code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def lowerCamelCase_ ( lowerCAmelCase: int = 50_00_00_00 )-> int: _snake_case : Dict = set() _snake_case : Dict = int((limit - 24) ** (1 / 2) ) _snake_case : List[Any] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase ) ) ) for primea in primes: _snake_case : Optional[Any] = primea * primea for primea in primes: _snake_case : str = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _snake_case : List[Any] = primea * primea * primea * primea _snake_case : Dict = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase ) return len(lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Any , *UpperCamelCase : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : int , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : Optional[Any]=18 , UpperCamelCase : Any=30 , UpperCamelCase : Tuple=4_00 , UpperCamelCase : int=None , UpperCamelCase : int=True , UpperCamelCase : List[Any]=True , UpperCamelCase : Union[str, Any]=None , ): '''simple docstring''' _snake_case : Dict = size if size is not None else {'height': 20, 'width': 20} _snake_case : List[Any] = parent _snake_case : int = batch_size _snake_case : int = num_channels _snake_case : Optional[int] = image_size _snake_case : Optional[int] = min_resolution _snake_case : Any = max_resolution _snake_case : Dict = size _snake_case : Any = do_normalize _snake_case : List[Any] = do_convert_rgb _snake_case : Any = [5_12, 10_24, 20_48, 40_96] _snake_case : Optional[int] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _snake_case : Any = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Dict =PixaStructImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = PixaStructImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_convert_rgb' ) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = self.image_processor_tester.prepare_dummy_image() _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) _snake_case : Optional[int] = 20_48 _snake_case : str = image_processor(UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1e-3 , rtol=1e-3 ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _snake_case : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : Tuple = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _snake_case : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCamelCase ): _snake_case : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches _snake_case : int = 'Hello' _snake_case : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase , header_text=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : List[Any] = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase , header_text=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) _snake_case : Tuple = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _snake_case : Tuple = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : Tuple = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _snake_case : Union[str, Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : str = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =PixaStructImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _snake_case : Union[str, Any] = 3 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_convert_rgb' ) ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : int = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _snake_case : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _snake_case : Dict = image_processor( UpperCamelCase , return_tensors='pt' , max_patches=UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] =ConsistencyModelPipeline a_ : List[str] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS a_ : Optional[Any] =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a_ : Tuple =frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[int] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Dict=False ): '''simple docstring''' if class_cond: _snake_case : Dict = self.dummy_cond_unet else: _snake_case : Any = self.dummy_uncond_unet # Default to CM multistep sampler _snake_case : int = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : Optional[int] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[int]=0 ): '''simple docstring''' if str(UpperCamelCase ).startswith('mps' ): _snake_case : Optional[int] = torch.manual_seed(UpperCamelCase ) else: _snake_case : Union[str, Any] = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : Tuple = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.get_dummy_components() _snake_case : Dict = ConsistencyModelPipeline(**UpperCamelCase ) _snake_case : List[str] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Dict = self.get_dummy_inputs(UpperCamelCase ) _snake_case : str = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) _snake_case : Optional[Any] = image[0, -3:, -3:, -1] _snake_case : List[str] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : List[str] = self.get_dummy_components(class_cond=UpperCamelCase ) _snake_case : Any = ConsistencyModelPipeline(**UpperCamelCase ) _snake_case : Any = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[Any] = self.get_dummy_inputs(UpperCamelCase ) _snake_case : int = 0 _snake_case : List[str] = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) _snake_case : Optional[int] = image[0, -3:, -3:, -1] _snake_case : Union[str, Any] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Optional[int] = self.get_dummy_components() _snake_case : int = ConsistencyModelPipeline(**UpperCamelCase ) _snake_case : int = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : str = self.get_dummy_inputs(UpperCamelCase ) _snake_case : Tuple = 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) _snake_case : str = image[0, -3:, -3:, -1] _snake_case : Tuple = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case : Optional[int] = self.get_dummy_components(class_cond=UpperCamelCase ) _snake_case : Tuple = ConsistencyModelPipeline(**UpperCamelCase ) _snake_case : Union[str, Any] = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Dict = self.get_dummy_inputs(UpperCamelCase ) _snake_case : List[Any] = 1 _snake_case : Optional[Any] = None _snake_case : Optional[Any] = 0 _snake_case : int = pipe(**UpperCamelCase ).images assert image.shape == (1, 32, 32, 3) _snake_case : int = image[0, -3:, -3:, -1] _snake_case : Tuple = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple=0 , UpperCamelCase : List[Any]=False , UpperCamelCase : Optional[int]="cpu" , UpperCamelCase : List[Any]=torch.floataa , UpperCamelCase : List[Any]=(1, 3, 64, 64) ): '''simple docstring''' _snake_case : str = torch.manual_seed(UpperCamelCase ) _snake_case : Tuple = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: _snake_case : Union[str, Any] = self.get_fixed_latents(seed=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase , shape=UpperCamelCase ) _snake_case : Dict = latents return inputs def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : List[str]="cpu" , UpperCamelCase : Optional[Any]=torch.floataa , UpperCamelCase : Tuple=(1, 3, 64, 64) ): '''simple docstring''' if type(UpperCamelCase ) == str: _snake_case : List[Any] = torch.device(UpperCamelCase ) _snake_case : Any = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) _snake_case : List[str] = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=UpperCamelCase , dtype=UpperCamelCase ) return latents def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _snake_case : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : int = ConsistencyModelPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[str] = self.get_inputs() _snake_case : Union[str, Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) _snake_case : Dict = image[0, -3:, -3:, -1] _snake_case : Tuple = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _snake_case : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : int = ConsistencyModelPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Any = self.get_inputs() _snake_case : List[str] = 1 _snake_case : Dict = None _snake_case : List[Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) _snake_case : List[Any] = image[0, -3:, -3:, -1] _snake_case : str = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _snake_case : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : int = ConsistencyModelPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Union[str, Any] = self.get_inputs(get_fixed_latents=UpperCamelCase , device=UpperCamelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase , enable_math=UpperCamelCase , enable_mem_efficient=UpperCamelCase ): _snake_case : int = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) _snake_case : str = image[0, -3:, -3:, -1] _snake_case : List[str] = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Any = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _snake_case : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _snake_case : List[str] = ConsistencyModelPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pipe.to(torch_device=UpperCamelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Tuple = self.get_inputs(get_fixed_latents=UpperCamelCase , device=UpperCamelCase ) _snake_case : Union[str, Any] = 1 _snake_case : Optional[Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase , enable_math=UpperCamelCase , enable_mem_efficient=UpperCamelCase ): _snake_case : Optional[Any] = pipe(**UpperCamelCase ).images assert image.shape == (1, 64, 64, 3) _snake_case : Optional[int] = image[0, -3:, -3:, -1] _snake_case : Optional[Any] = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase : int , UpperCamelCase : str=7 , UpperCamelCase : Union[str, Any]=3 , UpperCamelCase : int=10 , UpperCamelCase : Dict=18 , UpperCamelCase : Any=30 , UpperCamelCase : Optional[Any]=4_00 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[Any]=[0.5, 0.5, 0.5] , UpperCamelCase : Optional[int]=[0.5, 0.5, 0.5] , UpperCamelCase : str=None , ): '''simple docstring''' _snake_case : Optional[int] = size if size is not None else {'shortest_edge': 18} _snake_case : Optional[int] = crop_size if crop_size is not None else {'height': 18, 'width': 18} _snake_case : Tuple = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : Optional[int] = num_frames _snake_case : Union[str, Any] = image_size _snake_case : List[str] = min_resolution _snake_case : int = max_resolution _snake_case : Optional[int] = do_resize _snake_case : Dict = size _snake_case : List[str] = do_normalize _snake_case : List[Any] = image_mean _snake_case : int = image_std _snake_case : List[Any] = crop_size def UpperCamelCase_ ( self : Any ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : List[str] =VivitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = VivitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _snake_case : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _snake_case : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for video in video_inputs: self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _snake_case : Optional[int] = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : Union[str, Any] = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for video in video_inputs: self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _snake_case : Any = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : int = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for video in video_inputs: self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _snake_case : Tuple = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _snake_case : Dict = image_processing(UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
from functools import lru_cache @lru_cache def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: Dict )-> str: if height >= 1: move_tower(height - 1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) move_disk(lowerCAmelCase , lowerCAmelCase ) move_tower(height - 1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: int )-> str: print('moving disk from' , lowerCAmelCase , 'to' , lowerCAmelCase ) def lowerCamelCase_ ( )-> Union[str, Any]: _snake_case : Optional[int] = int(input('Height of hanoi: ' ).strip() ) move_tower(lowerCAmelCase , 'A' , 'B' , 'C' ) if __name__ == "__main__": main()
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
def lowerCamelCase_ ( lowerCAmelCase: int = 3 , lowerCAmelCase: int = 7 , lowerCAmelCase: int = 1_00_00_00 )-> int: _snake_case : int = 0 _snake_case : Optional[Any] = 1 for current_denominator in range(1 , limit + 1 ): _snake_case : str = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _snake_case : List[Any] = current_numerator _snake_case : Optional[int] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
from __future__ import annotations from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar("""T""") class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : T ): '''simple docstring''' _snake_case : Union[str, Any] = data _snake_case : List[str] = self _snake_case : str = 0 class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[int] ): '''simple docstring''' _snake_case : dict[T, DisjointSetTreeNode[T]] = {} def UpperCamelCase_ ( self : List[str] , UpperCamelCase : T ): '''simple docstring''' _snake_case : List[Any] = DisjointSetTreeNode(UpperCamelCase ) def UpperCamelCase_ ( self : Any , UpperCamelCase : T ): '''simple docstring''' _snake_case : str = self.map[data] if elem_ref != elem_ref.parent: _snake_case : List[Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : DisjointSetTreeNode[T] , UpperCamelCase : DisjointSetTreeNode[T] ): '''simple docstring''' if nodea.rank > nodea.rank: _snake_case : List[str] = nodea else: _snake_case : Optional[int] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCamelCase_ ( self : Any , UpperCamelCase : T , UpperCamelCase : T ): '''simple docstring''' self.link(self.find_set(UpperCamelCase ) , self.find_set(UpperCamelCase ) ) class _lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] ): '''simple docstring''' _snake_case : dict[T, dict[T, int]] = {} def UpperCamelCase_ ( self : int , UpperCamelCase : T ): '''simple docstring''' if node not in self.connections: _snake_case : List[str] = {} def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : T , UpperCamelCase : T , UpperCamelCase : int ): '''simple docstring''' self.add_node(UpperCamelCase ) self.add_node(UpperCamelCase ) _snake_case : Any = weight _snake_case : Any = weight def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : int = [] _snake_case : Tuple = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda UpperCamelCase : x[2] ) # creating the disjoint set _snake_case : Dict = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCamelCase ) # MST generation _snake_case : Any = 0 _snake_case : int = 0 _snake_case : Optional[Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _snake_case , _snake_case , _snake_case : Any = edges[index] index += 1 _snake_case : Union[str, Any] = disjoint_set.find_set(UpperCamelCase ) _snake_case : Dict = disjoint_set.find_set(UpperCamelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCamelCase , UpperCamelCase , UpperCamelCase ) disjoint_set.union(UpperCamelCase , UpperCamelCase ) return graph
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Any , UpperCamelCase : Any=3 , UpperCamelCase : str=32 , UpperCamelCase : int=3 , UpperCamelCase : Union[str, Any]=10 , UpperCamelCase : Tuple=[10, 20, 30, 40] , UpperCamelCase : str=[1, 1, 2, 1] , UpperCamelCase : Tuple=True , UpperCamelCase : Any=True , UpperCamelCase : int="relu" , UpperCamelCase : Optional[int]=3 , UpperCamelCase : Optional[Any]=None , ): '''simple docstring''' _snake_case : str = parent _snake_case : List[str] = batch_size _snake_case : int = image_size _snake_case : int = num_channels _snake_case : Optional[Any] = embeddings_size _snake_case : Union[str, Any] = hidden_sizes _snake_case : List[str] = depths _snake_case : int = is_training _snake_case : Tuple = use_labels _snake_case : int = hidden_act _snake_case : Optional[int] = num_labels _snake_case : Optional[int] = scope _snake_case : List[Any] = len(UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : int = None if self.use_labels: _snake_case : Any = ids_tensor([self.batch_size] , self.num_labels ) _snake_case : Tuple = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : str ): '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Tuple = TFResNetModel(config=UpperCamelCase ) _snake_case : str = model(UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase_ ( self : Any , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = self.num_labels _snake_case : Optional[Any] = TFResNetForImageClassification(UpperCamelCase ) _snake_case : List[Any] = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Any = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Tuple = config_and_inputs _snake_case : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : str =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a_ : Union[str, Any] =( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) a_ : Optional[Any] =False a_ : List[Any] =False a_ : Any =False a_ : str =False a_ : List[str] =False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = TFResNetModelTester(self ) _snake_case : List[str] = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : int ): '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Any = model_class(UpperCamelCase ) _snake_case : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[int] ): _snake_case : Union[str, Any] = model_class(UpperCamelCase ) _snake_case : str = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : int = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Union[str, Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case : int = layer_type _snake_case : Optional[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Union[str, Any] = TFResNetModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCamelCase_ ( )-> Dict: _snake_case : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _snake_case : str = self.default_image_processor _snake_case : Union[str, Any] = prepare_img() _snake_case : Tuple = image_processor(images=UpperCamelCase , return_tensors='tf' ) # forward pass _snake_case : List[str] = model(**UpperCamelCase ) # verify the logits _snake_case : Optional[int] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) _snake_case : List[Any] = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCamelCase , atol=1e-4 ) )
