = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : List[str] = self.type_sequence_label_size _snake_case : Tuple = SwinvaForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Union[str, Any] = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Any = config_and_inputs _snake_case : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : str =( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) a_ : Optional[Any] =( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) a_ : Optional[Any] =False a_ : int =False a_ : Optional[int] =False a_ : int =False def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Optional[Any] = SwinvaModelTester(self ) _snake_case : List[Any] = ConfigTester(self , config_class=UpperCamelCase , embed_dim=37 ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' pass def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : int = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(UpperCamelCase ) _snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : str = [*signature.parameters.keys()] _snake_case : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[str] = True for model_class in self.all_model_classes: _snake_case : Union[str, Any] = True _snake_case : Union[str, Any] = False _snake_case : Dict = True _snake_case : List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _snake_case : Any = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _snake_case : Dict = outputs.attentions _snake_case : Dict = len(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case : Optional[int] = True _snake_case : List[str] = config.window_size**2 _snake_case : List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _snake_case : str = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _snake_case : int = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _snake_case : Dict = len(UpperCamelCase ) # Check attention is always last and order is fine _snake_case : int = True _snake_case : Dict = True _snake_case : Optional[int] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): _snake_case : str = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _snake_case : List[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(UpperCamelCase ) ) _snake_case : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : List[Any] , UpperCamelCase : int ): '''simple docstring''' _snake_case : Optional[int] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _snake_case : Optional[int] = outputs.hidden_states _snake_case : Optional[int] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # Swinv2 has a different seq_length _snake_case : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _snake_case : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) _snake_case , _snake_case , _snake_case , _snake_case : Optional[int] = reshaped_hidden_states[0].shape _snake_case : List[str] = ( reshaped_hidden_states[0].view(UpperCamelCase , UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _snake_case : Any = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Union[str, Any] = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = 3 _snake_case : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _snake_case : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _snake_case : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _snake_case : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _snake_case : Tuple = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[Any] = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , (padded_height, padded_width) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Tuple = SwinvaModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = _config_zero_init(UpperCamelCase ) for model_class in self.all_model_classes: _snake_case : Union[str, Any] = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( UpperCamelCase ) _snake_case : Any = self.default_image_processor _snake_case : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _snake_case : List[str] = image_processor(images=UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) # forward pass with torch.no_grad(): _snake_case : Any = model(**UpperCamelCase ) # verify the logits _snake_case : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) _snake_case : List[Any] = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , **lowerCAmelCase: Tuple )-> str: _snake_case : List[str] = AutoConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) _snake_case : Union[str, Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) _snake_case : Dict = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(UpperCamelCase ) , torch_builtin(UpperCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCamelCase ) , gelu_new(UpperCamelCase ) ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : str = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) _snake_case : List[Any] = get_activation('gelu' ) _snake_case : Any = get_activation('gelu_10' ) _snake_case : Optional[int] = torch_builtin(UpperCamelCase ) _snake_case : List[Any] = geluaa(UpperCamelCase ) _snake_case : Dict = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCamelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(UpperCamelCase ): get_activation('bogus' ) with self.assertRaises(UpperCamelCase ): get_activation(UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Any = get_activation('gelu' ) _snake_case : Optional[Any] = 1 _snake_case : Optional[int] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCamelCase ): _snake_case : int = acta.a
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
from jiwer import compute_measures import datasets lowerCAmelCase_ = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowerCAmelCase_ = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ lowerCAmelCase_ = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', ] , ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Tuple=None , UpperCamelCase : Optional[Any]=False ): '''simple docstring''' if concatenate_texts: return compute_measures(UpperCamelCase , UpperCamelCase )["wer"] else: _snake_case : Dict = 0 _snake_case : List[str] = 0 for prediction, reference in zip(UpperCamelCase , UpperCamelCase ): _snake_case : str = compute_measures(UpperCamelCase , UpperCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} lowerCAmelCase_ = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } lowerCAmelCase_ = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Union[str, Any] )-> Tuple: with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: _snake_case : Optional[Any] = json.loads(f.read() ) _snake_case : List[Any] = collections.OrderedDict() _snake_case : Optional[int] = collections.OrderedDict() _snake_case : Tuple = collections.OrderedDict() with open(lowerCAmelCase , 'r' , encoding='utf-8' ) as f: _snake_case : Tuple = f.readlines() _snake_case : Union[str, Any] = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCAmelCase ): _snake_case : List[str] = b _snake_case : int = idx for wd in b: _snake_case : List[str] = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =VOCAB_FILES_NAMES a_ : List[Any] =PRETRAINED_VOCAB_FILES_MAP a_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Dict =["""input_ids""", """attention_mask"""] def __init__( self : List[str] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : int="<|endoftext|>" , UpperCamelCase : List[Any]="<|endoftext|>" , UpperCamelCase : Optional[Any]="<|startoftext|>" , UpperCamelCase : Tuple="<|endoftext|>" , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( unk_token=UpperCamelCase , pad_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , do_clean_text=UpperCamelCase , **UpperCamelCase , ) if not os.path.isfile(UpperCamelCase ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(UpperCamelCase ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) _snake_case : Dict = do_clean_text _snake_case , _snake_case , _snake_case , _snake_case : str = load_vocab_and_emoji(UpperCamelCase , UpperCamelCase ) _snake_case : Union[str, Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return len(self.raw_vocab ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] ): '''simple docstring''' return self.subword_tokenizer.tokenize(UpperCamelCase , clean=self.do_clean_text ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Optional[int] ): '''simple docstring''' return self.vocab.get(UpperCamelCase , self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = ''.join(UpperCamelCase ).strip() return out_string def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : "Conversation" ): '''simple docstring''' _snake_case : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: _snake_case : str = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Tuple = 0 if os.path.isdir(UpperCamelCase ): _snake_case : Tuple = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Any = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: _snake_case : str = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Dict = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(UpperCamelCase , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) _snake_case : int = token_index writer.write(','.join(UpperCamelCase ) + '\n' ) index += 1 with open(UpperCamelCase , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , UpperCamelCase ) return vocab_file, emoji_file class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Any = vocab # same as swe _snake_case : Any = ids_to_tokens # same as bpe _snake_case : Any = emoji _snake_case : Tuple = np.max([len(UpperCamelCase ) for w in self.vocab.keys()] ) _snake_case : Dict = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) _snake_case : Optional[int] = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) _snake_case : List[str] = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) _snake_case : Optional[int] = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case : List[Any] = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case : str = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) _snake_case : List[str] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' _snake_case : Any = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' _snake_case : Optional[int] = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.ids_to_tokens ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[str] = self.content_repattera.sub('<URL>' , UpperCamelCase ) _snake_case : int = self.content_repattera.sub('<EMAIL>' , UpperCamelCase ) _snake_case : Optional[int] = self.content_repattera.sub('<TEL>' , UpperCamelCase ) _snake_case : Tuple = self.content_repattera.sub('<DATE>' , UpperCamelCase ) _snake_case : Union[str, Any] = self.content_repattera.sub('<DATE>' , UpperCamelCase ) _snake_case : Optional[int] = self.content_repattera.sub('<PRICE>' , UpperCamelCase ) _snake_case : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _snake_case : Tuple = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def UpperCamelCase_ ( self : Dict , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=False ): '''simple docstring''' _snake_case : Optional[int] = text.replace(' ' , '<SP>' ) _snake_case : Tuple = text.replace(' ' , '<SP>' ) _snake_case : Optional[Any] = text.replace('\r\n' , '<BR>' ) _snake_case : int = text.replace('\n' , '<BR>' ) _snake_case : Union[str, Any] = text.replace('\r' , '<BR>' ) _snake_case : List[Any] = text.replace('\t' , '<TAB>' ) _snake_case : Union[str, Any] = text.replace('—' , 'ー' ) _snake_case : List[Any] = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: _snake_case : Optional[int] = text.replace(UpperCamelCase , UpperCamelCase ) if clean: _snake_case : List[str] = self.clean_text(UpperCamelCase ) def check_simbol(UpperCamelCase : Dict ): _snake_case : Any = x.encode() if len(UpperCamelCase ) == 1 and len(UpperCamelCase ) == 2: _snake_case : Any = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(UpperCamelCase : Optional[Any] ): _snake_case : Optional[int] = x.encode() if len(UpperCamelCase ) == 1 and len(UpperCamelCase ) == 3: _snake_case : List[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28080 and c <= 0xe2b07f: return True return False _snake_case : List[str] = 0 _snake_case : Dict = [] while pos < len(UpperCamelCase ): _snake_case : List[str] = min(len(UpperCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 _snake_case : Union[str, Any] = [] # (token_id, token, pos) for e in range(UpperCamelCase , UpperCamelCase , -1 ): _snake_case : Dict = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCamelCase ) > 2: _snake_case : Dict = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCamelCase ) > 0: # the smallest token_id is adopted _snake_case , _snake_case , _snake_case : Any = sorted(UpperCamelCase , key=lambda UpperCamelCase : x[0] )[0] result.append(UpperCamelCase ) _snake_case : Optional[Any] = e else: _snake_case : List[str] = pos + 1 _snake_case : List[Any] = text[pos:end] if check_simbol(UpperCamelCase ): result.append('<KIGOU>' ) elif checkuae(UpperCamelCase ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) _snake_case : Optional[int] = end return result def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : int="\n" ): '''simple docstring''' _snake_case : str = [] _snake_case : str = [] _snake_case : List[str] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCamelCase ) > 0: words.append(bytearray(UpperCamelCase ).decode('utf-8' , errors='replace' ) ) _snake_case : int = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(UpperCamelCase ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(UpperCamelCase ) if len(UpperCamelCase ) > 0: words.append(bytearray(UpperCamelCase ).decode('utf-8' , errors='replace' ) ) _snake_case : List[Any] = ''.join(UpperCamelCase ) return text
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
from __future__ import annotations import math def lowerCamelCase_ ( lowerCAmelCase: int )-> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( lowerCAmelCase: int )-> list[int]: _snake_case : Union[str, Any] = str(lowerCAmelCase ) _snake_case : Tuple = [n] for i in range(1 , len(lowerCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCamelCase_ ( lowerCAmelCase: int )-> bool: if len(str(lowerCAmelCase ) ) > 3: if not is_prime(int(str(lowerCAmelCase )[-3:] ) ) or not is_prime(int(str(lowerCAmelCase )[:3] ) ): return False return True def lowerCamelCase_ ( lowerCAmelCase: int = 11 )-> list[int]: _snake_case : list[int] = [] _snake_case : int = 13 while len(lowerCAmelCase ) != count: if validate(lowerCAmelCase ): _snake_case : int = list_truncated_nums(lowerCAmelCase ) if all(is_prime(lowerCAmelCase ) for i in list_nums ): list_truncated_primes.append(lowerCAmelCase ) num += 2 return list_truncated_primes def lowerCamelCase_ ( )-> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
from __future__ import annotations lowerCAmelCase_ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class _lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : dict[str, list[str]] , UpperCamelCase : str ): '''simple docstring''' _snake_case : Dict = graph # mapping node to its parent in resulting breadth first tree _snake_case : dict[str, str | None] = {} _snake_case : Any = source_vertex def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : str = {self.source_vertex} _snake_case : Tuple = None _snake_case : List[str] = [self.source_vertex] # first in first out queue while queue: _snake_case : Optional[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase ) _snake_case : str = vertex queue.append(UpperCamelCase ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex _snake_case : List[Any] = self.parent.get(UpperCamelCase ) if target_vertex_parent is None: _snake_case : Tuple = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(UpperCamelCase ) return self.shortest_path(UpperCamelCase ) + f"""->{target_vertex}""" if __name__ == "__main__": lowerCAmelCase_ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' return f"""gaussian_noise_s={seed}_shape={'_'.join([str(UpperCamelCase ) for s in shape] )}.npy""" def UpperCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Optional[int]=(4, 4, 64, 64) , UpperCamelCase : List[str]=False ): '''simple docstring''' _snake_case : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa _snake_case : Tuple = jnp.array(load_hf_numpy(self.get_file_format(UpperCamelCase , UpperCamelCase ) ) , dtype=UpperCamelCase ) return image def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Tuple=False , UpperCamelCase : Union[str, Any]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _snake_case : Tuple = jnp.bfloataa if fpaa else jnp.floataa _snake_case : Optional[Any] = 'bf16' if fpaa else None _snake_case , _snake_case : Tuple = FlaxUNetaDConditionModel.from_pretrained( UpperCamelCase , subfolder='unet' , dtype=UpperCamelCase , revision=UpperCamelCase ) return model, params def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int=0 , UpperCamelCase : List[str]=(4, 77, 7_68) , UpperCamelCase : Union[str, Any]=False ): '''simple docstring''' _snake_case : Dict = jnp.bfloataa if fpaa else jnp.floataa _snake_case : Dict = jnp.array(load_hf_numpy(self.get_file_format(UpperCamelCase , UpperCamelCase ) ) , dtype=UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [17, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 10_00, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=UpperCamelCase ) _snake_case : List[str] = self.get_latents(UpperCamelCase , fpaa=UpperCamelCase ) _snake_case : Optional[int] = self.get_encoder_hidden_states(UpperCamelCase , fpaa=UpperCamelCase ) _snake_case : Optional[int] = model.apply( {'params': params} , UpperCamelCase , jnp.array(UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCamelCase , ).sample assert sample.shape == latents.shape _snake_case : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case : Optional[int] = jnp.array(UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(UpperCamelCase , UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [17, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 10_00, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case , _snake_case : int = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=UpperCamelCase ) _snake_case : str = self.get_latents(UpperCamelCase , shape=(4, 4, 96, 96) , fpaa=UpperCamelCase ) _snake_case : Dict = self.get_encoder_hidden_states(UpperCamelCase , shape=(4, 77, 10_24) , fpaa=UpperCamelCase ) _snake_case : List[str] = model.apply( {'params': params} , UpperCamelCase , jnp.array(UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=UpperCamelCase , ).sample assert sample.shape == latents.shape _snake_case : Tuple = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _snake_case : Tuple = jnp.array(UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(UpperCamelCase , UpperCamelCase , atol=1e-2 )
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Any = 10 def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = [1, 2, 3, 4] _snake_case : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase , self.block_size , 0 ) , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _snake_case : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase , self.block_size , 0 ) , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _snake_case : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase , self.block_size , 0 ) , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Tuple = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' _snake_case , _snake_case : List[str] = process_story(UpperCamelCase ) self.assertEqual(UpperCamelCase , [] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = '' _snake_case , _snake_case : Union[str, Any] = process_story(UpperCamelCase ) self.assertEqual(UpperCamelCase , [] ) self.assertEqual(UpperCamelCase , [] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Any = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) _snake_case , _snake_case : Union[str, Any] = process_story(UpperCamelCase ) _snake_case : Union[str, Any] = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(UpperCamelCase , UpperCamelCase ) _snake_case : int = ['It was the best of times.'] self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = torch.tensor([1, 2, 3, 4] ) _snake_case : Union[str, Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase , 0 ).numpy() , expected.numpy() ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _snake_case : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase , 23 ).numpy() , expected.numpy() ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _snake_case : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase , 1 ).numpy() , expected.numpy() ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Dict = 1_01 _snake_case : Optional[int] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) _snake_case : str = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _snake_case : Dict = compute_token_type_ids(UpperCamelCase , UpperCamelCase ) np.testing.assert_array_equal(UpperCamelCase , UpperCamelCase )