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: float )-> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
from __future__ import annotations class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = text, pattern _snake_case , _snake_case : Tuple = len(UpperCamelCase ), len(UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = [] for i in range(self.textLen - self.patLen + 1 ): _snake_case : Optional[int] = self.mismatch_in_text(UpperCamelCase ) if mismatch_index == -1: positions.append(UpperCamelCase ) else: _snake_case : str = self.match_in_pattern(self.text[mismatch_index] ) _snake_case : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase_ = """ABAABA""" lowerCAmelCase_ = """AB""" lowerCAmelCase_ = BoyerMooreSearch(text, pattern) lowerCAmelCase_ = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowerCAmelCase_ = logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =[ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : Union[str, Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: _snake_case : Optional[Any] = deprecated_arg[3:] setattr(self , UpperCamelCase , not kwargs.pop(UpperCamelCase ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) _snake_case : Union[str, Any] = kwargs.pop('torchscript' , self.torchscript ) _snake_case : Dict = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) _snake_case : Any = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**UpperCamelCase ) a_ : bool =field(default=UpperCAmelCase_ , metadata={"""help""": """Trace the models using torchscript"""} ) a_ : bool =field(default=UpperCAmelCase_ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) a_ : str =field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: _snake_case : List[str] = torch.device('cpu' ) _snake_case : Dict = 0 elif is_torch_tpu_available(): _snake_case : str = xm.xla_device() _snake_case : Optional[Any] = 0 else: _snake_case : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _snake_case : Any = torch.cuda.device_count() return device, n_gpu @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def UpperCamelCase_ ( self : str ): '''simple docstring''' requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return self.n_gpu > 0
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : int=None , UpperCamelCase : List[Any]=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : Tuple = parent _snake_case : Union[str, Any] = config_class _snake_case : Optional[int] = has_text_modality _snake_case : Optional[int] = kwargs _snake_case : str = common_properties def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Any = self.config_class(**self.inputs_dict ) _snake_case : Any = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCamelCase ): try: setattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ) self.parent.assertEqual( getattr(UpperCamelCase , UpperCamelCase ) , UpperCamelCase , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCamelCase , UpperCamelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCamelCase ): try: _snake_case : List[str] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCamelCase , UpperCamelCase ) , UpperCamelCase , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCamelCase , UpperCamelCase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : int = self.config_class(**self.inputs_dict ) _snake_case : List[Any] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : str = os.path.join(UpperCamelCase , 'config.json' ) config_first.to_json_file(UpperCamelCase ) _snake_case : str = self.config_class.from_json_file(UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : str = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCamelCase ) _snake_case : Dict = self.config_class.from_pretrained(UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = self.config_class(**self.inputs_dict ) _snake_case : Optional[int] = 'test' with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Optional[Any] = os.path.join(UpperCamelCase , UpperCamelCase ) config_first.save_pretrained(UpperCamelCase ) _snake_case : Optional[Any] = self.config_class.from_pretrained(UpperCamelCase , subfolder=UpperCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _snake_case : List[str] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' if self.config_class.is_composition: return _snake_case : Tuple = self.config_class() self.parent.assertIsNotNone(UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = copy.deepcopy(UpperCamelCase ) _snake_case : int = self.config_class(**UpperCamelCase ) _snake_case : Optional[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(UpperCamelCase , UpperCamelCase ) != value: wrong_values.append((key, getattr(UpperCamelCase , UpperCamelCase ), value) ) if len(UpperCamelCase ) > 0: _snake_case : Union[str, Any] = '\n'.join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int )-> list: _snake_case : Tuple = [] _snake_case , _snake_case : List[Any] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _snake_case : Optional[int] = result + left + right return input_list def lowerCamelCase_ ( lowerCAmelCase: list )-> list: if len(lowerCAmelCase ) <= 1: return input_list _snake_case : List[str] = list(lowerCAmelCase ) # iteration for two-way merging _snake_case : Optional[Any] = 2 while p <= len(lowerCAmelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase ): _snake_case : List[str] = i _snake_case : int = i + p - 1 _snake_case : str = (low + high + 1) // 2 _snake_case : str = merge(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase ): _snake_case : Optional[Any] = i _snake_case : str = merge(lowerCAmelCase , 0 , lowerCAmelCase , len(lowerCAmelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": lowerCAmelCase_ = [] else: lowerCAmelCase_ = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCAmelCase_ = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ lowerCAmelCase_ = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ lowerCAmelCase_ = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = 0.0 for i, j in zip(UpperCamelCase , UpperCamelCase ): n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase , UpperCamelCase ) else 0.0 _snake_case : Dict = n_correct / len(UpperCamelCase ) return { "accuracy": accuracy, }
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Any=13 , UpperCamelCase : List[Any]=32 , UpperCamelCase : int=3 , UpperCamelCase : List[str]=4 , UpperCamelCase : Optional[Any]=[10, 20, 30, 40] , UpperCamelCase : Union[str, Any]=[2, 2, 3, 2] , UpperCamelCase : Tuple=True , UpperCamelCase : int=True , UpperCamelCase : Tuple=37 , UpperCamelCase : Union[str, Any]="gelu" , UpperCamelCase : str=10 , UpperCamelCase : Tuple=0.02 , UpperCamelCase : Tuple=["stage2", "stage3", "stage4"] , UpperCamelCase : Dict=3 , UpperCamelCase : Optional[Any]=None , ): '''simple docstring''' _snake_case : Union[str, Any] = parent _snake_case : Optional[int] = batch_size _snake_case : Optional[int] = image_size _snake_case : Dict = num_channels _snake_case : str = num_stages _snake_case : str = hidden_sizes _snake_case : Optional[Any] = depths _snake_case : List[Any] = is_training _snake_case : Tuple = use_labels _snake_case : Dict = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : List[Any] = type_sequence_label_size _snake_case : Any = initializer_range _snake_case : List[Any] = out_features _snake_case : Optional[Any] = num_labels _snake_case : int = scope _snake_case : Union[str, Any] = num_stages def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case : str = None if self.use_labels: _snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCamelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = UperNetForSemanticSegmentation(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Any = model(UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Tuple = config_and_inputs _snake_case : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] =(UperNetForSemanticSegmentation,) if is_torch_available() else () a_ : Union[str, Any] ={"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {} a_ : int =False a_ : List[str] =False a_ : List[Any] =False a_ : Any =False a_ : Optional[int] =False a_ : Dict =False def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = UperNetModelTester(self ) _snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Dict = model_class(UpperCamelCase ) _snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Tuple = [*signature.parameters.keys()] _snake_case : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : int ): _snake_case : List[Any] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): _snake_case : List[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) _snake_case : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case : Any = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : List[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : List[Any] = _config_zero_init(UpperCamelCase ) _snake_case : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case : List[str] = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='UperNet does not have tied weights' ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : int = UperNetForSemanticSegmentation.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCamelCase_ ( )-> Optional[Any]: _snake_case : List[str] = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) _snake_case : int = Image.open(lowerCAmelCase ).convert('RGB' ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Tuple = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) _snake_case : Tuple = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(UpperCamelCase ) _snake_case : int = prepare_img() _snake_case : List[Any] = processor(images=UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) with torch.no_grad(): _snake_case : Dict = model(**UpperCamelCase ) _snake_case : Union[str, Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) _snake_case : Optional[Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 ) ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[str] = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) _snake_case : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(UpperCamelCase ) _snake_case : Optional[Any] = prepare_img() _snake_case : Tuple = processor(images=UpperCamelCase , return_tensors='pt' ).to(UpperCamelCase ) with torch.no_grad(): _snake_case : Dict = model(**UpperCamelCase ) _snake_case : int = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) _snake_case : List[str] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase , atol=1e-4 ) )
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : Dict , UpperCamelCase : int = 3 , UpperCamelCase : int = 3 , UpperCamelCase : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase : Tuple[int] = (64,) , UpperCamelCase : int = 1 , UpperCamelCase : str = "silu" , UpperCamelCase : int = 3 , UpperCamelCase : int = 32 , UpperCamelCase : int = 2_56 , UpperCamelCase : int = 32 , UpperCamelCase : Optional[int] = None , UpperCamelCase : float = 0.1_82_15 , UpperCamelCase : str = "group" , ): '''simple docstring''' super().__init__() # pass init params to Encoder _snake_case : Dict = Encoder( in_channels=UpperCamelCase , out_channels=UpperCamelCase , down_block_types=UpperCamelCase , block_out_channels=UpperCamelCase , layers_per_block=UpperCamelCase , act_fn=UpperCamelCase , norm_num_groups=UpperCamelCase , double_z=UpperCamelCase , ) _snake_case : List[Any] = vq_embed_dim if vq_embed_dim is not None else latent_channels _snake_case : str = nn.Convad(UpperCamelCase , UpperCamelCase , 1 ) _snake_case : Optional[int] = VectorQuantizer(UpperCamelCase , UpperCamelCase , beta=0.25 , remap=UpperCamelCase , sane_index_shape=UpperCamelCase ) _snake_case : Any = nn.Convad(UpperCamelCase , UpperCamelCase , 1 ) # pass init params to Decoder _snake_case : List[Any] = Decoder( in_channels=UpperCamelCase , out_channels=UpperCamelCase , up_block_types=UpperCamelCase , block_out_channels=UpperCamelCase , layers_per_block=UpperCamelCase , act_fn=UpperCamelCase , norm_num_groups=UpperCamelCase , norm_type=UpperCamelCase , ) @apply_forward_hook def UpperCamelCase_ ( self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = True ): '''simple docstring''' _snake_case : Union[str, Any] = self.encoder(UpperCamelCase ) _snake_case : List[str] = self.quant_conv(UpperCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCamelCase ) @apply_forward_hook def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = False , UpperCamelCase : bool = True ): '''simple docstring''' if not force_not_quantize: _snake_case , _snake_case , _snake_case : Optional[Any] = self.quantize(UpperCamelCase ) else: _snake_case : Optional[Any] = h _snake_case : List[str] = self.post_quant_conv(UpperCamelCase ) _snake_case : str = self.decoder(UpperCamelCase , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = True ): '''simple docstring''' _snake_case : List[str] = sample _snake_case : Optional[int] = self.encode(UpperCamelCase ).latents _snake_case : str = self.decode(UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase )
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int =AlbertTokenizer a_ : str =AlbertTokenizerFast a_ : List[Any] =True a_ : Any =True a_ : str =True def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _snake_case : Optional[int] = AlbertTokenizer(UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Tuple = 'this is a test' _snake_case : List[str] = 'this is a test' return input_text, output_text def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Dict = '<pad>' _snake_case : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCamelCase ) , 3_00_00 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return _snake_case : Dict = self.get_tokenizer() _snake_case : int = self.get_rust_tokenizer() _snake_case : Union[str, Any] = 'I was born in 92000, and this is falsé.' _snake_case : Dict = tokenizer.tokenize(UpperCamelCase ) _snake_case : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : str = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) _snake_case : int = rust_tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : Union[str, Any] = self.get_rust_tokenizer() _snake_case : str = tokenizer.encode(UpperCamelCase ) _snake_case : List[Any] = rust_tokenizer.encode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Union[str, Any] = AlbertTokenizer(UpperCamelCase , keep_accents=UpperCamelCase ) _snake_case : Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCamelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [48, 25, 21, 12_89] ) _snake_case : Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _snake_case : Dict = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual(UpperCamelCase , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) _snake_case : str = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = AlbertTokenizer(UpperCamelCase ) _snake_case : Optional[int] = tokenizer.encode('sequence builders' ) _snake_case : Dict = tokenizer.encode('multi-sequence build' ) _snake_case : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[str] = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } lowerCAmelCase_ = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =VOCAB_FILES_NAMES a_ : int =PRETRAINED_VOCAB_FILES_MAP a_ : List[str] =PRETRAINED_INIT_CONFIGURATION a_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[int] =BertTokenizer def __init__( self : Any , UpperCamelCase : str=None , UpperCamelCase : Any=None , UpperCamelCase : str=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : int="[SEP]" , UpperCamelCase : Any="[PAD]" , UpperCamelCase : Tuple="[CLS]" , UpperCamelCase : Any="[MASK]" , UpperCamelCase : int=True , UpperCamelCase : int=None , **UpperCamelCase : int , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : Union[str, Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[Any] = do_lower_case _snake_case : Tuple = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : int = normalizer_class(**UpperCamelCase ) _snake_case : List[Any] = do_lower_case def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : int=None ): '''simple docstring''' _snake_case : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[str] = [self.sep_token_id] _snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Dict = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase: list )-> float: if not nums: raise ValueError('List is empty' ) return sum(lowerCAmelCase ) / len(lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =["""torch""", """transformers""", """onnx"""] def __init__( self : str , *UpperCamelCase : List[Any] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : Dict , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : Optional[int] , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[int] =["""torch""", """transformers""", """onnx"""] def __init__( self : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : str , *UpperCamelCase : Tuple , **UpperCamelCase : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *UpperCamelCase : str , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : str =["""torch""", """transformers""", """onnx"""] def __init__( self : Union[str, Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Tuple , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : List[str] , *UpperCamelCase : List[Any] , **UpperCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =["""torch""", """transformers""", """onnx"""] def __init__( self : Tuple , *UpperCamelCase : str , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : Tuple , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Any , *UpperCamelCase : List[Any] , **UpperCamelCase : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =["""torch""", """transformers""", """onnx"""] def __init__( self : str , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : List[Any] , *UpperCamelCase : Any , **UpperCamelCase : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class _lowerCAmelCase ( metaclass=UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple =["""torch""", """transformers""", """onnx"""] def __init__( self : Dict , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def UpperCamelCase_ ( cls : Dict , *UpperCamelCase : Any , **UpperCamelCase : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