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=0.01 , UpperCamelCase : Optional[Any]=10_00 ): '''simple docstring''' _snake_case : Tuple = p_stop _snake_case : Dict = max_length def __iter__( self : Any ): '''simple docstring''' _snake_case : Tuple = 0 _snake_case : Optional[Any] = False while not stop and count < self.max_length: yield count count += 1 _snake_case : str = random.random() < self.p_stop class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Optional[Any]=False , UpperCamelCase : List[str]=True ): '''simple docstring''' _snake_case : Optional[Any] = [ BatchSamplerShard(UpperCamelCase , 2 , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) for i in range(2 ) ] _snake_case : Any = [list(UpperCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCamelCase ) for shard in batch_sampler_shards] , [len(UpperCamelCase ) for e in expected] ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _snake_case : List[str] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _snake_case : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _snake_case : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) # Check the shards when the dataset is very small. _snake_case : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Any = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) _snake_case : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Optional[int] = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) _snake_case : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. _snake_case : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) _snake_case : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _snake_case : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) _snake_case : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) # Check the shards when the dataset is very small. _snake_case : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) _snake_case : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Dict = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : List[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _snake_case : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _snake_case : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _snake_case : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is very small. _snake_case : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : Optional[Any] = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase ) _snake_case : int = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , even_batches=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. _snake_case : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _snake_case : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) # Check the shards when the dataset is very small. _snake_case : Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) _snake_case : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : Union[str, Any] = [[], []] self.check_batch_sampler_shards(UpperCamelCase , UpperCamelCase , split_batches=UpperCamelCase , even_batches=UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _snake_case : int = [BatchSamplerShard(UpperCamelCase , 2 , UpperCamelCase , even_batches=UpperCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int]=False , UpperCamelCase : int=2 , UpperCamelCase : List[Any]=False ): '''simple docstring''' random.seed(UpperCamelCase ) _snake_case : Optional[Any] = list(UpperCamelCase ) _snake_case : Any = [ IterableDatasetShard( UpperCamelCase , batch_size=UpperCamelCase , drop_last=UpperCamelCase , num_processes=UpperCamelCase , process_index=UpperCamelCase , split_batches=UpperCamelCase , ) for i in range(UpperCamelCase ) ] _snake_case : Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCamelCase ) iterable_dataset_lists.append(list(UpperCamelCase ) ) _snake_case : str = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _snake_case : Optional[Any] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) self.assertTrue(len(UpperCamelCase ) % shard_batch_size == 0 ) _snake_case : Tuple = [] for idx in range(0 , len(UpperCamelCase ) , UpperCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCamelCase ) < len(UpperCamelCase ): reference += reference self.assertListEqual(UpperCamelCase , reference[: len(UpperCamelCase )] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = 42 _snake_case : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) # Edge case with a very small dataset _snake_case : Optional[Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) self.check_iterable_dataset_shards(UpperCamelCase , UpperCamelCase , batch_size=4 , drop_last=UpperCamelCase , split_batches=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase ) _snake_case : int = SkipBatchSampler(UpperCamelCase , 2 ) self.assertListEqual(list(UpperCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) _snake_case : int = skip_first_batches(UpperCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' Accelerator() _snake_case : Tuple = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
def lowerCamelCase_ ( lowerCAmelCase: str )-> int: _snake_case : Any = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _snake_case : str = hex_num[0] == '-' if is_negative: _snake_case : List[str] = hex_num[1:] try: _snake_case : Union[str, Any] = int(lowerCAmelCase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _snake_case : Dict = '' while int_num > 0: _snake_case : Optional[int] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any ="""timm_backbone""" def __init__( self : Optional[int] , UpperCamelCase : Dict=None , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Dict=True , UpperCamelCase : List[str]=True , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : str = backbone _snake_case : str = num_channels _snake_case : Optional[Any] = features_only _snake_case : List[Any] = use_pretrained_backbone _snake_case : Union[str, Any] = True _snake_case : Any = out_indices if out_indices is not None else (-1,)
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase_ ( lowerCAmelCase: Dict )-> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def lowerCamelCase_ ( lowerCAmelCase: str )-> int: # word like '180' or '身高' or '神' for char in word: _snake_case : List[Any] = ord(lowerCAmelCase ) if not _is_chinese_char(lowerCAmelCase ): return 0 return 1 def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> int: _snake_case : List[Any] = set() for token in tokens: _snake_case : Tuple = len(lowerCAmelCase ) > 1 and is_chinese(lowerCAmelCase ) if chinese_word: word_set.add(lowerCAmelCase ) _snake_case : Tuple = list(lowerCAmelCase ) return word_list def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: set() )-> Optional[int]: if not chinese_word_set: return bert_tokens _snake_case : Optional[Any] = max([len(lowerCAmelCase ) for w in chinese_word_set] ) _snake_case : str = bert_tokens _snake_case , _snake_case : List[Any] = 0, len(lowerCAmelCase ) while start < end: _snake_case : Optional[int] = True if is_chinese(bert_word[start] ): _snake_case : List[Any] = min(end - start , lowerCAmelCase ) for i in range(lowerCAmelCase , 1 , -1 ): _snake_case : int = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _snake_case : Optional[Any] = '##' + bert_word[j] _snake_case : Any = start + i _snake_case : Optional[Any] = False break if single_word: start += 1 return bert_word def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: LTP , lowerCAmelCase: BertTokenizer )-> List[str]: _snake_case : str = [] for i in range(0 , len(lowerCAmelCase ) , 1_00 ): _snake_case : List[str] = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] _snake_case : List[str] = [get_chinese_word(lowerCAmelCase ) for r in res] ltp_res.extend(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) _snake_case : List[Any] = [] for i in range(0 , len(lowerCAmelCase ) , 1_00 ): _snake_case : int = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=lowerCAmelCase , truncation=lowerCAmelCase , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) _snake_case : List[Any] = [] for input_ids, chinese_word in zip(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = [] for id in input_ids: _snake_case : int = bert_tokenizer._convert_id_to_token(lowerCAmelCase ) input_tokens.append(lowerCAmelCase ) _snake_case : int = add_sub_symbol(lowerCAmelCase , lowerCAmelCase ) _snake_case : int = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase ): if token[:2] == "##": _snake_case : List[Any] = token[2:] # save chinese tokens' pos if len(lowerCAmelCase ) == 1 and _is_chinese_char(ord(lowerCAmelCase ) ): ref_id.append(lowerCAmelCase ) ref_ids.append(lowerCAmelCase ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ) return ref_ids def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> Dict: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: _snake_case : List[str] = f.readlines() _snake_case : str = [line.strip() for line in data if len(lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _snake_case : str = LTP(args.ltp ) # faster in GPU device _snake_case : Optional[int] = BertTokenizer.from_pretrained(args.bert ) _snake_case : Optional[Any] = prepare_ref(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: _snake_case : str = [json.dumps(lowerCAmelCase ) + '\n' for ref in ref_ids] f.writelines(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") lowerCAmelCase_ = parser.parse_args() main(args)
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =(CMStochasticIterativeScheduler,) a_ : Any =10 def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : Any ): '''simple docstring''' _snake_case : Optional[Any] = { 'num_train_timesteps': 2_01, 'sigma_min': 0.0_02, 'sigma_max': 80.0, } config.update(**UpperCamelCase ) return config def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = 10 _snake_case : Tuple = self.get_scheduler_config() _snake_case : Optional[Any] = self.scheduler_classes[0](**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) _snake_case : List[str] = scheduler.timesteps[0] _snake_case : Union[str, Any] = scheduler.timesteps[1] _snake_case : Any = self.dummy_sample _snake_case : List[str] = 0.1 * sample _snake_case : Tuple = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample _snake_case : Union[str, Any] = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[int] = self.scheduler_classes[0] _snake_case : Dict = self.get_scheduler_config() _snake_case : List[Any] = scheduler_class(**UpperCamelCase ) _snake_case : Tuple = 1 scheduler.set_timesteps(UpperCamelCase ) _snake_case : Any = scheduler.timesteps _snake_case : Dict = torch.manual_seed(0 ) _snake_case : Optional[int] = self.dummy_model() _snake_case : Any = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCamelCase ): # 1. scale model input _snake_case : Optional[int] = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # 2. predict noise residual _snake_case : Optional[Any] = model(UpperCamelCase , UpperCamelCase ) # 3. predict previous sample x_t-1 _snake_case : Any = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample _snake_case : Tuple = pred_prev_sample _snake_case : List[str] = torch.sum(torch.abs(UpperCamelCase ) ) _snake_case : Optional[Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 1_92.76_14 ) < 1e-2 assert abs(result_mean.item() - 0.25_10 ) < 1e-3 def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : str = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**UpperCamelCase ) _snake_case : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=UpperCamelCase ) _snake_case : Optional[Any] = scheduler.timesteps _snake_case : Any = torch.manual_seed(0 ) _snake_case : Union[str, Any] = self.dummy_model() _snake_case : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _snake_case : int = scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # 2. predict noise residual _snake_case : Union[str, Any] = model(UpperCamelCase , UpperCamelCase ) # 3. predict previous sample x_t-1 _snake_case : Optional[int] = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample _snake_case : Union[str, Any] = pred_prev_sample _snake_case : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase ) ) _snake_case : Tuple = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_sum.item() - 3_47.63_57 ) < 1e-2 assert abs(result_mean.item() - 0.45_27 ) < 1e-3 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config() _snake_case : Optional[int] = scheduler_class(**UpperCamelCase ) _snake_case : Optional[Any] = [39, 30, 12, 15, 0] with self.assertRaises(UpperCamelCase , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.scheduler_classes[0] _snake_case : List[Any] = self.get_scheduler_config() _snake_case : int = scheduler_class(**UpperCamelCase ) _snake_case : Dict = [39, 30, 12, 1, 0] _snake_case : Union[str, Any] = len(UpperCamelCase ) with self.assertRaises(UpperCamelCase , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase , timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.scheduler_classes[0] _snake_case : str = self.get_scheduler_config() _snake_case : int = scheduler_class(**UpperCamelCase ) _snake_case : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCamelCase )
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""image_processor""", """tokenizer"""] a_ : Dict ="""AutoImageProcessor""" a_ : str ="""AutoTokenizer""" def __init__( self : Optional[Any] , UpperCamelCase : List[str]=None , UpperCamelCase : int=None , **UpperCamelCase : Any ): '''simple docstring''' _snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : int = kwargs.pop('feature_extractor' ) _snake_case : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) _snake_case : Tuple = self.image_processor _snake_case : Optional[Any] = False def __call__( self : str , *UpperCamelCase : Tuple , **UpperCamelCase : Optional[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase , **UpperCamelCase ) _snake_case : str = kwargs.pop('images' , UpperCamelCase ) _snake_case : Optional[int] = kwargs.pop('text' , UpperCamelCase ) if len(UpperCamelCase ) > 0: _snake_case : Optional[Any] = args[0] _snake_case : Dict = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _snake_case : Dict = self.image_processor(UpperCamelCase , *UpperCamelCase , **UpperCamelCase ) if text is not None: _snake_case : Optional[Any] = self.tokenizer(UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: _snake_case : Optional[Any] = encodings['input_ids'] return inputs def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @contextmanager def UpperCamelCase_ ( self : Any ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) _snake_case : Any = True _snake_case : List[str] = self.tokenizer yield _snake_case : Optional[int] = self.image_processor _snake_case : Optional[int] = False def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=None ): '''simple docstring''' if added_vocab is None: _snake_case : int = self.tokenizer.get_added_vocab() _snake_case : Optional[int] = {} while tokens: _snake_case : Optional[Any] = re.search(R'<s_(.*?)>' , UpperCamelCase , re.IGNORECASE ) if start_token is None: break _snake_case : Tuple = start_token.group(1 ) _snake_case : str = re.search(Rf"""</s_{key}>""" , UpperCamelCase , re.IGNORECASE ) _snake_case : int = start_token.group() if end_token is None: _snake_case : str = tokens.replace(UpperCamelCase , '' ) else: _snake_case : Optional[Any] = end_token.group() _snake_case : Tuple = re.escape(UpperCamelCase ) _snake_case : Any = re.escape(UpperCamelCase ) _snake_case : Union[str, Any] = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , UpperCamelCase , re.IGNORECASE ) if content is not None: _snake_case : Union[str, Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _snake_case : Optional[int] = self.tokenajson(UpperCamelCase , is_inner_value=UpperCamelCase , added_vocab=UpperCamelCase ) if value: if len(UpperCamelCase ) == 1: _snake_case : List[Any] = value[0] _snake_case : Optional[Any] = value else: # leaf nodes _snake_case : int = [] for leaf in content.split(R'<sep/>' ): _snake_case : Tuple = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _snake_case : List[Any] = leaf[1:-2] # for categorical special tokens output[key].append(UpperCamelCase ) if len(output[key] ) == 1: _snake_case : Optional[Any] = output[key][0] _snake_case : str = tokens[tokens.find(UpperCamelCase ) + len(UpperCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=UpperCamelCase , added_vocab=UpperCamelCase ) if len(UpperCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCamelCase_ ( self : str ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
def lowerCamelCase_ ( lowerCAmelCase: str )-> list: if n_term == "": return [] _snake_case : list = [] for temp in range(int(lowerCAmelCase ) ): series.append(F"""1/{temp + 1}""" if series else '1' ) return series if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ : Optional[str] =field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) a_ : int =field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ : bool =field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a_ : Optional[str] =field(default=UpperCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def UpperCamelCase_ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: _snake_case : List[Any] = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _snake_case : int = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( default=UpperCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCamelCase_ ( )-> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case : Optional[int] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) _snake_case : Any = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) datasets.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _snake_case : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _snake_case : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _snake_case : str = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _snake_case : Tuple = data_args.train_file.split('.' )[-1] _snake_case : Tuple = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _snake_case : Union[str, Any] = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files _snake_case : Tuple = load_dataset('csv' , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _snake_case : Dict = load_dataset('json' , data_files=lowerCAmelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _snake_case : Tuple = raw_datasets['train'].features['label'].names _snake_case : Union[str, Any] = len(lowerCAmelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _snake_case : Any = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase , ) _snake_case : Optional[int] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _snake_case : Optional[Any] = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _snake_case : List[str] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _snake_case : Any = {'Refused': 0, 'Entailed': 1} _snake_case : Optional[Any] = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _snake_case : List[str] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase: Dict ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase: List[str] ): _snake_case : Dict = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] _snake_case : Any = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _snake_case : List[str] = examples['statement'] _snake_case : List[str] = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) _snake_case : Optional[Any] = tokenizer(lowerCAmelCase , lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase ) _snake_case : int = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): _snake_case : List[Any] = raw_datasets.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) _snake_case : Dict = raw_datasets['train'] if data_args.max_train_samples is not None: _snake_case : List[str] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) _snake_case : Any = raw_datasets['validation'] if data_args.max_eval_samples is not None: _snake_case : List[Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) _snake_case : int = raw_datasets['test'] if data_args.max_predict_samples is not None: _snake_case : Tuple = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase: EvalPrediction ): _snake_case : int = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase ) else p.predictions _snake_case : Optional[int] = np.argmax(lowerCAmelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _snake_case : int = default_data_collator elif training_args.fpaa: _snake_case : Any = DataCollatorWithPadding(lowerCAmelCase , pad_to_multiple_of=8 ) else: _snake_case : str = None # Initialize our Trainer _snake_case : Optional[int] = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: _snake_case : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _snake_case : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case : Dict = last_checkpoint _snake_case : str = trainer.train(resume_from_checkpoint=lowerCAmelCase ) _snake_case : Optional[Any] = train_result.metrics _snake_case : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase ) ) _snake_case : Tuple = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCAmelCase ) trainer.save_metrics('train' , lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case : str = trainer.evaluate(eval_dataset=lowerCAmelCase ) _snake_case : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase ) _snake_case : str = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics('eval' , lowerCAmelCase ) trainer.save_metrics('eval' , lowerCAmelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _snake_case : int = predict_dataset.remove_columns('label' ) _snake_case : Optional[Any] = trainer.predict(lowerCAmelCase , metric_key_prefix='predict' ).predictions _snake_case : Dict = np.argmax(lowerCAmelCase , axis=1 ) _snake_case : str = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCAmelCase ): _snake_case : Union[str, Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) _snake_case : int = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase_ = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> int: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: int )-> str: from transformers.testing_utils import pytest_terminal_summary_main _snake_case : List[Any] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowerCAmelCase , id=lowerCAmelCase )
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = inspect.getfile(accelerate.test_utils ) _snake_case : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) _snake_case : List[Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() _snake_case : List[Any] = [sys.executable] + distributed_args execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar("""T""") class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' a_ : deque[T] # Cache store of keys a_ : set[T] # References of the keys in cache a_ : int =10 # Maximum capacity of cache def __init__( self : Optional[Any] , UpperCamelCase : int ): '''simple docstring''' _snake_case : Dict = deque() _snake_case : str = set() if not n: _snake_case : Dict = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: _snake_case : Any = n def UpperCamelCase_ ( self : Dict , UpperCamelCase : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _snake_case : Dict = self.dq_store.pop() self.key_reference.remove(UpperCamelCase ) else: self.dq_store.remove(UpperCamelCase ) self.dq_store.appendleft(UpperCamelCase ) self.key_reference.add(UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' for k in self.dq_store: print(UpperCamelCase ) def __repr__( self : Dict ): '''simple docstring''' return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCAmelCase_ = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `\" / \"`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `\" // \"`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `\"train\"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `\"compressed\"`) The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and `\"compressed\"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a \"dummy\" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(UpperCAmelCase_ ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""rag""" a_ : str =True def __init__( self : Union[str, Any] , UpperCamelCase : int=None , UpperCamelCase : str=True , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Tuple=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : int=" / " , UpperCamelCase : List[str]=" // " , UpperCamelCase : Any=5 , UpperCamelCase : Optional[int]=3_00 , UpperCamelCase : Dict=7_68 , UpperCamelCase : List[Any]=8 , UpperCamelCase : Tuple="wiki_dpr" , UpperCamelCase : List[Any]="train" , UpperCamelCase : Optional[int]="compressed" , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Tuple=False , UpperCamelCase : Tuple=0.0 , UpperCamelCase : str=True , UpperCamelCase : str=False , UpperCamelCase : int=False , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : str , ): '''simple docstring''' super().