from collections.abc import Generator def lowerCamelCase_ ( )-> Generator[int, None, None]: _snake_case , _snake_case : Optional[Any] = 0, 1 while True: _snake_case , _snake_case : str = b, a + b yield b def lowerCamelCase_ ( lowerCAmelCase: int = 10_00 )-> int: _snake_case : int = 1 _snake_case : Tuple = fibonacci_generator() while len(str(next(lowerCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
from __future__ import annotations lowerCAmelCase_ = """Muhammad Umer Farooq""" lowerCAmelCase_ = """MIT""" lowerCAmelCase_ = """1.0.0""" lowerCAmelCase_ = """Muhammad Umer Farooq""" lowerCAmelCase_ = """[email protected]""" lowerCAmelCase_ = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' super().__init__() _snake_case : list[str] = [] _snake_case : Optional[int] = domain def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : list[tuple[str, str | None]] ): '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _snake_case : Tuple = parse.urljoin(self.domain , UpperCamelCase ) self.urls.append(UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase: str )-> str: return ".".join(get_sub_domain_name(lowerCAmelCase ).split('.' )[-2:] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> str: return parse.urlparse(lowerCAmelCase ).netloc def lowerCamelCase_ ( lowerCAmelCase: str = "https://github.com" )-> list[str]: _snake_case : List[Any] = get_domain_name(lowerCAmelCase ) # Initialize the parser _snake_case : Any = Parser(lowerCAmelCase ) try: # Open URL _snake_case : Union[str, Any] = requests.get(lowerCAmelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _snake_case : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _snake_case : List[Any] = requests.get(lowerCAmelCase ) # Get the valid email. _snake_case : List[Any] = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowerCAmelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = emails_from_url("""https://github.com""") print(F"""{len(emails)} emails found:""") print("""\n""".join(sorted(emails)))
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCAmelCase_ = """Create a default config file for Accelerate with only a few flags set.""" def lowerCamelCase_ ( lowerCAmelCase: Dict="no" , lowerCAmelCase: str = default_json_config_file , lowerCAmelCase: bool = False )-> Union[str, Any]: _snake_case : str = Path(lowerCAmelCase ) path.parent.mkdir(parents=lowerCAmelCase , exist_ok=lowerCAmelCase ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False _snake_case : Any = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) _snake_case : Optional[int] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): _snake_case : int = torch.cuda.device_count() _snake_case : Dict = num_gpus _snake_case : str = False if num_gpus > 1: _snake_case : Optional[int] = 'MULTI_GPU' else: _snake_case : Dict = 'NO' elif is_xpu_available() and use_xpu: _snake_case : Optional[int] = torch.xpu.device_count() _snake_case : Dict = num_xpus _snake_case : Optional[int] = False if num_xpus > 1: _snake_case : Dict = 'MULTI_XPU' else: _snake_case : Optional[Any] = 'NO' elif is_npu_available(): _snake_case : List[Any] = torch.npu.device_count() _snake_case : int = num_npus _snake_case : int = False if num_npus > 1: _snake_case : Optional[int] = 'MULTI_NPU' else: _snake_case : Tuple = 'NO' else: _snake_case : Optional[Any] = 0 _snake_case : Tuple = True _snake_case : List[Any] = 1 _snake_case : Tuple = 'NO' _snake_case : List[str] = ClusterConfig(**lowerCAmelCase ) config.to_json_file(lowerCAmelCase ) return path def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Dict )-> List[str]: _snake_case : Tuple = parser.add_parser('default' , parents=lowerCAmelCase , help=lowerCAmelCase , formatter_class=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=lowerCAmelCase , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> Dict: _snake_case : Any = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : UNetaDModel a_ : ScoreSdeVeScheduler def __init__( self : Any , UpperCamelCase : UNetaDModel , UpperCamelCase : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self : List[str] , UpperCamelCase : int = 1 , UpperCamelCase : int = 20_00 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , **UpperCamelCase : Any , ): '''simple docstring''' _snake_case : Optional[Any] = self.unet.config.sample_size _snake_case : List[Any] = (batch_size, 3, img_size, img_size) _snake_case : List[str] = self.unet _snake_case : Tuple = randn_tensor(UpperCamelCase , generator=UpperCamelCase ) * self.scheduler.init_noise_sigma _snake_case : List[str] = sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase ) self.scheduler.set_sigmas(UpperCamelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _snake_case : Union[str, Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _snake_case : Tuple = self.unet(UpperCamelCase , UpperCamelCase ).sample _snake_case : List[str] = self.scheduler.step_correct(UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ).prev_sample # prediction step _snake_case : Dict = model(UpperCamelCase , UpperCamelCase ).sample _snake_case : int = self.scheduler.step_pred(UpperCamelCase , UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ) _snake_case , _snake_case : Any = output.prev_sample, output.prev_sample_mean _snake_case : List[str] = sample_mean.clamp(0 , 1 ) _snake_case : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case : List[Any] = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase )
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase : AutoencoderKL , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase : StableDiffusionSafetyChecker , UpperCamelCase : CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _snake_case : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.enable_attention_slicing(UpperCamelCase ) @torch.no_grad() def __call__( self : Optional[int] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , UpperCamelCase : Optional[torch.FloatTensor] = None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : int = 1 elif isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : str = len(UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase , UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(UpperCamelCase )}.""" ) # get prompt text embeddings _snake_case : List[Any] = self.tokenizer( UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _snake_case : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _snake_case : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _snake_case : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _snake_case : Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _snake_case , _snake_case , _snake_case : str = text_embeddings.shape _snake_case : List[Any] = text_embeddings.repeat(1 , UpperCamelCase , 1 ) _snake_case : int = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _snake_case : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _snake_case : List[str] if negative_prompt is None: _snake_case : str = [''] elif type(UpperCamelCase ) is not type(UpperCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase )} !=""" f""" {type(UpperCamelCase )}.""" ) elif isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : Optional[int] = [negative_prompt] elif batch_size != len(UpperCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: _snake_case : str = negative_prompt _snake_case : List[Any] = text_input_ids.shape[-1] _snake_case : List[Any] = self.tokenizer( UpperCamelCase , padding='max_length' , max_length=UpperCamelCase , truncation=UpperCamelCase , return_tensors='pt' , ) _snake_case : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _snake_case : Optional[Any] = uncond_embeddings.shape[1] _snake_case : List[str] = uncond_embeddings.repeat(UpperCamelCase , UpperCamelCase , 1 ) _snake_case : str = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _snake_case : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _snake_case : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _snake_case : Any = torch.randn( UpperCamelCase , generator=UpperCamelCase , device='cpu' , dtype=UpperCamelCase ).to(self.device ) _snake_case : List[str] = torch.randn(UpperCamelCase , generator=UpperCamelCase , device='cpu' , dtype=UpperCamelCase ).to( self.device ) else: _snake_case : str = torch.randn( UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase ) _snake_case : List[str] = torch.randn(UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _snake_case : Optional[Any] = latents_reference.to(self.device ) _snake_case : Optional[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _snake_case : int = (latents_shape[3] - latents_shape_reference[3]) // 2 _snake_case : List[str] = (latents_shape[2] - latents_shape_reference[2]) // 2 _snake_case : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _snake_case : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _snake_case : Tuple = 0 if dx < 0 else dx _snake_case : Optional[int] = 0 if dy < 0 else dy _snake_case : Union[str, Any] = max(-dx , 0 ) _snake_case : List[str] = max(-dy , 0 ) # import pdb # pdb.set_trace() _snake_case : Tuple = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _snake_case : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _snake_case : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _snake_case : List[str] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _snake_case : str = {} if accepts_eta: _snake_case : List[str] = eta for i, t in enumerate(self.progress_bar(UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance _snake_case : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case : Union[str, Any] = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # predict the noise residual _snake_case : Optional[int] = self.unet(UpperCamelCase , UpperCamelCase , encoder_hidden_states=UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: _snake_case , _snake_case : Union[str, Any] = noise_pred.chunk(2 ) _snake_case : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _snake_case : Optional[int] = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = 1 / 0.1_82_15 * latents _snake_case : Any = self.vae.decode(UpperCamelCase ).sample _snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _snake_case : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _snake_case : Tuple = self.feature_extractor(self.numpy_to_pil(UpperCamelCase ) , return_tensors='pt' ).to( self.device ) _snake_case , _snake_case : Optional[int] = self.safety_checker( images=UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _snake_case : Union[str, Any] = None if output_type == "pil": _snake_case : Any = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=UpperCamelCase , nsfw_content_detected=UpperCamelCase )
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase_ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCAmelCase_ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCAmelCase_ = 0 for log in Path().glob("""*.log"""): lowerCAmelCase_ = 0 with open(log, """r""") as f: for line in f: lowerCAmelCase_ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCAmelCase_ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCAmelCase_ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase_ = [] log.unlink() lowerCAmelCase_ = """""" lowerCAmelCase_ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase_ = [] lowerCAmelCase_ = {} for test in failed_tests: lowerCAmelCase_ = test[0].split("""::""") lowerCAmelCase_ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCAmelCase_ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase_ = [test[0] for test in failed_table] lowerCAmelCase_ = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase_ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase_ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCAmelCase_ = """Too many failed tests, please see the full report in the Action results.""" lowerCAmelCase_ = len(err) + 10 lowerCAmelCase_ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCAmelCase_ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCAmelCase_ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCAmelCase_ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCAmelCase_ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCAmelCase_ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase_ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase_ = row[0] else: lowerCAmelCase_ = """""" lowerCAmelCase_ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any ="""char""" a_ : Union[str, Any] ="""bpe""" a_ : Optional[Any] ="""wp""" lowerCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =["""image_processor""", """char_tokenizer"""] a_ : Tuple ="""ViTImageProcessor""" a_ : Optional[int] ="""MgpstrTokenizer""" def __init__( self : Optional[Any] , UpperCamelCase : Dict=None , UpperCamelCase : Tuple=None , **UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : List[Any] = kwargs.pop('feature_extractor' ) _snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) _snake_case : Tuple = tokenizer _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained('gpt2' ) _snake_case : List[str] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : int , UpperCamelCase : Any=None , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Any=None , **UpperCamelCase : Optional[Any] ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _snake_case : Union[str, Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None: _snake_case : Optional[Any] = self.char_tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: _snake_case : Dict = encodings['input_ids'] return inputs def UpperCamelCase_ ( self : Any , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Any = sequences _snake_case : int = char_preds.size(0 ) _snake_case , _snake_case : Optional[Any] = self._decode_helper(UpperCamelCase , 'char' ) _snake_case , _snake_case : List[Any] = self._decode_helper(UpperCamelCase , 'bpe' ) _snake_case , _snake_case : str = self._decode_helper(UpperCamelCase , 'wp' ) _snake_case : List[Any] = [] _snake_case : Union[str, Any] = [] for i in range(UpperCamelCase ): _snake_case : Optional[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]] _snake_case : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _snake_case : List[str] = scores.index(max(UpperCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _snake_case : Optional[Any] = {} _snake_case : Optional[int] = final_strs _snake_case : List[str] = final_scores _snake_case : Tuple = char_strs _snake_case : Tuple = bpe_strs _snake_case : List[Any] = wp_strs return out def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : Tuple ): '''simple docstring''' if format == DecodeType.CHARACTER: _snake_case : Optional[Any] = self.char_decode _snake_case : Dict = 1 _snake_case : Optional[Any] = '[s]' elif format == DecodeType.BPE: _snake_case : Any = self.bpe_decode _snake_case : int = 2 _snake_case : Union[str, Any] = '#' elif format == DecodeType.WORDPIECE: _snake_case : Optional[Any] = self.wp_decode _snake_case : int = 1_02 _snake_case : str = '[SEP]' else: raise ValueError(f"""Format {format} is not supported.""" ) _snake_case , _snake_case : int = [], [] _snake_case : Optional[int] = pred_logits.size(0 ) _snake_case : List[str] = pred_logits.size(1 ) _snake_case , _snake_case : Dict = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase , sorted=UpperCamelCase ) _snake_case : str = preds_index.view(-1 , UpperCamelCase )[:, 1:] _snake_case : Union[str, Any] = decoder(UpperCamelCase ) _snake_case , _snake_case : Optional[Any] = torch.nn.functional.softmax(UpperCamelCase , dim=2 ).max(dim=2 ) _snake_case : Any = preds_max_prob[:, 1:] for index in range(UpperCamelCase ): _snake_case : List[str] = preds_str[index].find(UpperCamelCase ) _snake_case : Tuple = preds_str[index][:pred_eos] _snake_case : str = preds_index[index].cpu().tolist() _snake_case : int = pred_index.index(UpperCamelCase ) if eos_token in pred_index else -1 _snake_case : Tuple = preds_max_prob[index][: pred_eos_index + 1] _snake_case : int = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase ) conf_scores.append(UpperCamelCase ) return dec_strs, conf_scores def UpperCamelCase_ ( self : Dict , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Optional[Any] = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase )] return decode_strs def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : List[str] = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase )] return decode_strs