__init__( bos_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , prefix=UpperCamelCase , vocab_size=UpperCamelCase , **UpperCamelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _snake_case : Tuple = kwargs.pop('question_encoder' ) _snake_case : int = question_encoder_config.pop('model_type' ) _snake_case : Dict = kwargs.pop('generator' ) _snake_case : Optional[Any] = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig _snake_case : Union[str, Any] = AutoConfig.for_model(UpperCamelCase , **UpperCamelCase ) _snake_case : Dict = AutoConfig.for_model(UpperCamelCase , **UpperCamelCase ) _snake_case : Tuple = reduce_loss _snake_case : Optional[Any] = label_smoothing _snake_case : List[str] = exclude_bos_score _snake_case : int = do_marginalize _snake_case : Any = title_sep _snake_case : Optional[Any] = doc_sep _snake_case : Union[str, Any] = n_docs _snake_case : Dict = max_combined_length _snake_case : List[str] = dataset _snake_case : Union[str, Any] = dataset_split _snake_case : Dict = index_name _snake_case : Any = retrieval_vector_size _snake_case : List[str] = retrieval_batch_size _snake_case : Dict = passages_path _snake_case : List[Any] = index_path _snake_case : Tuple = use_dummy_dataset _snake_case : int = output_retrieved _snake_case : str = do_deduplication _snake_case : Union[str, Any] = use_cache if self.forced_eos_token_id is None: _snake_case : Dict = getattr(self.generator , 'forced_eos_token_id' , UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Any , UpperCamelCase : PretrainedConfig , UpperCamelCase : PretrainedConfig , **UpperCamelCase : Optional[int] ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = copy.deepcopy(self.__dict__ ) _snake_case : Optional[int] = self.question_encoder.to_dict() _snake_case : int = self.generator.to_dict() _snake_case : str = self.__class__.model_type return output
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: def wrapper(*lowerCAmelCase: Tuple , **lowerCAmelCase: int ): _snake_case : Any = timeit.default_timer() _snake_case : Dict = func(*lowerCAmelCase , **lowerCAmelCase ) _snake_case : Optional[int] = timeit.default_timer() - starttime return delta _snake_case : List[str] = func.__name__ return wrapper def lowerCamelCase_ ( lowerCAmelCase: dict , lowerCAmelCase: Dict=1_00 , lowerCAmelCase: Optional[Any]=None )-> List[Any]: _snake_case : Optional[int] = [] _snake_case : List[str] = seq_shapes or {} for i in range(lowerCAmelCase ): _snake_case : Optional[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): _snake_case : Union[str, Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": _snake_case : Optional[Any] = 'The small grey turtle was surprisingly fast when challenged.' else: _snake_case : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): _snake_case : Optional[Any] = v.feature _snake_case : Optional[int] = seq_shapes[k] _snake_case : Tuple = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) _snake_case : Optional[int] = data dummy_data.append((i, example) ) return dummy_data def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[str] , lowerCAmelCase: Dict=1_00 , lowerCAmelCase: Optional[Any]=None )-> Dict: _snake_case : List[Any] = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: _snake_case : Union[str, Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) _snake_case , _snake_case : List[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) _snake_case : Optional[Any] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =["""note_seq"""] def __init__( self : Tuple , *UpperCamelCase : Dict , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(self , ['note_seq'] ) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *UpperCamelCase : str , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['note_seq'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : List[str] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['note_seq'] )
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowerCAmelCase_ = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Any ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Dict = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _snake_case : Tuple = FlaxBertModel(UpperCamelCase ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) _snake_case : str = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _snake_case : List[str] = flatten_dict(unfreeze(model.params ) ) _snake_case : List[Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _snake_case : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCamelCase , repo_id='test-model-flax' , push_to_hub=UpperCamelCase , use_auth_token=self._token ) _snake_case : str = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _snake_case : Any = flatten_dict(unfreeze(model.params ) ) _snake_case : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _snake_case : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase , 1e-3 , msg=f"""{key} not identical""" ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _snake_case : Union[str, Any] = FlaxBertModel(UpperCamelCase ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) _snake_case : int = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) _snake_case : Dict = flatten_dict(unfreeze(model.params ) ) _snake_case : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _snake_case : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCamelCase , repo_id='valid_org/test-model-flax-org' , push_to_hub=UpperCamelCase , use_auth_token=self._token ) _snake_case : Union[str, Any] = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) _snake_case : List[str] = flatten_dict(unfreeze(model.params ) ) _snake_case : Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _snake_case : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCamelCase , 1e-3 , msg=f"""{key} not identical""" ) def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Optional[Any] )-> Optional[int]: _snake_case : List[Any] = True _snake_case : Union[str, Any] = flatten_dict(modela.params ) _snake_case : str = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: _snake_case : int = False return models_are_equal @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : int = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _snake_case : Tuple = FlaxBertModel(UpperCamelCase ) _snake_case : List[Any] = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase , UpperCamelCase ) ) with self.assertRaises(UpperCamelCase ): _snake_case : Any = FlaxBertModel.from_pretrained(UpperCamelCase ) _snake_case : List[str] = FlaxBertModel.from_pretrained(UpperCamelCase , subfolder=UpperCamelCase ) self.assertTrue(check_models_equal(UpperCamelCase , UpperCamelCase ) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _snake_case : int = FlaxBertModel(UpperCamelCase ) _snake_case : Any = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCamelCase , UpperCamelCase ) , max_shard_size='10KB' ) with self.assertRaises(UpperCamelCase ): _snake_case : List[Any] = FlaxBertModel.from_pretrained(UpperCamelCase ) _snake_case : Any = FlaxBertModel.from_pretrained(UpperCamelCase , subfolder=UpperCamelCase ) self.assertTrue(check_models_equal(UpperCamelCase , UpperCamelCase ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = 'bert' _snake_case : Any = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(UpperCamelCase ): _snake_case : List[Any] = FlaxBertModel.from_pretrained(UpperCamelCase ) _snake_case : Optional[Any] = FlaxBertModel.from_pretrained(UpperCamelCase , subfolder=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[Any] = 'bert' _snake_case : Tuple = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(UpperCamelCase ): _snake_case : List[str] = FlaxBertModel.from_pretrained(UpperCamelCase ) _snake_case : Tuple = FlaxBertModel.from_pretrained(UpperCamelCase , subfolder=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase )
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _lowerCAmelCase : '''simple docstring''' def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' raise NotImplementedError() def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' raise NotImplementedError() class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Any , UpperCamelCase : "AutoTokenizer" , UpperCamelCase : bool = False , **UpperCamelCase : Any ): '''simple docstring''' _snake_case : Union[str, Any] = tokenizer _snake_case : Union[str, Any] = skip_prompt _snake_case : List[Any] = decode_kwargs # variables used in the streaming process _snake_case : List[Any] = [] _snake_case : Tuple = 0 _snake_case : int = True def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[int] ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: _snake_case : Union[str, Any] = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _snake_case : Dict = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _snake_case : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): _snake_case : Tuple = text[self.print_len :] _snake_case : str = [] _snake_case : Optional[int] = 0 # If the last token is a CJK character, we print the characters. elif len(UpperCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _snake_case : str = text[self.print_len :] self.print_len += len(UpperCamelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _snake_case : Optional[int] = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(UpperCamelCase ) self.on_finalized_text(UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if len(self.token_cache ) > 0: _snake_case : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _snake_case : List[str] = text[self.print_len :] _snake_case : Any = [] _snake_case : List[str] = 0 else: _snake_case : Optional[int] = '' _snake_case : int = True self.on_finalized_text(UpperCamelCase , stream_end=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : bool = False ): '''simple docstring''' print(UpperCamelCase , flush=UpperCamelCase , end='' if not stream_end else None ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : "AutoTokenizer" , UpperCamelCase : bool = False , UpperCamelCase : Optional[float] = None , **UpperCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) _snake_case : int = Queue() _snake_case : Tuple = None _snake_case : Optional[Any] = timeout def UpperCamelCase_ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : bool = False ): '''simple docstring''' self.text_queue.put(UpperCamelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Union[str, Any] ): '''simple docstring''' return self def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] ="""mobilenet_v2""" def __init__( self : Dict , UpperCamelCase : str=3 , UpperCamelCase : int=2_24 , UpperCamelCase : Any=1.0 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Tuple=8 , UpperCamelCase : List[str]=6 , UpperCamelCase : str=32 , UpperCamelCase : int=True , UpperCamelCase : str=True , UpperCamelCase : Dict="relu6" , UpperCamelCase : int=True , UpperCamelCase : Tuple=0.8 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : List[Any]=0.0_01 , UpperCamelCase : List[Any]=2_55 , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _snake_case : List[str] = num_channels _snake_case : Tuple = image_size _snake_case : Any = depth_multiplier _snake_case : Tuple = depth_divisible_by _snake_case : Union[str, Any] = min_depth _snake_case : Tuple = expand_ratio _snake_case : Dict = output_stride _snake_case : List[Any] = first_layer_is_expansion _snake_case : Union[str, Any] = finegrained_output _snake_case : Dict = hidden_act _snake_case : Any = tf_padding _snake_case : str = classifier_dropout_prob _snake_case : Optional[int] = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : List[str] = semantic_loss_ignore_index class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 1e-4