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : str=99 , UpperCamelCase : str=13 , UpperCamelCase : Optional[int]=7 , UpperCamelCase : Union[str, Any]=9 , UpperCamelCase : Tuple=True , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[int]=False , UpperCamelCase : Dict=32 , UpperCamelCase : Any=5 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : str=37 , UpperCamelCase : Dict=8 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Any=0.0_02 , UpperCamelCase : str=1 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Optional[int]=0 , UpperCamelCase : Dict=None , UpperCamelCase : Tuple=None , ): '''simple docstring''' _snake_case : Union[str, Any] = parent _snake_case : Tuple = batch_size _snake_case : Dict = encoder_seq_length _snake_case : Dict = decoder_seq_length # For common tests _snake_case : Union[str, Any] = self.decoder_seq_length _snake_case : Dict = is_training _snake_case : str = use_attention_mask _snake_case : Optional[Any] = use_labels _snake_case : Optional[Any] = vocab_size _snake_case : List[Any] = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : Union[str, Any] = d_ff _snake_case : List[Any] = relative_attention_num_buckets _snake_case : int = dropout_rate _snake_case : int = initializer_factor _snake_case : Optional[int] = eos_token_id _snake_case : Any = pad_token_id _snake_case : str = decoder_start_token_id _snake_case : Optional[int] = None _snake_case : List[Any] = decoder_layers def UpperCamelCase_ ( self : str ): '''simple docstring''' return TaConfig.from_pretrained('google/umt5-base' ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Any , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=None , UpperCamelCase : Dict=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , ): '''simple docstring''' if attention_mask is None: _snake_case : Any = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _snake_case : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _snake_case : Any = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase ) if decoder_head_mask is None: _snake_case : int = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) if cross_attn_head_mask is None: _snake_case : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _snake_case : Tuple = input_ids.clamp(self.pad_token_id + 1 ) _snake_case : str = decoder_input_ids.clamp(self.pad_token_id + 1 ) _snake_case : Tuple = self.get_config() _snake_case : int = config.num_attention_heads _snake_case : Optional[int] = self.prepare_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, input_dict def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case , _snake_case : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self : int ): '''simple docstring''' return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : int , UpperCamelCase : Optional[int] , ): '''simple docstring''' _snake_case : Optional[Any] = UMTaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[int] = model( input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase , attention_mask=UpperCamelCase , decoder_attention_mask=UpperCamelCase , ) _snake_case : Dict = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) _snake_case : List[Any] = result.last_hidden_state _snake_case : int = result.past_key_values _snake_case : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , ): '''simple docstring''' _snake_case : str = UMTaModel(config=UpperCamelCase ).get_decoder().to(UpperCamelCase ).eval() # first forward pass _snake_case : Optional[Any] = model(UpperCamelCase , use_cache=UpperCamelCase ) _snake_case : Dict = model(UpperCamelCase ) _snake_case : Union[str, Any] = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) _snake_case , _snake_case : List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _snake_case : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case : Union[str, Any] = model(UpperCamelCase )['last_hidden_state'] _snake_case : Optional[Any] = model(UpperCamelCase , past_key_values=UpperCamelCase )['last_hidden_state'] # select random slice _snake_case : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() _snake_case : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , ): '''simple docstring''' _snake_case : Optional[int] = UMTaModel(config=UpperCamelCase ).to(UpperCamelCase ).half().eval() _snake_case : int = model(**UpperCamelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCamelCase ).any().item() ) @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a_ : Union[str, Any] =(UMTaForConditionalGeneration,) if is_torch_available() else () a_ : List[str] =( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a_ : Optional[Any] =True a_ : Tuple =False a_ : Dict =False a_ : List[Any] =True a_ : str =True # The small UMT5 model needs higher percentages for CPU/MP tests a_ : Optional[Any] =[0.8, 0.9] def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : str = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() _snake_case : Optional[int] = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCamelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Any = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] _snake_case : Any = self.model_tester.prepare_config_and_inputs() _snake_case : List[str] = config_and_inputs[0] _snake_case : Tuple = UMTaForConditionalGeneration(UpperCamelCase ).eval() model.to(UpperCamelCase ) _snake_case : List[str] = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), } for attn_name, (name, mask) in zip(UpperCamelCase , head_masking.items() ): _snake_case : Tuple = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _snake_case : int = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase ) _snake_case : str = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase , return_dict_in_generate=UpperCamelCase , **UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _snake_case : List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCamelCase ).to(UpperCamelCase ) _snake_case : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCamelCase , legacy=UpperCamelCase ) _snake_case : List[Any] = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] _snake_case : Optional[int] = tokenizer(UpperCamelCase , return_tensors='pt' , padding=UpperCamelCase ).input_ids # fmt: off _snake_case : List[Any] = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = model.generate(input_ids.to(UpperCamelCase ) ) _snake_case : List[str] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] _snake_case : List[Any] = tokenizer.batch_decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , *UpperCamelCase : List[str] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
from __future__ import annotations import math def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: int )-> float: _snake_case : Tuple = u for i in range(1 , lowerCAmelCase ): _snake_case : Optional[int] = temp * (u - i) return temp def lowerCamelCase_ ( )-> None: _snake_case : Optional[Any] = int(input('enter the numbers of values: ' ) ) _snake_case : list[list[float]] = [] for _ in range(lowerCAmelCase ): y.append([] ) for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): y[i].append(lowerCAmelCase ) _snake_case : int = 0 print('enter the values of parameters in a list: ' ) _snake_case : Tuple = list(map(lowerCAmelCase , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(lowerCAmelCase ): _snake_case : Dict = float(input() ) _snake_case : Tuple = int(input('enter the value to interpolate: ' ) ) _snake_case : int = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCAmelCase ): for j in range(n - i ): _snake_case : Tuple = y[j + 1][i - 1] - y[j][i - 1] _snake_case : Union[str, Any] = y[0][0] for i in range(1 , lowerCAmelCase ): summ += (ucal(lowerCAmelCase , lowerCAmelCase ) * y[0][i]) / math.factorial(lowerCAmelCase ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] ="""roformer""" def __init__( self : str , UpperCamelCase : Union[str, Any]=5_00_00 , UpperCamelCase : str=None , UpperCamelCase : Dict=7_68 , UpperCamelCase : str=12 , UpperCamelCase : Dict=12 , UpperCamelCase : str=30_72 , UpperCamelCase : int="gelu" , UpperCamelCase : Any=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : int=15_36 , UpperCamelCase : str=2 , UpperCamelCase : Dict=0.02 , UpperCamelCase : Optional[int]=1e-1_2 , UpperCamelCase : str=0 , UpperCamelCase : List[Any]=False , UpperCamelCase : Optional[int]=True , **UpperCamelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size if embedding_size is None else embedding_size _snake_case : Dict = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : int = intermediate_size _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : Optional[Any] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : Optional[Any] = layer_norm_eps _snake_case : str = rotary_value _snake_case : str = use_cache class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : List[Any] = {0: 'batch', 1: 'sequence'} _snake_case : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] ="""roberta-prelayernorm""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any]=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : List[Any]=12 , UpperCamelCase : List[str]=30_72 , UpperCamelCase : Union[str, Any]="gelu" , UpperCamelCase : List[str]=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : int=2 , UpperCamelCase : int=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Dict=0 , UpperCamelCase : int=2 , UpperCamelCase : Optional[Any]="absolute" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Union[str, Any] = vocab_size _snake_case : List[Any] = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : int = type_vocab_size _snake_case : Any = initializer_range _snake_case : str = layer_norm_eps _snake_case : List[str] = position_embedding_type _snake_case : List[Any] = use_cache _snake_case : Union[str, Any] = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] =1 @register_to_config def __init__( self : Dict , UpperCamelCase : int=20_00 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : List[str]=20 , UpperCamelCase : Dict=1e-3 ): '''simple docstring''' _snake_case : str = None _snake_case : int = None _snake_case : int = None def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Tuple , UpperCamelCase : Union[str, torch.device] = None ): '''simple docstring''' _snake_case : Optional[Any] = torch.linspace(1 , self.config.sampling_eps , UpperCamelCase , device=UpperCamelCase ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _snake_case : Optional[Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _snake_case : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _snake_case : Dict = std.flatten() while len(std.shape ) < len(score.shape ): _snake_case : Optional[Any] = std.unsqueeze(-1 ) _snake_case : Dict = -score / std # compute _snake_case : Dict = -1.0 / len(self.timesteps ) _snake_case : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _snake_case : Dict = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _snake_case : List[str] = beta_t.unsqueeze(-1 ) _snake_case : List[Any] = -0.5 * beta_t * x _snake_case : Union[str, Any] = torch.sqrt(UpperCamelCase ) _snake_case : List[str] = drift - diffusion**2 * score _snake_case : int = x + drift * dt # add noise _snake_case : Any = randn_tensor(x.shape , layout=x.layout , generator=UpperCamelCase , device=x.device , dtype=x.dtype ) _snake_case : Tuple = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): '''simple docstring''' return self.config.num_train_timesteps
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""trocr""" a_ : List[Any] =["""past_key_values"""] a_ : Any ={ """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Union[str, Any] , UpperCamelCase : Dict=5_02_65 , UpperCamelCase : Optional[int]=10_24 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : Dict=16 , UpperCamelCase : int=40_96 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : int=0.1 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Any=2 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : List[Any]=0.0 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : int=False , UpperCamelCase : Optional[int]=True , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=1 , UpperCamelCase : Union[str, Any]=0 , UpperCamelCase : Optional[int]=2 , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' _snake_case : Tuple = vocab_size _snake_case : Optional[int] = d_model _snake_case : Dict = decoder_layers _snake_case : Union[str, Any] = decoder_attention_heads _snake_case : Optional[Any] = decoder_ffn_dim _snake_case : Optional[int] = activation_function _snake_case : List[Any] = max_position_embeddings _snake_case : Optional[Any] = dropout _snake_case : Any = attention_dropout _snake_case : Optional[int] = activation_dropout _snake_case : Union[str, Any] = init_std _snake_case : Optional[Any] = decoder_layerdrop _snake_case : Any = use_cache _snake_case : Optional[int] = scale_embedding _snake_case : int = use_learned_position_embeddings _snake_case : List[Any] = layernorm_embedding super().__init__( pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , **UpperCamelCase , )
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : Optional[int] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) _snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Dict = self.dummy_uncond_unet _snake_case : Dict = DDIMScheduler() _snake_case : Any = self.dummy_vq_model _snake_case : Optional[Any] = LDMPipeline(unet=UpperCamelCase , vqvae=UpperCamelCase , scheduler=UpperCamelCase ) ldm.to(UpperCamelCase ) ldm.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Tuple = torch.manual_seed(0 ) _snake_case : Optional[Any] = ldm(generator=UpperCamelCase , num_inference_steps=2 , output_type='numpy' ).images _snake_case : Dict = torch.manual_seed(0 ) _snake_case : Optional[int] = ldm(generator=UpperCamelCase , num_inference_steps=2 , output_type='numpy' , return_dict=UpperCamelCase )[0] _snake_case : Optional[Any] = image[0, -3:, -3:, -1] _snake_case : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : List[str] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) _snake_case : Optional[int] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(UpperCamelCase ) ldm.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : Any = torch.manual_seed(0 ) _snake_case : Optional[int] = ldm(generator=UpperCamelCase , num_inference_steps=5 , output_type='numpy' ).images _snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _snake_case : str = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) _snake_case : List[str] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
lowerCAmelCase_ = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = """T5Config""" def lowerCamelCase_ ( lowerCAmelCase: jnp.array , lowerCAmelCase: int , lowerCAmelCase: int )-> jnp.ndarray: _snake_case : Dict = jnp.zeros_like(lowerCAmelCase ) _snake_case : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _snake_case : Optional[Any] = shifted_input_ids.at[:, 0].set(lowerCAmelCase ) _snake_case : Tuple = jnp.where(shifted_input_ids == -1_00 , lowerCAmelCase , lowerCAmelCase ) return shifted_input_ids class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""mt5""" a_ : Dict =MTaConfig class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""mt5""" a_ : Any =MTaConfig class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] ="""mt5""" a_ : int =MTaConfig