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = 'hf-internal-testing/tiny-random-t5' _snake_case : List[str] = AutoTokenizer.from_pretrained(UpperCamelCase ) _snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) _snake_case : Tuple = tokenizer('This is me' , return_tensors='pt' ) _snake_case : Union[str, Any] = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _snake_case : Any = model.generate(**UpperCamelCase ) _snake_case : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase ) _snake_case : str = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _snake_case : Optional[Any] = model_reloaded.generate(**UpperCamelCase ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase ) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : str = 'hf-internal-testing/tiny-random-t5' _snake_case : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase ) _snake_case : List[Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase ): model.save_pretrained(UpperCamelCase ) _snake_case : Optional[int] = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase )
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _lowerCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' a_ : Optional[datasets.Features] =None def lowerCamelCase_ ( lowerCAmelCase: "pyspark.sql.DataFrame" , lowerCAmelCase: List[int] , )-> Tuple: import pyspark def generate_fn(): _snake_case : Tuple = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: _snake_case : Any = df_with_partition_id.select('*' ).where(F"""part_id = {partition_id}""" ).drop('part_id' ) _snake_case : Optional[int] = partition_df.collect() _snake_case : Optional[Any] = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _lowerCAmelCase ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : str , UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : Tuple=None , ): '''simple docstring''' _snake_case : int = df _snake_case : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _snake_case : Union[str, Any] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Union[str, Any] ): '''simple docstring''' yield from self.generate_examples_fn() def UpperCamelCase_ ( self : Tuple , UpperCamelCase : np.random.Generator ): '''simple docstring''' _snake_case : List[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' _snake_case : List[Any] = self.split_shard_indices_by_worker(UpperCamelCase , UpperCamelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCamelCase ) @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return len(self.partition_order ) class _lowerCAmelCase ( datasets.DatasetBuilder ): '''simple docstring''' a_ : int =SparkConfig def __init__( self : str , UpperCamelCase : "pyspark.sql.DataFrame" , UpperCamelCase : str = None , UpperCamelCase : str = None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' import pyspark _snake_case : Optional[int] = pyspark.sql.SparkSession.builder.getOrCreate() _snake_case : str = df _snake_case : Optional[Any] = working_dir super().__init__( cache_dir=UpperCamelCase , config_name=str(self.df.semanticHash() ) , **UpperCamelCase , ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' def create_cache_and_write_probe(UpperCamelCase : int ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCamelCase ) _snake_case : List[str] = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCamelCase , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _snake_case : str = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCamelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : datasets.download.download_manager.DownloadManager ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' import pyspark def get_arrow_batch_size(UpperCamelCase : Optional[int] ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) _snake_case : Union[str, Any] = self.df.count() _snake_case : Tuple = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _snake_case : int = ( self.df.limit(UpperCamelCase ) .repartition(1 ) .mapInArrow(UpperCamelCase , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _snake_case : Optional[int] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _snake_case : Dict = min(UpperCamelCase , int(approx_total_size / max_shard_size ) ) _snake_case : Optional[int] = self.df.repartition(UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : int , ): '''simple docstring''' import pyspark _snake_case : str = ParquetWriter if file_format == 'parquet' else ArrowWriter _snake_case : Optional[Any] = os.path.join(self._working_dir , os.path.basename(UpperCamelCase ) ) if self._working_dir else fpath _snake_case : List[str] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _snake_case : List[Any] = self.config.features _snake_case : Tuple = self._writer_batch_size _snake_case : str = self._fs.storage_options def write_arrow(UpperCamelCase : int ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _snake_case : str = pyspark.TaskContext().taskAttemptId() _snake_case : List[Any] = next(UpperCamelCase , UpperCamelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) _snake_case : int = 0 _snake_case : List[Any] = writer_class( features=UpperCamelCase , path=working_fpath.replace('SSSSS' , f"""{shard_id:05d}""" ).replace('TTTTT' , f"""{task_id:05d}""" ) , writer_batch_size=UpperCamelCase , storage_options=UpperCamelCase , embed_local_files=UpperCamelCase , ) _snake_case : Any = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCamelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _snake_case , _snake_case : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 _snake_case : Tuple = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , f"""{shard_id:05d}""" ).replace('TTTTT' , f"""{task_id:05d}""" ) , writer_batch_size=UpperCamelCase , storage_options=UpperCamelCase , embed_local_files=UpperCamelCase , ) _snake_case : Optional[Any] = pa.Table.from_batches([batch] ) writer.write_table(UpperCamelCase ) if writer._num_bytes > 0: _snake_case , _snake_case : Optional[int] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCamelCase ) ): _snake_case : List[Any] = os.path.join(os.path.dirname(UpperCamelCase ) , os.path.basename(UpperCamelCase ) ) shutil.move(UpperCamelCase , UpperCamelCase ) _snake_case : int = ( self.df.mapInArrow(UpperCamelCase , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : "datasets.SplitGenerator" , UpperCamelCase : str = "arrow" , UpperCamelCase : Optional[Union[str, int]] = None , UpperCamelCase : Optional[int] = None , **UpperCamelCase : str , ): '''simple docstring''' self._validate_cache_dir() _snake_case : Optional[int] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCamelCase ) _snake_case : List[Any] = not is_remote_filesystem(self._fs ) _snake_case : str = os.path.join if is_local else posixpath.join _snake_case : Dict = '-TTTTT-SSSSS-of-NNNNN' _snake_case : int = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _snake_case : int = path_join(self._output_dir , UpperCamelCase ) _snake_case : int = 0 _snake_case : List[Any] = 0 _snake_case : List[str] = 0 _snake_case : List[str] = [] _snake_case : Optional[int] = [] for task_id, content in self._prepare_split_single(UpperCamelCase , UpperCamelCase , UpperCamelCase ): ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCamelCase ) _snake_case : Tuple = total_num_examples _snake_case : str = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _snake_case : Dict = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _snake_case : str = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , ): rename( UpperCamelCase , fpath.replace('SSSSS' , f"""{shard_id:05d}""" ).replace('TTTTT' , f"""{task_id:05d}""" ) , fpath.replace('TTTTT-SSSSS' , f"""{global_shard_id:05d}""" ).replace('NNNNN' , f"""{total_shards:05d}""" ) , ) _snake_case : Tuple = [] _snake_case : Optional[Any] = 0 for i in range(len(UpperCamelCase ) ): _snake_case , _snake_case : Any = task_id_and_num_shards[i] for shard_id in range(UpperCamelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCamelCase , len(UpperCamelCase ) ).map(lambda UpperCamelCase : _rename_shard(*UpperCamelCase ) ).collect() else: # don't use any pattern _snake_case : Union[str, Any] = 0 _snake_case : Tuple = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , f"""{shard_id:05d}""" ).replace('TTTTT' , f"""{task_id:05d}""" ) , fpath.replace(UpperCamelCase , '' ) , ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : "datasets.SplitGenerator" , ): '''simple docstring''' return SparkExamplesIterable(self.df )
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[List[PIL.Image.Image], np.ndarray] a_ : Optional[List[bool]] a_ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