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: PreTrainedTokenizer , lowerCAmelCase: int , lowerCAmelCase: Optional[int] = None , )-> str: _snake_case : Any = {} if train_file is not None: _snake_case : Tuple = [train_file] if eval_file is not None: _snake_case : Optional[Any] = [eval_file] if test_file is not None: _snake_case : Union[str, Any] = [test_file] _snake_case : Any = datasets.load_dataset('csv' , data_files=lowerCAmelCase ) _snake_case : Dict = list(ds[list(files.keys() )[0]].features.keys() ) _snake_case : Dict = features_name.pop(lowerCAmelCase ) _snake_case : Optional[int] = list(set(ds[list(files.keys() )[0]][label_name] ) ) _snake_case : Union[str, Any] = {label: i for i, label in enumerate(lowerCAmelCase )} _snake_case : Tuple = tokenizer.model_input_names _snake_case : Dict = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): _snake_case : Tuple = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCAmelCase , max_length=lowerCAmelCase , padding='max_length' ) , batched=lowerCAmelCase , ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): _snake_case : Dict = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCAmelCase , max_length=lowerCAmelCase , padding='max_length' , ) , batched=lowerCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _snake_case : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} _snake_case : Optional[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _snake_case : Tuple = {k: v for k, v in ex.items() if k in input_names} _snake_case : Any = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _snake_case : Any = {k: v for k, v in ex.items() if k in input_names} _snake_case : Any = labelaid[ex[label_name]] yield (d, label) _snake_case : Any = ( tf.data.Dataset.from_generator( lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _snake_case : Union[str, Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _snake_case : Optional[int] = ( tf.data.Dataset.from_generator( lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _snake_case : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _snake_case : List[str] = ( tf.data.Dataset.from_generator( lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _snake_case : List[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : int =field(metadata={"""help""": """Which column contains the label"""} ) a_ : str =field(default=UpperCAmelCase_ , metadata={"""help""": """The path of the training file"""} ) a_ : Optional[str] =field(default=UpperCAmelCase_ , metadata={"""help""": """The path of the development file"""} ) a_ : Optional[str] =field(default=UpperCAmelCase_ , metadata={"""help""": """The path of the test file"""} ) a_ : int =field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : bool =field(default=UpperCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def lowerCamelCase_ ( )-> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _snake_case , _snake_case , _snake_case : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case , _snake_case , _snake_case , _snake_case : Tuple = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _snake_case : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCAmelCase ) , labelaid=lowerCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _snake_case : List[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCAmelCase: EvalPrediction ) -> Dict: _snake_case : str = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _snake_case : Dict = TFTrainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=lowerCAmelCase , eval_dataset=lowerCAmelCase , compute_metrics=lowerCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case : Dict = trainer.evaluate() _snake_case : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowerCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings( UpperCAmelCase_ , R""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple , UpperCamelCase : GenericTensor ): '''simple docstring''' if self.framework == "tf": _snake_case : int = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _snake_case : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase ) else: raise ValueError('Unsupported framework' ) return masked_index def UpperCamelCase_ ( self : List[str] , UpperCamelCase : GenericTensor ): '''simple docstring''' _snake_case : int = self.get_masked_index(UpperCamelCase ) _snake_case : int = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , f"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : GenericTensor ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict=None , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' if return_tensors is None: _snake_case : int = self.framework _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase ) self.ensure_exactly_one_mask_token(UpperCamelCase ) return model_inputs def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.model(**UpperCamelCase ) _snake_case : int = model_inputs['input_ids'] return model_outputs def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=5 , UpperCamelCase : Any=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: _snake_case : Optional[Any] = target_ids.shape[0] _snake_case : Any = model_outputs['input_ids'][0] _snake_case : Optional[int] = model_outputs['logits'] if self.framework == "tf": _snake_case : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _snake_case : List[Any] = outputs.numpy() _snake_case : Tuple = outputs[0, masked_index, :] _snake_case : int = stable_softmax(UpperCamelCase , axis=-1 ) if target_ids is not None: _snake_case : Optional[Any] = tf.gather_nd(tf.squeeze(UpperCamelCase , 0 ) , target_ids.reshape(-1 , 1 ) ) _snake_case : Optional[int] = tf.expand_dims(UpperCamelCase , 0 ) _snake_case : List[str] = tf.math.top_k(UpperCamelCase , k=UpperCamelCase ) _snake_case , _snake_case : Dict = topk.values.numpy(), topk.indices.numpy() else: _snake_case : Optional[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCamelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _snake_case : Optional[int] = outputs[0, masked_index, :] _snake_case : Any = logits.softmax(dim=-1 ) if target_ids is not None: _snake_case : Optional[int] = probs[..., target_ids] _snake_case , _snake_case : int = probs.topk(UpperCamelCase ) _snake_case : Any = [] _snake_case : Any = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): _snake_case : List[Any] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place _snake_case : Optional[int] = input_ids.numpy().copy() if target_ids is not None: _snake_case : Optional[int] = target_ids[p].tolist() _snake_case : Tuple = p # Filter padding out: _snake_case : Union[str, Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _snake_case : Optional[int] = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) _snake_case : str = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(UpperCamelCase ) result.append(UpperCamelCase ) if single_mask: return result[0] return result def UpperCamelCase_ ( self : int , UpperCamelCase : List[Any] , UpperCamelCase : str=None ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : int = [targets] try: _snake_case : int = self.tokenizer.get_vocab() except Exception: _snake_case : Dict = {} _snake_case : int = [] for target in targets: _snake_case : Dict = vocab.get(UpperCamelCase , UpperCamelCase ) if id_ is None: _snake_case : str = self.tokenizer( UpperCamelCase , add_special_tokens=UpperCamelCase , return_attention_mask=UpperCamelCase , return_token_type_ids=UpperCamelCase , max_length=1 , truncation=UpperCamelCase , )['input_ids'] if len(UpperCamelCase ) == 0: logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ 'We cannot replace it with anything meaningful, ignoring it' ) continue _snake_case : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"""The specified target token `{target}` does not exist in the model vocabulary. """ f"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) _snake_case : List[Any] = list(set(UpperCamelCase ) ) if len(UpperCamelCase ) == 0: raise ValueError('At least one target must be provided when passed.' ) _snake_case : Union[str, Any] = np.array(UpperCamelCase ) return target_ids def UpperCamelCase_ ( self : Any , UpperCamelCase : str=None , UpperCamelCase : Any=None ): '''simple docstring''' _snake_case : Union[str, Any] = {} if targets is not None: _snake_case : Tuple = self.get_target_ids(UpperCamelCase , UpperCamelCase ) _snake_case : Dict = target_ids if top_k is not None: _snake_case : Union[str, Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : Tuple , UpperCamelCase : Dict , *UpperCamelCase : str , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : str = super().__call__(UpperCamelCase , **UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) == 1: return outputs[0] return outputs
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _snake_case : Any = model _snake_case : Optional[int] = kwargs.get('model_save_dir' , UpperCamelCase ) _snake_case : Optional[Any] = kwargs.get('latest_model_name' , UpperCamelCase ) def __call__( self : List[str] , **UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = {k: np.array(UpperCamelCase ) for k, v in kwargs.items()} return self.model.run(UpperCamelCase , UpperCamelCase ) @staticmethod def UpperCamelCase_ ( UpperCamelCase : Union[str, Path] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[Any]=None ): '''simple docstring''' if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _snake_case : str = 'CPUExecutionProvider' return ort.InferenceSession(UpperCamelCase , providers=[provider] , sess_options=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : Union[str, Path] , UpperCamelCase : Optional[str] = None , **UpperCamelCase : str ): '''simple docstring''' _snake_case : int = file_name if file_name is not None else ONNX_WEIGHTS_NAME _snake_case : Union[str, Any] = self.model_save_dir.joinpath(self.latest_model_name ) _snake_case : Dict = Path(UpperCamelCase ).joinpath(UpperCamelCase ) try: shutil.copyfile(UpperCamelCase , UpperCamelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _snake_case : Optional[Any] = self.model_save_dir.joinpath(UpperCamelCase ) if src_path.exists(): _snake_case : Union[str, Any] = Path(UpperCamelCase ).joinpath(UpperCamelCase ) try: shutil.copyfile(UpperCamelCase , UpperCamelCase ) except shutil.SameFileError: pass def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' if os.path.isfile(UpperCamelCase ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(UpperCamelCase , exist_ok=UpperCamelCase ) # saving model weights/files self._save_pretrained(UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Tuple , UpperCamelCase : Union[str, Path] , UpperCamelCase : Optional[Union[bool, str, None]] = None , UpperCamelCase : Optional[Union[str, None]] = None , UpperCamelCase : bool = False , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional["ort.SessionOptions"] = None , **UpperCamelCase : List[Any] , ): '''simple docstring''' _snake_case : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(UpperCamelCase ): _snake_case : Any = OnnxRuntimeModel.load_model( os.path.join(UpperCamelCase , UpperCamelCase ) , provider=UpperCamelCase , sess_options=UpperCamelCase ) _snake_case : Union[str, Any] = Path(UpperCamelCase ) # load model from hub else: # download model _snake_case : List[str] = hf_hub_download( repo_id=UpperCamelCase , filename=UpperCamelCase , use_auth_token=UpperCamelCase , revision=UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , ) _snake_case : str = Path(UpperCamelCase ).parent _snake_case : str = Path(UpperCamelCase ).name _snake_case : List[Any] = OnnxRuntimeModel.load_model(UpperCamelCase , provider=UpperCamelCase , sess_options=UpperCamelCase ) return cls(model=UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : List[str] , UpperCamelCase : Union[str, Path] , UpperCamelCase : bool = True , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , **UpperCamelCase : Any , ): '''simple docstring''' _snake_case : List[str] = None if len(str(UpperCamelCase ).split('@' ) ) == 2: _snake_case , _snake_case : List[Any] = model_id.split('@' ) return cls._from_pretrained( model_id=UpperCamelCase , revision=UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , use_auth_token=UpperCamelCase , **UpperCamelCase , )
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase_ ( )-> Any: _snake_case : int = 9 _snake_case : Dict = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case : List[str] = kruskal(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(lowerCAmelCase ) == sorted(lowerCAmelCase )
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
import numpy as np class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' _snake_case : Any = (0, 0) _snake_case : Any = None _snake_case : List[Any] = 0 _snake_case : Union[str, Any] = 0 _snake_case : Union[str, Any] = 0 def __eq__( self : int , UpperCamelCase : Dict ): '''simple docstring''' return self.position == cell.position def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' print(self.position ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : Any , UpperCamelCase : str=(5, 5) ): '''simple docstring''' _snake_case : Tuple = np.zeros(UpperCamelCase ) _snake_case : List[str] = world_size[0] _snake_case : Optional[Any] = world_size[1] def UpperCamelCase_ ( self : str ): '''simple docstring''' print(self.w ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _snake_case : List[Any] = cell.position[0] _snake_case : str = cell.position[1] _snake_case : List[str] = [] for n in neughbour_cord: _snake_case : Any = current_x + n[0] _snake_case : List[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _snake_case : Optional[int] = Cell() _snake_case : int = (x, y) _snake_case : Any = cell neighbours.append(UpperCamelCase ) return neighbours def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple )-> Optional[int]: _snake_case : Dict = [] _snake_case : List[str] = [] _open.append(lowerCAmelCase ) while _open: _snake_case : Union[str, Any] = np.argmin([n.f for n in _open] ) _snake_case : Union[str, Any] = _open[min_f] _closed.append(_open.pop(lowerCAmelCase ) ) if current == goal: break for n in world.get_neigbours(lowerCAmelCase ): for c in _closed: if c == n: continue _snake_case : Dict = current.g + 1 _snake_case , _snake_case : Any = n.position _snake_case , _snake_case : Dict = goal.position _snake_case : Optional[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 _snake_case : Optional[Any] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowerCAmelCase ) _snake_case : int = [] while current.parent is not None: path.append(current.position ) _snake_case : Tuple = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCAmelCase_ = Gridworld() # Start position and goal lowerCAmelCase_ = Cell() lowerCAmelCase_ = (0, 0) lowerCAmelCase_ = Cell() lowerCAmelCase_ = (4, 4) print(F"""path from {start.position} to {goal.position}""") lowerCAmelCase_ = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCAmelCase_ = 1 print(world.w)
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : str =field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a_ : ClassVar[Features] =Features({"""audio""": Audio()} ) a_ : ClassVar[Features] =Features({"""labels""": ClassLabel} ) a_ : str ="audio" a_ : str ="labels" def UpperCamelCase_ ( self : int , UpperCamelCase : Tuple ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _snake_case : List[Any] = copy.deepcopy(self ) _snake_case : Union[str, Any] = self.label_schema.copy() _snake_case : List[str] = features[self.label_column] _snake_case : Optional[Any] = label_schema return task_template @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCAmelCase_ = True except ImportError: lowerCAmelCase_ = False try: from torch.hub import _get_torch_home lowerCAmelCase_ = _get_torch_home() except ImportError: lowerCAmelCase_ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) lowerCAmelCase_ = os.path.join(torch_cache_home, """transformers""") lowerCAmelCase_ = """https://cdn.huggingface.co""" lowerCAmelCase_ = """https://s3.amazonaws.com/models.huggingface.co/bert""" lowerCAmelCase_ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) lowerCAmelCase_ = os.path.join(PATH, """config.yaml""") lowerCAmelCase_ = os.path.join(PATH, """attributes.txt""") lowerCAmelCase_ = os.path.join(PATH, """objects.txt""") lowerCAmelCase_ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) lowerCAmelCase_ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) lowerCAmelCase_ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) lowerCAmelCase_ = """pytorch_model.bin""" lowerCAmelCase_ = """config.yaml""" def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any]=OBJECTS , lowerCAmelCase: Optional[Any]=ATTRIBUTES )-> int: _snake_case : Optional[int] = [] with open(lowerCAmelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) _snake_case : Tuple = [] with open(lowerCAmelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> List[str]: _snake_case : Optional[int] = OrderedDict() with open(lowerCAmelCase , 'rb' ) as f: _snake_case : str = pkl.load(lowerCAmelCase )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): _snake_case : Tuple = ckp.pop(lowerCAmelCase ) if isinstance(lowerCAmelCase , np.ndarray ): _snake_case : Dict = torch.tensor(lowerCAmelCase ) else: assert isinstance(lowerCAmelCase , torch.tensor ), type(lowerCAmelCase ) _snake_case : List[Any] = v return r class _lowerCAmelCase : '''simple docstring''' a_ : List[Any] ={} def __init__( self : Optional[Any] , UpperCamelCase : dict , UpperCamelCase : str = "root" , UpperCamelCase : Dict=0 ): '''simple docstring''' _snake_case : List[Any] = name _snake_case : str = level _snake_case : List[Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _snake_case : Optional[int] = copy.deepcopy(UpperCamelCase ) _snake_case : List[str] = copy.deepcopy(UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : str = Config(UpperCamelCase , name=UpperCamelCase , level=level + 1 ) _snake_case : str = v setattr(self , UpperCamelCase , UpperCamelCase ) _snake_case : Any = d def __repr__( self : Dict ): '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Optional[Any] = val _snake_case : List[str] = val _snake_case : Optional[Any] = key.split('.' ) _snake_case : Dict = len(UpperCamelCase ) - 1 _snake_case : int = self._pointer if len(UpperCamelCase ) > 1: for i, l in enumerate(UpperCamelCase ): if hasattr(self , UpperCamelCase ) and isinstance(getattr(self , UpperCamelCase ) , UpperCamelCase ): setattr(getattr(self , UpperCamelCase ) , '.'