from itertools import product def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> list[int]: _snake_case : int = sides_number _snake_case : Any = max_face_number * dice_number _snake_case : Optional[Any] = [0] * (max_total + 1) _snake_case : Optional[Any] = 1 _snake_case : Optional[int] = range(lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase , repeat=lowerCAmelCase ): _snake_case : List[Any] = sum(lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase_ ( )-> float: _snake_case : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) _snake_case : int = total_frequency_distribution( sides_number=6 , dice_number=6 ) _snake_case : str = 0 _snake_case : int = 9 _snake_case : int = 4 * 9 _snake_case : Union[str, Any] = 6 for peter_total in range(lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _snake_case : List[str] = (4**9) * (6**6) _snake_case : str = peter_wins_count / total_games_number _snake_case : Optional[Any] = round(lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Dict =CLIPTokenizer a_ : str =CLIPTokenizerFast a_ : str =True a_ : Union[str, Any] ={} a_ : List[str] =False def UpperCamelCase_ ( self : int ): '''simple docstring''' super().setUp() # fmt: off _snake_case : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case : Optional[Any] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] _snake_case : Tuple = {'unk_token': '<unk>'} _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : Optional[int] , **UpperCamelCase : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str ): '''simple docstring''' _snake_case : Optional[Any] = 'lower newer' _snake_case : List[str] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : int = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _snake_case : Tuple = 'lower newer' _snake_case : List[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] _snake_case : Union[str, Any] = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : List[str] = tokens + [tokenizer.unk_token] _snake_case : Any = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) @require_ftfy def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : str = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) _snake_case : int = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' _snake_case : Dict = tokenizer_s.tokenize(UpperCamelCase ) _snake_case : Dict = tokenizer_r.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways _snake_case : Union[str, Any] = 'xa\u0303y' + ' ' + 'x\xe3y' _snake_case : Any = tokenizer_s.tokenize(UpperCamelCase ) _snake_case : int = tokenizer_r.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Test that the tokenization is identical on unicode of space type _snake_case : int = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: _snake_case : Tuple = tokenizer_s.tokenize(UpperCamelCase ) _snake_case : Optional[Any] = tokenizer_r.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Test that the tokenization is identical on unicode of line break type _snake_case : Optional[int] = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: _snake_case : List[str] = tokenizer_s.tokenize(UpperCamelCase ) _snake_case : List[str] = tokenizer_r.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : Tuple = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _snake_case : int = f"""{text_of_1_token} {text_of_1_token}""" _snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , ) _snake_case : int = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) _snake_case : Tuple = f""" {text}""" _snake_case : str = self.rust_tokenizer_class.from_pretrained( UpperCamelCase , use_fast=UpperCamelCase , ) _snake_case : Optional[Any] = tokenizer_r(UpperCamelCase , return_offsets_mapping=UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase ) + 1, 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) , ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaises(UpperCamelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : List[Any]=13 , UpperCamelCase : Tuple=7 , UpperCamelCase : str=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Optional[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : Union[str, Any]=99 , UpperCamelCase : Optional[Any]=64 , UpperCamelCase : int=32 , UpperCamelCase : int=5 , UpperCamelCase : str=4 , UpperCamelCase : str=37 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : str=16 , UpperCamelCase : Optional[int]=2 , UpperCamelCase : str=0.02 , UpperCamelCase : Dict=3 , UpperCamelCase : Dict=4 , UpperCamelCase : Any=None , ): '''simple docstring''' _snake_case : int = parent _snake_case : int = batch_size _snake_case : Tuple = seq_length _snake_case : int = is_training _snake_case : Dict = use_input_mask _snake_case : Any = use_token_type_ids _snake_case : int = use_labels _snake_case : str = vocab_size _snake_case : int = hidden_size _snake_case : List[str] = embedding_size _snake_case : int = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Tuple = hidden_act _snake_case : str = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : List[str] = type_sequence_label_size _snake_case : Optional[Any] = initializer_range _snake_case : List[str] = num_labels _snake_case : Tuple = num_choices _snake_case : Union[str, Any] = scope def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : List[str] = None if self.use_input_mask: _snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Union[str, Any] = None if self.use_token_type_ids: _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : int = None _snake_case : Any = None _snake_case : List[str] = None if self.use_labels: _snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Dict = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : str ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[Any] = MobileBertModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Union[str, Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase ) _snake_case : Optional[Any] = model(UpperCamelCase , token_type_ids=UpperCamelCase ) _snake_case : Optional[int] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Any , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : List[str] = MobileBertForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[int] = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : Any , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' _snake_case : str = MobileBertForNextSentencePrediction(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : str = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = MobileBertForPreTraining(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Any = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , next_sentence_label=UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : str ): '''simple docstring''' _snake_case : List[str] = MobileBertForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Union[str, Any] = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.num_labels _snake_case : Union[str, Any] = MobileBertForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Any = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : Any = MobileBertForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : List[Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.num_choices _snake_case : Union[str, Any] = MobileBertForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Optional[int] = model( UpperCamelCase , attention_mask=UpperCamelCase , token_type_ids=UpperCamelCase , labels=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Tuple = config_and_inputs _snake_case : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int =( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) a_ : List[Any] =( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) a_ : str =True def UpperCamelCase_ ( self : Any , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int]=False ): '''simple docstring''' _snake_case : Any = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class in get_values(UpperCamelCase ): _snake_case : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase ) _snake_case : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase ) return inputs_dict def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = MobileBertModelTester(self ) _snake_case : int = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any )-> str: return torch.tensor( lowerCAmelCase , dtype=torch.long , device=lowerCAmelCase , ) lowerCAmelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : str = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(UpperCamelCase ) _snake_case : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): _snake_case : Optional[int] = model(UpperCamelCase )[0] _snake_case : Optional[Any] = torch.Size((1, 9, 5_12) ) self.assertEqual(output.shape , UpperCamelCase ) _snake_case : int = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=UpperCamelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _snake_case : int = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _snake_case : int = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase_ = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ lowerCAmelCase_ = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ lowerCAmelCase_ = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str , UpperCamelCase : Optional[int] , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Dict=None , UpperCamelCase : Tuple="auto" , UpperCamelCase : str=-1 , UpperCamelCase : Tuple=0.9 , UpperCamelCase : Optional[int]=5 , UpperCamelCase : Any=5_00 , UpperCamelCase : Optional[Any]="gpt2-large" , UpperCamelCase : Optional[Any]=-1 , UpperCamelCase : List[str]=10_24 , UpperCamelCase : Optional[int]=25 , UpperCamelCase : Optional[Any]=5 , UpperCamelCase : Dict=True , UpperCamelCase : Optional[Any]=25 , ): '''simple docstring''' _snake_case : Dict = compute_mauve( p_text=UpperCamelCase , q_text=UpperCamelCase , p_features=UpperCamelCase , q_features=UpperCamelCase , p_tokens=UpperCamelCase , q_tokens=UpperCamelCase , num_buckets=UpperCamelCase , pca_max_data=UpperCamelCase , kmeans_explained_var=UpperCamelCase , kmeans_num_redo=UpperCamelCase , kmeans_max_iter=UpperCamelCase , featurize_model_name=UpperCamelCase , device_id=UpperCamelCase , max_text_length=UpperCamelCase , divergence_curve_discretization_size=UpperCamelCase , mauve_scaling_factor=UpperCamelCase , verbose=UpperCamelCase , seed=UpperCamelCase , ) return out
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> int: return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase_ ( )-> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""image_processor"""] a_ : Optional[Any] ="""SamImageProcessor""" def __init__( self : Tuple , UpperCamelCase : Any ): '''simple docstring''' super().__init__(UpperCamelCase ) _snake_case : Dict = self.image_processor _snake_case : str = -10 _snake_case : int = self.image_processor.size['longest_edge'] def __call__( self : int , UpperCamelCase : Any=None , UpperCamelCase : Dict=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Union[str, TensorType]] = None , **UpperCamelCase : str , ): '''simple docstring''' _snake_case : Optional[int] = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # pop arguments that are not used in the foward but used nevertheless _snake_case : int = encoding_image_processor['original_sizes'] if hasattr(UpperCamelCase , 'numpy' ): # Checks if Torch or TF tensor _snake_case : str = original_sizes.numpy() _snake_case , _snake_case , _snake_case : List[str] = self._check_and_preprocess_points( input_points=UpperCamelCase , input_labels=UpperCamelCase , input_boxes=UpperCamelCase , ) _snake_case : Optional[Any] = self._normalize_and_convert( UpperCamelCase , UpperCamelCase , input_points=UpperCamelCase , input_labels=UpperCamelCase , input_boxes=UpperCamelCase , return_tensors=UpperCamelCase , ) return encoding_image_processor def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Tuple=None , UpperCamelCase : int="pt" , ): '''simple docstring''' if input_points is not None: if len(UpperCamelCase ) != len(UpperCamelCase ): _snake_case : Dict = [ self._normalize_coordinates(self.target_size , UpperCamelCase , original_sizes[0] ) for point in input_points ] else: _snake_case : Dict = [ self._normalize_coordinates(self.target_size , UpperCamelCase , UpperCamelCase ) for point, original_size in zip(UpperCamelCase , UpperCamelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _snake_case , _snake_case : Optional[Any] = self._pad_points_and_labels(UpperCamelCase , UpperCamelCase ) _snake_case : Tuple = np.array(UpperCamelCase ) if input_labels is not None: _snake_case : Optional[int] = np.array(UpperCamelCase ) if input_boxes is not None: if len(UpperCamelCase ) != len(UpperCamelCase ): _snake_case : Dict = [ self._normalize_coordinates(self.target_size , UpperCamelCase , original_sizes[0] , is_bounding_box=UpperCamelCase ) for box in input_boxes ] else: _snake_case : List[str] = [ self._normalize_coordinates(self.target_size , UpperCamelCase , UpperCamelCase , is_bounding_box=UpperCamelCase ) for box, original_size in zip(UpperCamelCase , UpperCamelCase ) ] _snake_case : str = np.array(UpperCamelCase ) if input_boxes is not None: if return_tensors == "pt": _snake_case : int = torch.from_numpy(UpperCamelCase ) # boxes batch size of 1 by default _snake_case : Any = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _snake_case : List[str] = tf.convert_to_tensor(UpperCamelCase ) # boxes batch size of 1 by default _snake_case : Any = tf.expand_dims(UpperCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": _snake_case : Optional[int] = torch.from_numpy(UpperCamelCase ) # point batch size of 1 by default _snake_case : Dict = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _snake_case : int = tf.convert_to_tensor(UpperCamelCase ) # point batch size of 1 by default _snake_case : Optional[Any] = tf.expand_dims(UpperCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": _snake_case : Optional[Any] = torch.from_numpy(UpperCamelCase ) # point batch size of 1 by default _snake_case : Optional[int] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _snake_case : int = tf.convert_to_tensor(UpperCamelCase ) # point batch size of 1 by default _snake_case : Tuple = tf.expand_dims(UpperCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Any = max([point.shape[0] for point in input_points] ) _snake_case : int = [] for i, point in enumerate(UpperCamelCase ): if point.shape[0] != expected_nb_points: _snake_case : List[str] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _snake_case : Optional[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(UpperCamelCase ) _snake_case : Union[str, Any] = processed_input_points return input_points, input_labels def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : int , UpperCamelCase : np.ndarray , UpperCamelCase : Dict , UpperCamelCase : List[str]=False ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = original_size _snake_case , _snake_case : str = self.image_processor._get_preprocess_shape(UpperCamelCase , longest_edge=UpperCamelCase ) _snake_case : Optional[Any] = deepcopy(UpperCamelCase ).astype(UpperCamelCase ) if is_bounding_box: _snake_case : str = coords.reshape(-1 , 2 , 2 ) _snake_case : Union[str, Any] = coords[..., 0] * (new_w / old_w) _snake_case : Dict = coords[..., 1] * (new_h / old_h) if is_bounding_box: _snake_case : Any = coords.reshape(-1 , 4 ) return coords def UpperCamelCase_ ( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : int=None , ): '''simple docstring''' if input_points is not None: if hasattr(UpperCamelCase , 'numpy' ): # Checks for TF or Torch tensor _snake_case : Union[str, Any] = input_points.numpy().tolist() if not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_points[0] , UpperCamelCase ): raise ValueError('Input points must be a list of list of floating points.' ) _snake_case : Tuple = [np.array(UpperCamelCase ) for input_point in input_points] else: _snake_case : Optional[Any] = None if input_labels is not None: if hasattr(UpperCamelCase , 'numpy' ): _snake_case : Dict = input_labels.numpy().tolist() if not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_labels[0] , UpperCamelCase ): raise ValueError('Input labels must be a list of list integers.' ) _snake_case : Optional[Any] = [np.array(UpperCamelCase ) for label in input_labels] else: _snake_case : Optional[Any] = None if input_boxes is not None: if hasattr(UpperCamelCase , 'numpy' ): _snake_case : Tuple = input_boxes.numpy().tolist() if ( not isinstance(UpperCamelCase , UpperCamelCase ) or not isinstance(input_boxes[0] , UpperCamelCase ) or not isinstance(input_boxes[0][0] , UpperCamelCase ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) _snake_case : Tuple = [np.array(UpperCamelCase ).astype(np.floataa ) for box in input_boxes] else: _snake_case : Any = None return input_points, input_labels, input_boxes @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(UpperCamelCase ) ) def UpperCamelCase_ ( self : Optional[Any] , *UpperCamelCase : Any , **UpperCamelCase : Any ): '''simple docstring''' return self.image_processor.post_process_masks(*UpperCamelCase , **UpperCamelCase )
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase_ = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } lowerCAmelCase_ = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def lowerCamelCase_ ( lowerCAmelCase: Any )-> Tuple: _snake_case : str = list(state_dict.keys() ) for name in state_dict_keys: _snake_case : List[Any] = state_dict.pop(lowerCAmelCase ) # emb -> embedding if name.startswith('emb.' ): _snake_case : List[Any] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): _snake_case : Union[str, Any] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention _snake_case : Dict = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , lowerCAmelCase ) # ffn -> feed_forward _snake_case : Dict = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , lowerCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): _snake_case : Union[str, Any] = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): _snake_case : Tuple = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): _snake_case : Optional[Any] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": _snake_case : str = 'rwkv.' + name _snake_case : Optional[int] = weight return state_dict def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: List[Any] , lowerCAmelCase: Any , lowerCAmelCase: Any=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Optional[Any]=False , lowerCAmelCase: Optional[Any]=None )-> Union[str, Any]: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) _snake_case : int = 5_02_77 _snake_case : int = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: _snake_case : List[Any] = PreTrainedTokenizerFast(tokenizer_file=lowerCAmelCase ) _snake_case : Tuple = len(lowerCAmelCase ) tokenizer.save_pretrained(lowerCAmelCase ) # 2. Build the config _snake_case : Union[str, Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _snake_case : Optional[Any] = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) _snake_case : Optional[Any] = RwkvConfig( vocab_size=lowerCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCAmelCase ) # 3. Download model file then convert state_dict _snake_case : int = hf_hub_download(lowerCAmelCase , lowerCAmelCase ) _snake_case : Dict = torch.load(lowerCAmelCase , map_location='cpu' ) _snake_case : str = convert_state_dict(lowerCAmelCase ) # 4. Split in shards and save _snake_case , _snake_case : Optional[Any] = shard_checkpoint(lowerCAmelCase ) for shard_file, shard in shards.items(): torch.save(lowerCAmelCase , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) if index is not None: _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) # Save the index as well with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: _snake_case : Any = json.dumps(lowerCAmelCase , indent=2 , sort_keys=lowerCAmelCase ) + '\n' f.write(lowerCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) _snake_case : int = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _snake_case : Optional[Any] = torch.load(os.path.join(lowerCAmelCase , lowerCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCAmelCase , lowerCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained(lowerCAmelCase ) model.push_to_hub(lowerCAmelCase , max_shard_size='2GB' ) tokenizer.push_to_hub(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) lowerCAmelCase_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : int a_ : TreeNode | None =None a_ : TreeNode | None =None lowerCAmelCase_ = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase_ ( lowerCAmelCase: TreeNode | None )-> int: if root is None: return 0 # Validation def count_nodes(lowerCAmelCase: TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowerCAmelCase: TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowerCAmelCase ) != count_coins(lowerCAmelCase ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowerCAmelCase: TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _snake_case , _snake_case : Optional[Any] = get_distrib(node.left ) _snake_case , _snake_case : int = get_distrib(node.right ) _snake_case : Optional[int] = 1 - left_distrib_excess _snake_case : List[str] = 1 - right_distrib_excess _snake_case : List[str] = ( left_distrib_moves + right_distrib_moves + abs(lowerCAmelCase ) + abs(lowerCAmelCase ) ) _snake_case : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCAmelCase , lowerCAmelCase ) return get_distrib(lowerCAmelCase )[0] if __name__ == "__main__": import doctest doctest.testmod()
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCAmelCase_ = False @skip_mps class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =StableDiffusionAttendAndExcitePipeline a_ : Optional[Any] =False a_ : Union[str, Any] =TEXT_TO_IMAGE_PARAMS a_ : Dict =TEXT_TO_IMAGE_BATCH_PARAMS.union({"""token_indices"""} ) a_ : Tuple =TEXT_TO_IMAGE_IMAGE_PARAMS a_ : List[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCamelCase_ ( cls : List[str] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : List[str] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCamelCase , ) _snake_case : str = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase , set_alpha_to_one=UpperCamelCase , ) torch.manual_seed(0 ) _snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) _snake_case : Any = CLIPTextModel(UpperCamelCase ) _snake_case : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case : int = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Dict , UpperCamelCase : List[Any]=0 ): '''simple docstring''' if str(UpperCamelCase ).startswith('mps' ): _snake_case : Any = torch.manual_seed(UpperCamelCase ) else: _snake_case : List[str] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Union[str, Any] = { 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[Any] = 'cpu' _snake_case : List[Any] = self.get_dummy_components() _snake_case : Any = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Tuple = self.get_dummy_inputs(UpperCamelCase ) _snake_case : Optional[Any] = pipe(**UpperCamelCase ).images _snake_case : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) _snake_case : List[str] = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96] ) _snake_case : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase , 1e-3 ) def UpperCamelCase_ ( self : int ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls : Optional[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : List[str] ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = torch.manual_seed(51 ) _snake_case : Optional[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=UpperCamelCase , torch_dtype=torch.floataa ) pipe.to('cuda' ) _snake_case : List[Any] = 'a painting of an elephant with glasses' _snake_case : Tuple = [5, 7] _snake_case : int = pipe( prompt=UpperCamelCase , token_indices=UpperCamelCase , guidance_scale=7.5 , generator=UpperCamelCase , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] _snake_case : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1