.join(levels[i:] ) , UpperCamelCase ) if l == last_level: _snake_case : Optional[Any] = val else: _snake_case : Any = pointer[l] def UpperCamelCase_ ( self : int ): '''simple docstring''' return self._pointer def UpperCamelCase_ ( self : Dict , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' with open(f"""{file_name}""" , 'w' ) as stream: dump(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Dict , UpperCamelCase : List[Any] ): '''simple docstring''' with open(f"""{file_name}""" , 'w' ) as stream: json.dump(UpperCamelCase , UpperCamelCase ) @staticmethod def UpperCamelCase_ ( UpperCamelCase : Tuple ): '''simple docstring''' with open(UpperCamelCase ) as stream: _snake_case : Optional[Any] = load(UpperCamelCase , Loader=UpperCamelCase ) return data def __str__( self : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = ' ' if self._name != "root": _snake_case : Tuple = f"""{t * (self._level-1)}{self._name}:\n""" else: _snake_case : Union[str, Any] = '' _snake_case : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(UpperCamelCase , UpperCamelCase ): r += f"""{t * (self._level)}{v}\n""" self._level += 1 else: r += f"""{t * (self._level)}{k}: {v} ({type(UpperCamelCase ).__name__})\n""" _snake_case : List[str] = level return r[:-1] @classmethod def UpperCamelCase_ ( cls : Optional[int] , UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case , _snake_case : Dict = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) return cls(UpperCamelCase ) @classmethod def UpperCamelCase_ ( cls : Any , UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : int = kwargs.pop('cache_dir' , UpperCamelCase ) _snake_case : str = kwargs.pop('force_download' , UpperCamelCase ) _snake_case : Dict = kwargs.pop('resume_download' , UpperCamelCase ) _snake_case : List[Any] = kwargs.pop('proxies' , UpperCamelCase ) _snake_case : List[Any] = kwargs.pop('local_files_only' , UpperCamelCase ) if os.path.isdir(UpperCamelCase ): _snake_case : Any = os.path.join(UpperCamelCase , UpperCamelCase ) elif os.path.isfile(UpperCamelCase ) or is_remote_url(UpperCamelCase ): _snake_case : List[Any] = pretrained_model_name_or_path else: _snake_case : Dict = hf_bucket_url(UpperCamelCase , filename=UpperCamelCase , use_cdn=UpperCamelCase ) try: # Load from URL or cache if already cached _snake_case : Any = cached_path( UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , proxies=UpperCamelCase , resume_download=UpperCamelCase , local_files_only=UpperCamelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _snake_case : Any = Config.load_yaml(UpperCamelCase ) except EnvironmentError: _snake_case : Tuple = 'Can\'t load config for' raise EnvironmentError(UpperCamelCase ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(UpperCamelCase ), kwargs def lowerCamelCase_ ( lowerCAmelCase: Any )-> List[Any]: _snake_case : int = torch.load('dump.pt' , map_location=in_tensor.device ) _snake_case : str = in_tensor.numpy() _snake_case : str = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowerCAmelCase , lowerCAmelCase , rtol=0.0_1 , atol=0.1 ), ( F"""{sum([1 for x in np.isclose(lowerCAmelCase , lowerCAmelCase , rtol=0.0_1 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %""" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Optional[int]: _snake_case : Union[str, Any] = urlparse(lowerCAmelCase ) return parsed.scheme in ("http", "https") def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: Optional[Any]=True )-> str: _snake_case : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _snake_case : Optional[Any] = '/' not in model_id if legacy_format: return F"""{endpoint}/{model_id}-{filename}""" else: return F"""{endpoint}/{model_id}/{filename}""" def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: Dict , lowerCAmelCase: Any=None , lowerCAmelCase: str=0 , lowerCAmelCase: str=None , )-> Optional[int]: _snake_case : int = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCAmelCase , lowerCAmelCase ): ua += "; " + "; ".join('{}/{}'.format(lowerCAmelCase , lowerCAmelCase ) for k, v in user_agent.items() ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): ua += "; " + user_agent _snake_case : str = {'user-agent': ua} if resume_size > 0: _snake_case : List[Any] = 'bytes=%d-' % (resume_size,) _snake_case : List[Any] = requests.get(lowerCAmelCase , stream=lowerCAmelCase , proxies=lowerCAmelCase , headers=lowerCAmelCase ) if response.status_code == 4_16: # Range not satisfiable return _snake_case : Dict = response.headers.get('Content-Length' ) _snake_case : Any = resume_size + int(lowerCAmelCase ) if content_length is not None else None _snake_case : Optional[Any] = tqdm( unit='B' , unit_scale=lowerCAmelCase , total=lowerCAmelCase , initial=lowerCAmelCase , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCAmelCase ) ) temp_file.write(lowerCAmelCase ) progress.close() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Any=False , lowerCAmelCase: Tuple=None , lowerCAmelCase: List[Any]=10 , lowerCAmelCase: Optional[int]=False , lowerCAmelCase: Optional[int]=None , lowerCAmelCase: Dict=False , )-> Optional[Any]: if cache_dir is None: _snake_case : Optional[Any] = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = str(lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) _snake_case : str = None if not local_files_only: try: _snake_case : List[str] = requests.head(lowerCAmelCase , allow_redirects=lowerCAmelCase , proxies=lowerCAmelCase , timeout=lowerCAmelCase ) if response.status_code == 2_00: _snake_case : Tuple = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _snake_case : List[str] = url_to_filename(lowerCAmelCase , lowerCAmelCase ) # get cache path to put the file _snake_case : List[str] = os.path.join(lowerCAmelCase , lowerCAmelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCAmelCase ): return cache_path else: _snake_case : Dict = [ file for file in fnmatch.filter(os.listdir(lowerCAmelCase ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(lowerCAmelCase ) > 0: return os.path.join(lowerCAmelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(lowerCAmelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _snake_case : Optional[int] = cache_path + '.lock' with FileLock(lowerCAmelCase ): # If the download just completed while the lock was activated. if os.path.exists(lowerCAmelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _snake_case : Tuple = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(lowerCAmelCase , 'a+b' ) as f: yield f _snake_case : Optional[int] = _resumable_file_manager if os.path.exists(lowerCAmelCase ): _snake_case : List[str] = os.stat(lowerCAmelCase ).st_size else: _snake_case : Optional[Any] = 0 else: _snake_case : Union[str, Any] = partial(tempfile.NamedTemporaryFile , dir=lowerCAmelCase , delete=lowerCAmelCase ) _snake_case : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , lowerCAmelCase , temp_file.name , ) http_get( lowerCAmelCase , lowerCAmelCase , proxies=lowerCAmelCase , resume_size=lowerCAmelCase , user_agent=lowerCAmelCase , ) os.replace(temp_file.name , lowerCAmelCase ) _snake_case : Optional[Any] = {'url': url, 'etag': etag} _snake_case : Dict = cache_path + '.json' with open(lowerCAmelCase , 'w' ) as meta_file: json.dump(lowerCAmelCase , lowerCAmelCase ) return cache_path def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Dict=None )-> Tuple: _snake_case : Tuple = url.encode('utf-8' ) _snake_case : Optional[Any] = shaaaa(lowerCAmelCase ) _snake_case : Optional[int] = url_hash.hexdigest() if etag: _snake_case : int = etag.encode('utf-8' ) _snake_case : List[str] = shaaaa(lowerCAmelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple=None , lowerCAmelCase: Union[str, Any]=False , lowerCAmelCase: Optional[int]=None , lowerCAmelCase: str=False , lowerCAmelCase: List[Any]=None , lowerCAmelCase: Tuple=False , lowerCAmelCase: Dict=False , lowerCAmelCase: Optional[int]=False , )-> List[Any]: if cache_dir is None: _snake_case : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Tuple = str(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = str(lowerCAmelCase ) if is_remote_url(lowerCAmelCase ): # URL, so get it from the cache (downloading if necessary) _snake_case : List[Any] = get_from_cache( lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , proxies=lowerCAmelCase , resume_download=lowerCAmelCase , user_agent=lowerCAmelCase , local_files_only=lowerCAmelCase , ) elif os.path.exists(lowerCAmelCase ): # File, and it exists. _snake_case : List[str] = url_or_filename elif urlparse(lowerCAmelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(lowerCAmelCase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(lowerCAmelCase ) ) if extract_compressed_file: if not is_zipfile(lowerCAmelCase ) and not tarfile.is_tarfile(lowerCAmelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _snake_case , _snake_case : List[str] = os.path.split(lowerCAmelCase ) _snake_case : List[Any] = output_file.replace('.' , '-' ) + '-extracted' _snake_case : List[Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) if os.path.isdir(lowerCAmelCase ) and os.listdir(lowerCAmelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions _snake_case : Optional[Any] = output_path + '.lock' with FileLock(lowerCAmelCase ): shutil.rmtree(lowerCAmelCase , ignore_errors=lowerCAmelCase ) os.makedirs(lowerCAmelCase ) if is_zipfile(lowerCAmelCase ): with ZipFile(lowerCAmelCase , 'r' ) as zip_file: zip_file.extractall(lowerCAmelCase ) zip_file.close() elif tarfile.is_tarfile(lowerCAmelCase ): _snake_case : List[str] = tarfile.open(lowerCAmelCase ) tar_file.extractall(lowerCAmelCase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(lowerCAmelCase ) ) return output_path_extracted return output_path def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: Optional[int]="," )-> List[Any]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) if os.path.isfile(lowerCAmelCase ): with open(lowerCAmelCase ) as f: _snake_case : List[str] = eval(f.read() ) else: _snake_case : Optional[int] = requests.get(lowerCAmelCase ) try: _snake_case : Optional[int] = requests.json() except Exception: _snake_case : Union[str, Any] = req.content.decode() assert data is not None, "could not connect" try: _snake_case : List[str] = eval(lowerCAmelCase ) except Exception: _snake_case : Tuple = data.split('\n' ) req.close() return data def lowerCamelCase_ ( lowerCAmelCase: int )-> int: _snake_case : Tuple = requests.get(lowerCAmelCase ) _snake_case : str = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowerCamelCase_ ( lowerCAmelCase: str )-> List[Any]: _snake_case : Union[str, Any] = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCAmelCase ) with open(lowerCAmelCase , 'rb' ) as stream: _snake_case : Dict = pkl.load(lowerCAmelCase ) _snake_case : Tuple = weights.pop('model' ) _snake_case : Any = {} for k, v in model.items(): _snake_case : Any = torch.from_numpy(lowerCAmelCase ) if "running_var" in k: _snake_case : List[str] = torch.tensor([0] ) _snake_case : List[str] = k.replace('running_var' , 'num_batches_tracked' ) _snake_case : Tuple = zero return new def lowerCamelCase_ ( )-> str: print(F"""{os.path.abspath(os.path.join(lowerCAmelCase , os.pardir ) )}/demo.ipynb""" ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any]="RGB" )-> List[str]: assert isinstance(lowerCAmelCase , lowerCAmelCase ) if os.path.isfile(lowerCAmelCase ): _snake_case : Tuple = cva.imread(lowerCAmelCase ) else: _snake_case : Any = get_image_from_url(lowerCAmelCase ) assert img is not None, F"""could not connect to: {im}""" _snake_case : Union[str, Any] = cva.cvtColor(lowerCAmelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": _snake_case : Dict = img[:, :, ::-1] return img def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: List[Any]=1 )-> List[str]: return (images[i : i + batch] for i in range(0 , len(lowerCAmelCase ) , lowerCAmelCase ))
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase_ ( lowerCAmelCase: Union[dict, list, tuple, torch.Tensor] )-> List[Tuple[int, ...]]: _snake_case : Dict = [] if isinstance(lowerCAmelCase , lowerCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(lowerCAmelCase ) ) elif isinstance(lowerCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(lowerCAmelCase ) ) elif isinstance(lowerCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: Tuple[int, ...] )-> Tuple[int, ...]: _snake_case : Any = [] for d in reversed(lowerCAmelCase ): idx.append(flat_idx % d ) _snake_case : Optional[Any] = flat_idx // d return tuple(reversed(lowerCAmelCase ) ) @torch.jit.ignore def lowerCamelCase_ ( lowerCAmelCase: Sequence[int] , lowerCAmelCase: Sequence[int] , lowerCAmelCase: Sequence[int] , lowerCAmelCase: Optional[Sequence[bool]] = None , lowerCAmelCase: Optional[Sequence[bool]] = None , )-> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCAmelCase: List[bool] ) -> None: _snake_case : List[str] = True for i in range(len(lowerCAmelCase ) ): _snake_case : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally _snake_case : Tuple = l[reversed_idx] if start_edges is None: _snake_case : Union[str, Any] = [s == 0 for s in start] reduce_edge_list(lowerCAmelCase ) if end_edges is None: _snake_case : int = [e == (d - 1) for e, d in zip(lowerCAmelCase , lowerCAmelCase )] reduce_edge_list(lowerCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCAmelCase ) == 0: return [()] elif len(lowerCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _snake_case : List[Tuple[slice, ...]] = [] _snake_case : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCAmelCase , lowerCAmelCase ): if s == e: path_list.append(slice(lowerCAmelCase , s + 1 ) ) else: break _snake_case : Tuple[slice, ...] = tuple(lowerCAmelCase ) _snake_case : Union[str, Any] = len(lowerCAmelCase ) # start == end, and we're done if divergence_idx == len(lowerCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _snake_case : Tuple = start[divergence_idx] return tuple( path + (slice(lowerCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _snake_case : List[str] = end[divergence_idx] return tuple( path + (slice(lowerCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _snake_case : Any = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCamelCase_ ( lowerCAmelCase: torch.Tensor , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int )-> torch.Tensor: _snake_case : int = t.shape[:no_batch_dims] _snake_case : str = list(_flat_idx_to_idx(lowerCAmelCase , lowerCAmelCase ) ) # _get_minimal_slice_set is inclusive _snake_case : List[str] = list(_flat_idx_to_idx(flat_end - 1 , lowerCAmelCase ) ) # Get an ordered list of slices to perform _snake_case : Optional[Any] = _get_minimal_slice_set( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) _snake_case : str = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCamelCase_ ( lowerCAmelCase: Callable , lowerCAmelCase: Dict[str, Any] , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: Any = None , lowerCAmelCase: bool = False , )-> Any: if not (len(lowerCAmelCase ) > 0): raise ValueError('Must provide at least one input' ) _snake_case : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCAmelCase )] _snake_case : Optional[int] = tuple([max(lowerCAmelCase ) for s in zip(*lowerCAmelCase )] ) def _prep_inputs(lowerCAmelCase: torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _snake_case : Dict = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _snake_case : Dict = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _snake_case : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _snake_case : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCAmelCase ) _snake_case : Tuple = None if _out is not None: _snake_case : List[Any] = tensor_tree_map(lambda lowerCAmelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _snake_case : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d _snake_case : List[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCAmelCase: torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _snake_case : Optional[int] = 0 _snake_case : str = prepped_outputs for _ in range(lowerCAmelCase ): # Chunk the input if not low_mem: _snake_case : List[Any] = _select_chunk else: _snake_case : Any = partial( _chunk_slice , flat_start=lowerCAmelCase , flat_end=min(lowerCAmelCase , i + chunk_size ) , no_batch_dims=len(lowerCAmelCase ) , ) _snake_case : Dict[str, Any] = tensor_tree_map(lowerCAmelCase , lowerCAmelCase ) # Run the layer on the chunk _snake_case : str = layer(**lowerCAmelCase ) # Allocate space for the output if out is None: _snake_case : Optional[int] = tensor_tree_map(lambda lowerCAmelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , lowerCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(lowerCAmelCase , lowerCAmelCase ): def assign(lowerCAmelCase: dict , lowerCAmelCase: dict ) -> None: for k, v in da.items(): if isinstance(lowerCAmelCase , lowerCAmelCase ): assign(lowerCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _snake_case : str = da[k] assign(lowerCAmelCase , lowerCAmelCase ) elif isinstance(lowerCAmelCase , lowerCAmelCase ): for xa, xa in zip(lowerCAmelCase , lowerCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _snake_case : Tuple = xa elif isinstance(lowerCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _snake_case : str = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _snake_case : int = tensor_tree_map(lambda lowerCAmelCase : t.view(orig_batch_dims + t.shape[1:] ) , lowerCAmelCase ) return out class _lowerCAmelCase : '''simple docstring''' def __init__( self : str , UpperCamelCase : int = 5_12 , ): '''simple docstring''' _snake_case : Dict = max_chunk_size _snake_case : Optional[int] = None _snake_case : Optional[tuple] = None def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Callable , UpperCamelCase : tuple , UpperCamelCase : int ): '''simple docstring''' logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _snake_case : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _snake_case : List[Any] = [c for c in candidates if c > min_chunk_size] _snake_case : int = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCamelCase : int ) -> bool: try: with torch.no_grad(): fn(*UpperCamelCase , chunk_size=UpperCamelCase ) return True except RuntimeError: return False _snake_case : List[str] = 0 _snake_case : Any = len(UpperCamelCase ) - 1 while i > min_viable_chunk_size_index: _snake_case : Optional[int] = test_chunk_size(candidates[i] ) if not viable: _snake_case : Optional[int] = (min_viable_chunk_size_index + i) // 2 else: _snake_case : Tuple = i _snake_case : Any = (i + len(UpperCamelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Iterable , UpperCamelCase : Iterable ): '''simple docstring''' _snake_case : Optional[int] = True for aa, aa in zip(UpperCamelCase , UpperCamelCase ): assert type(UpperCamelCase ) == type(UpperCamelCase ) if isinstance(UpperCamelCase , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCamelCase , UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : Optional[Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCamelCase : x[0] )] _snake_case : Tuple = [v for _, v in sorted(aa.items() , key=lambda UpperCamelCase : x[0] )] consistent &= self._compare_arg_caches(UpperCamelCase , UpperCamelCase ) else: consistent &= aa == aa return consistent def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Callable , UpperCamelCase : tuple , UpperCamelCase : int , ): '''simple docstring''' _snake_case : int = True _snake_case : tuple = tree_map(lambda UpperCamelCase : a.shape if isinstance(UpperCamelCase , torch.Tensor ) else a , UpperCamelCase , UpperCamelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCamelCase ) _snake_case : Tuple = self._compare_arg_caches(self.cached_arg_data , UpperCamelCase ) else: # Otherwise, we can reuse the precomputed value _snake_case : Dict = False if not consistent: _snake_case : Optional[int] = self._determine_favorable_chunk_size( UpperCamelCase , UpperCamelCase , UpperCamelCase , ) _snake_case : Any = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Any=False )-> Dict: _snake_case : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" _snake_case : str = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any]=False )-> str: for i in range(config.num_hidden_layers ): if base_model: _snake_case : Dict = '' else: _snake_case : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case : Optional[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _snake_case : Any = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _snake_case : List[Any] = in_proj_weight[ : config.hidden_size, : ] _snake_case : Union[str, Any] = in_proj_bias[: config.hidden_size] _snake_case : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _snake_case : Optional[int] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> Tuple: _snake_case : Optional[int] = dct.pop(lowerCAmelCase ) _snake_case : Optional[int] = val def lowerCamelCase_ ( )-> List[Any]: _snake_case : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case : str = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: Optional[int] )-> Optional[int]: _snake_case : List[str] = DeiTConfig() # all deit models have fine-tuned heads _snake_case : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size _snake_case : Optional[int] = 10_00 _snake_case : Union[str, Any] = 'huggingface/label-files' _snake_case : List[Any] = 'imagenet-1k-id2label.json' _snake_case : Optional[Any] = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _snake_case : Optional[int] = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _snake_case : Any = idalabel _snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} _snake_case : Optional[Any] = int(deit_name[-6:-4] ) _snake_case : Union[str, Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): _snake_case : Dict = 1_92 _snake_case : Union[str, Any] = 7_68 _snake_case : Optional[int] = 12 _snake_case : Union[str, Any] = 3 elif deit_name[9:].startswith('small' ): _snake_case : Union[str, Any] = 3_84 _snake_case : Optional[int] = 15_36 _snake_case : Optional[int] = 12 _snake_case : Tuple = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): _snake_case : int = 10_24 _snake_case : Union[str, Any] = 40_96 _snake_case : Dict = 24 _snake_case : List[str] = 16 # load original model from timm _snake_case : Dict = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _snake_case : Optional[int] = timm_model.state_dict() _snake_case : Union[str, Any] = create_rename_keys(lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model _snake_case : Dict = DeiTForImageClassificationWithTeacher(lowerCAmelCase ).eval() model.load_state_dict(lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor _snake_case : Union[str, Any] = int( (2_56 / 2_24) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 _snake_case : str = DeiTImageProcessor(size=lowerCAmelCase , crop_size=config.image_size ) _snake_case : Optional[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case : int = encoding['pixel_values'] _snake_case : Union[str, Any] = model(lowerCAmelCase ) _snake_case : str = timm_model(lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
import math from datetime import datetime, timedelta def lowerCamelCase_ ( lowerCAmelCase: int )-> datetime: _snake_case : Optional[Any] = year % 19 _snake_case : List[Any] = year % 4 _snake_case : Optional[Any] = year % 7 _snake_case : List[str] = math.floor(year / 1_00 ) _snake_case : Optional[int] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _snake_case : Union[str, Any] = leap_day_inhibits / 4 _snake_case : List[str] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _snake_case : Any = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _snake_case : List[str] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _snake_case : Any = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase , 4 , 18 ) else: return datetime(lowerCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowerCAmelCase_ = """will be""" if year > datetime.now().year else """was""" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> Optional[int]: _snake_case : List[str] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) _snake_case : Any = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: List[str] )-> Optional[int]: if metric == "rouge2": _snake_case : List[str] = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _snake_case : Any = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _snake_case : Union[str, Any] = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ' function.' ) _snake_case : Dict = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=F"""val_{metric}""" , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Tuple )-> List[str]: return EarlyStopping( monitor=F"""val_{metric}""" , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCAmelCase ( pl.Callback ): '''simple docstring''' def UpperCamelCase_ ( self : List[str] , UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' _snake_case : int = {f"""lr_group_{i}""": param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(UpperCamelCase ) @rank_zero_only def UpperCamelCase_ ( self : str , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule , UpperCamelCase : str , UpperCamelCase : Dict=True ): '''simple docstring''' logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _snake_case : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _snake_case : Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case : Tuple = od / 'test_results.txt' _snake_case : Union[str, Any] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case : Optional[Any] = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" _snake_case : Optional[Any] = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=UpperCamelCase ) generations_file.parent.mkdir(exist_ok=UpperCamelCase ) with open(UpperCamelCase , 'a+' ) as writer: for key in sorted(UpperCamelCase ): if key in ["log", "progress_bar", "preds"]: continue _snake_case : Any = metrics[key] if isinstance(UpperCamelCase , torch.Tensor ): _snake_case : Optional[int] = val.item() _snake_case : Union[str, Any] = f"""{key}: {val:.6f}\n""" writer.write(UpperCamelCase ) if not save_generations: return if "preds" in metrics: _snake_case : Any = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(UpperCamelCase ) @rank_zero_only def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Dict ): '''simple docstring''' try: _snake_case : int = pl_module.model.model.num_parameters() except AttributeError: _snake_case : Dict = pl_module.model.num_parameters() _snake_case : Optional[Any] = count_trainable_parameters(UpperCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase_ ( self : str , UpperCamelCase : pl.Trainer , UpperCamelCase : pl.LightningModule ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(UpperCamelCase , UpperCamelCase , 'test' ) @rank_zero_only def UpperCamelCase_ ( self : Dict , UpperCamelCase : pl.Trainer , UpperCamelCase : Optional[Any] ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import numpy as np def lowerCamelCase_ ( lowerCAmelCase: np.ndarray , lowerCAmelCase: float )-> np.ndarray: return np.where(vector > 0 , lowerCAmelCase , (alpha * (np.exp(lowerCAmelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
import qiskit def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int )-> qiskit.result.counts.Counts: _snake_case : Any = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _snake_case : Union[str, Any] = qiskit.QuantumCircuit(lowerCAmelCase , lowerCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _snake_case : int = qiskit.execute(lowerCAmelCase , lowerCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCAmelCase_ = random.Random() def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: str=1.0 , lowerCAmelCase: int=None , lowerCAmelCase: Union[str, Any]=None )-> Optional[int]: if rng is None: _snake_case : List[str] = global_rng _snake_case : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any]=7 , UpperCamelCase : Tuple=4_00 , UpperCamelCase : int=20_00 , UpperCamelCase : List[str]=10 , UpperCamelCase : int=1_60 , UpperCamelCase : Optional[Any]=8 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : List[Any]=40_00 , UpperCamelCase : Any=False , UpperCamelCase : Dict=True , ): '''simple docstring''' _snake_case : List[Any] = parent _snake_case : Tuple = batch_size _snake_case : List[Any] = min_seq_length _snake_case : Dict = max_seq_length _snake_case : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case : Optional[int] = padding_value _snake_case : int = sampling_rate _snake_case : Optional[int] = return_attention_mask _snake_case : Union[str, Any] = do_normalize _snake_case : int = feature_size _snake_case : List[str] = chunk_length _snake_case : List[Any] = hop_length def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[Any]=False , UpperCamelCase : List[str]=False ): '''simple docstring''' def _flatten(UpperCamelCase : Tuple ): return list(itertools.chain(*UpperCamelCase ) ) if equal_length: _snake_case : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case : List[str] = [np.asarray(UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : List[Any] =WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = WhisperFeatureExtractionTester(self ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Optional[int] = feat_extract_first.save_pretrained(UpperCamelCase )[0] check_json_file_has_correct_format(UpperCamelCase ) _snake_case : Optional[Any] = self.feature_extraction_class.from_pretrained(UpperCamelCase ) _snake_case : Dict = feat_extract_first.to_dict() _snake_case : Union[str, Any] = feat_extract_second.to_dict() _snake_case : Optional[Any] = feat_extract_first.mel_filters _snake_case : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : List[Any] = os.path.join(UpperCamelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase ) _snake_case : str = self.feature_extraction_class.from_json_file(UpperCamelCase ) _snake_case : int = feat_extract_first.to_dict() _snake_case : Union[str, Any] = feat_extract_second.to_dict() _snake_case : Optional[int] = feat_extract_first.mel_filters _snake_case : Any = feat_extract_second.mel_filters self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase ) ) self.assertEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _snake_case : Dict = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _snake_case : Optional[Any] = feature_extractor(UpperCamelCase , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _snake_case : Dict = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _snake_case : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test batched _snake_case : Tuple = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features _snake_case : List[str] = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _snake_case : Optional[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _snake_case : Tuple = np.asarray(UpperCamelCase ) _snake_case : Tuple = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features _snake_case : Optional[int] = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) # Test truncation required _snake_case : Optional[int] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] _snake_case : List[Any] = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs] _snake_case : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _snake_case : Optional[Any] = [np.asarray(UpperCamelCase ) for speech_input in speech_inputs_truncated] _snake_case : Tuple = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features _snake_case : Any = feature_extractor(UpperCamelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(UpperCamelCase , UpperCamelCase ): self.assertTrue(np.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' import torch _snake_case : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Any = np.random.rand(1_00 , 32 ).astype(np.floataa ) _snake_case : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case : List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _snake_case : str = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : str = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _snake_case : List[Any] = ds.sort('id' ).select(range(UpperCamelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _snake_case : int = self._load_datasamples(1 ) _snake_case : int = WhisperFeatureExtractor() _snake_case : Tuple = feature_extractor(UpperCamelCase , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , UpperCamelCase , atol=1e-4 ) ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : str = self._load_datasamples(1 )[0] _snake_case : Optional[int] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue _snake_case : Tuple = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=UpperCamelCase )[0] self.assertTrue(np.all(np.mean(UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase ) - 1 ) < 1e-3 ) )
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase_ = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def lowerCamelCase_ ( lowerCAmelCase: str )-> Dict: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model _snake_case : Optional[int] = list(s_dict.keys() ) for key in keys: _snake_case : Union[str, Any] = R'.*/layers_(\d+)' _snake_case : Union[str, Any] = key if re.match(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , lowerCAmelCase ) _snake_case : Optional[Any] = R'(encoder|decoder)\/' if re.match(lowerCAmelCase , lowerCAmelCase ): _snake_case : int = re.match(lowerCAmelCase , lowerCAmelCase ).groups() if groups[0] == "encoder": _snake_case : Optional[Any] = re.sub(R'/mlp/' , R'/1/mlp/' , lowerCAmelCase ) _snake_case : Optional[Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , lowerCAmelCase ) elif groups[0] == "decoder": _snake_case : Tuple = re.sub(R'/mlp/' , R'/2/mlp/' , lowerCAmelCase ) _snake_case : Union[str, Any] = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , lowerCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _snake_case : Optional[int] = new_key.replace(lowerCAmelCase , lowerCAmelCase ) print(F"""{key} -> {new_key}""" ) _snake_case : List[str] = s_dict.pop(lowerCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _snake_case : Optional[int] = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _snake_case : Any = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _snake_case : str = s_dict[key].shape[0] _snake_case : Any = s_dict[key] for idx in range(lowerCAmelCase ): _snake_case : Tuple = expert_weihts[idx] print(F"""{key} -> {key.replace('expert/' , 'nested fstring' )}""" ) s_dict.pop(lowerCAmelCase ) return s_dict lowerCAmelCase_ = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple )-> int: # Convert a google style config to the hugging face fromat import regex as re with open(lowerCAmelCase , 'r' ) as f: _snake_case : Any = f.read() _snake_case : Union[str, Any] = re.findall(R'(.*) = ([0-9.]*)' , lowerCAmelCase ) _snake_case : List[str] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _snake_case : Optional[Any] = float(lowerCAmelCase ) if '.' in value else int(lowerCAmelCase ) _snake_case : Any = re.findall(R'(.*activations) = \(\'(.*)\',\)' , lowerCAmelCase )[0] _snake_case : Any = str(activation[1] ) _snake_case : int = num_experts _snake_case : int = SwitchTransformersConfig(**lowerCAmelCase ) return config def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any]=None , lowerCAmelCase: Optional[Any]="./" , lowerCAmelCase: int=8 )-> List[Any]: # Initialise PyTorch model print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) _snake_case : int = checkpoints.load_tax_checkpoint(lowerCAmelCase ) if gin_file is not None: _snake_case : Optional[int] = convert_gin_to_config(lowerCAmelCase , lowerCAmelCase ) else: _snake_case : Optional[Any] = SwitchTransformersConfig.from_pretrained(lowerCAmelCase ) _snake_case : Dict = SwitchTransformersForConditionalGeneration(lowerCAmelCase ) _snake_case : Optional[Any] = flax_params['target'] _snake_case : Any = flatten_dict(lowerCAmelCase , sep='/' ) _snake_case : Union[str, Any] = rename_keys(lowerCAmelCase ) _snake_case : Optional[Any] = unflatten_dict(lowerCAmelCase , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase , lowerCAmelCase ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") lowerCAmelCase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : bool =field(default=UpperCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) a_ : int =field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def lowerCamelCase_ ( )-> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case : Tuple = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) _snake_case : int = import_module('tasks' ) try: _snake_case : List[Any] = getattr(lowerCAmelCase , model_args.task_type ) _snake_case : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _snake_case : Optional[int] = token_classification_task.get_labels(data_args.labels ) _snake_case : Dict[int, str] = dict(enumerate(lowerCAmelCase ) ) _snake_case : Optional[Any] = len(lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase , idalabel=lowerCAmelCase , labelaid={label: i for i, label in enumerate(lowerCAmelCase )} , cache_dir=model_args.cache_dir , ) _snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _snake_case : Tuple = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets _snake_case : List[Any] = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase , labels=lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _snake_case : int = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase , labels=lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCAmelCase: np.ndarray , lowerCAmelCase: np.ndarray ) -> Tuple[List[int], List[int]]: _snake_case : Tuple = np.argmax(lowerCAmelCase , axis=2 ) _snake_case , _snake_case : Union[str, Any] = preds.shape _snake_case : int = [[] for _ in range(lowerCAmelCase )] _snake_case : Any = [[] for _ in range(lowerCAmelCase )] for i in range(lowerCAmelCase ): for j in range(lowerCAmelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCAmelCase: EvalPrediction ) -> Dict: _snake_case , _snake_case : Any = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCAmelCase , lowerCAmelCase ), "precision": precision_score(lowerCAmelCase , lowerCAmelCase ), "recall": recall_score(lowerCAmelCase , lowerCAmelCase ), "f1": fa_score(lowerCAmelCase , lowerCAmelCase ), } # Data collator _snake_case : List[str] = DataCollatorWithPadding(lowerCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _snake_case : Dict = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=lowerCAmelCase , eval_dataset=lowerCAmelCase , compute_metrics=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _snake_case : Dict = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case : Tuple = trainer.evaluate() _snake_case : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , lowerCAmelCase , lowerCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(lowerCAmelCase ) # Predict if training_args.do_predict: _snake_case : Dict = TokenClassificationDataset( token_classification_task=lowerCAmelCase , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase , labels=lowerCAmelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _snake_case , _snake_case , _snake_case : Union[str, Any] = trainer.predict(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = align_predictions(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , lowerCAmelCase , lowerCAmelCase ) writer.write('%s = %s\n' % (key, value) ) # Save predictions _snake_case : Tuple = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return results def lowerCamelCase_ ( lowerCAmelCase: Any )-> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Any = tempfile.mkdtemp() # fmt: off _snake_case : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _snake_case : Tuple = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _snake_case : Any = {'unk_token': '<unk>'} _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) _snake_case : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _snake_case : List[str] = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , **UpperCamelCase : Tuple ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : List[str] , **UpperCamelCase : Any ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , **UpperCamelCase : Any ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _snake_case : Tuple = [Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[str] = self.get_tokenizer() _snake_case : Dict = self.get_rust_tokenizer() _snake_case : Any = self.get_image_processor() _snake_case : Tuple = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) _snake_case : Any = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case : int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[str] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _snake_case : List[Any] = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) _snake_case : Tuple = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_image_processor() _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : Dict = self.prepare_image_inputs() _snake_case : str = image_processor(UpperCamelCase , return_tensors='np' ) _snake_case : List[str] = processor(images=UpperCamelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_image_processor() _snake_case : List[Any] = self.get_tokenizer() _snake_case : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : Optional[Any] = 'lower newer' _snake_case : List[Any] = processor(text=UpperCamelCase ) _snake_case : Tuple = tokenizer(UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = self.get_image_processor() _snake_case : List[Any] = self.get_tokenizer() _snake_case : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : Union[str, Any] = 'lower newer' _snake_case : Any = self.prepare_image_inputs() _snake_case : Dict = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = self.get_image_processor() _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : List[str] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : Optional[int] = processor.batch_decode(UpperCamelCase ) _snake_case : Dict = tokenizer.batch_decode(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Dict = self.get_image_processor() _snake_case : str = self.get_tokenizer() _snake_case : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) _snake_case : Any = 'lower newer' _snake_case : Tuple = self.prepare_image_inputs() _snake_case : Tuple = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *UpperCamelCase : Dict , **UpperCamelCase : Dict ): '''simple docstring''' warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase_ = 3 def lowerCamelCase_ ( lowerCAmelCase: int )-> int: print('Generating primitive root of p' ) while True: _snake_case : int = random.randrange(3 , lowerCAmelCase ) if pow(lowerCAmelCase , 2 , lowerCAmelCase ) == 1: continue if pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) == 1: continue return g def lowerCamelCase_ ( lowerCAmelCase: int )-> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...' ) _snake_case : Optional[int] = rabin_miller.generate_large_prime(lowerCAmelCase ) # select large prime number. _snake_case : Tuple = primitive_root(lowerCAmelCase ) # one primitive root on modulo p. _snake_case : List[str] = random.randrange(3 , lowerCAmelCase ) # private_key -> have to be greater than 2 for safety. _snake_case : Any = cryptomath.find_mod_inverse(pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) _snake_case : int = (key_size, e_a, e_a, p) _snake_case : Tuple = (key_size, d) return public_key, private_key def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: int )-> None: if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() _snake_case , _snake_case : Tuple = generate_key(lowerCAmelCase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def lowerCamelCase_ ( )-> None: print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCamelCase_ ( lowerCAmelCase: List[str] , lowerCAmelCase: str , lowerCAmelCase: Tuple=1E-12 )-> int: _snake_case : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowerCAmelCase , axis=1 ) , a_min=lowerCAmelCase ) ).T _snake_case : Tuple = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowerCAmelCase , axis=1 ) , a_min=lowerCAmelCase ) ).T return jnp.matmul(lowerCAmelCase , norm_emb_a.T ) class _lowerCAmelCase ( nn.Module ): '''simple docstring''' a_ : CLIPConfig a_ : jnp.dtype =jnp.floataa def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) _snake_case : Optional[Any] = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase , dtype=self.dtype ) _snake_case : List[Any] = self.param('concept_embeds' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _snake_case : List[Any] = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _snake_case : Optional[int] = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (17,) ) _snake_case : Union[str, Any] = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self : Tuple , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : int = self.vision_model(UpperCamelCase )[1] _snake_case : Any = self.visual_projection(UpperCamelCase ) _snake_case : int = jax_cosine_distance(UpperCamelCase , self.special_care_embeds ) _snake_case : List[str] = jax_cosine_distance(UpperCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _snake_case : List[str] = 0.0 _snake_case : int = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _snake_case : int = jnp.round(UpperCamelCase , 3 ) _snake_case : Union[str, Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase ) # Use a lower threshold if an image has any special care concept _snake_case : List[str] = is_special_care * 0.01 _snake_case : Union[str, Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _snake_case : Optional[Any] = jnp.round(UpperCamelCase , 3 ) _snake_case : Union[str, Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int =CLIPConfig a_ : str ="""clip_input""" a_ : Dict =FlaxStableDiffusionSafetyCheckerModule def __init__( self : List[Any] , UpperCamelCase : CLIPConfig , UpperCamelCase : Optional[Tuple] = None , UpperCamelCase : int = 0 , UpperCamelCase : jnp.dtype = jnp.floataa , UpperCamelCase : bool = True , **UpperCamelCase : Optional[int] , ): '''simple docstring''' if input_shape is None: _snake_case : Optional[int] = (1, 2_24, 2_24, 3) _snake_case : int = self.module_class(config=UpperCamelCase , dtype=UpperCamelCase , **UpperCamelCase ) super().__init__(UpperCamelCase , UpperCamelCase , input_shape=UpperCamelCase , seed=UpperCamelCase , dtype=UpperCamelCase , _do_init=_do_init ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : jax.random.KeyArray , UpperCamelCase : Tuple , UpperCamelCase : FrozenDict = None ): '''simple docstring''' _snake_case : List[str] = jax.random.normal(UpperCamelCase , UpperCamelCase ) _snake_case , _snake_case : Tuple = jax.random.split(UpperCamelCase ) _snake_case : List[Any] = {'params': params_rng, 'dropout': dropout_rng} _snake_case : Optional[Any] = self.module.init(UpperCamelCase , UpperCamelCase )['params'] return random_params def __call__( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : dict = None , ): '''simple docstring''' _snake_case : Optional[Any] = jnp.transpose(UpperCamelCase , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(UpperCamelCase , dtype=jnp.floataa ) , rngs={} , )
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCAmelCase_ = """CompVis/stable-diffusion-v1-1""" lowerCAmelCase_ = """CompVis/stable-diffusion-v1-2""" lowerCAmelCase_ = """CompVis/stable-diffusion-v1-3""" lowerCAmelCase_ = """CompVis/stable-diffusion-v1-4""" class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : AutoencoderKL , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase : StableDiffusionSafetyChecker , UpperCamelCase : CLIPImageProcessor , UpperCamelCase : bool = True , ): '''simple docstring''' super()._init_() _snake_case : List[str] = StableDiffusionPipeline.from_pretrained(UpperCamelCase ) _snake_case : Tuple = StableDiffusionPipeline.from_pretrained(UpperCamelCase ) _snake_case : Tuple = StableDiffusionPipeline.from_pretrained(UpperCamelCase ) _snake_case : List[str] = StableDiffusionPipeline( vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , requires_safety_checker=UpperCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return {k: getattr(self , UpperCamelCase ) for k in self.config.keys() if not k.startswith('_' )} def UpperCamelCase_ ( self : Dict , UpperCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _snake_case : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.enable_attention_slicing(UpperCamelCase ) @torch.no_grad() def UpperCamelCase_ ( self : Dict , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : List[str] , ): '''simple docstring''' return self.pipea( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) @torch.no_grad() def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : Tuple , ): '''simple docstring''' return self.pipea( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) @torch.no_grad() def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : Any , ): '''simple docstring''' return self.pipea( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) @torch.no_grad() def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : List[str] , ): '''simple docstring''' return self.pipea( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) @torch.no_grad() def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , **UpperCamelCase : List[Any] , ): '''simple docstring''' _snake_case : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(UpperCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 _snake_case : Union[str, Any] = self.textaimg_sda_a( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 _snake_case : Union[str, Any] = self.textaimg_sda_a( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 _snake_case : Dict = self.textaimg_sda_a( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 _snake_case : List[str] = self.textaimg_sda_a( prompt=UpperCamelCase , height=UpperCamelCase , width=UpperCamelCase , num_inference_steps=UpperCamelCase , guidance_scale=UpperCamelCase , negative_prompt=UpperCamelCase , num_images_per_prompt=UpperCamelCase , eta=UpperCamelCase , generator=UpperCamelCase , latents=UpperCamelCase , output_type=UpperCamelCase , return_dict=UpperCamelCase , callback=UpperCamelCase , callback_steps=UpperCamelCase , **UpperCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
from manim import * class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[int] = Rectangle(height=0.5 , width=0.5 ) _snake_case : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _snake_case : Tuple = Rectangle(height=0.25 , width=0.25 ) _snake_case : Dict = [mem.copy() for i in range(6 )] _snake_case : Tuple = [mem.copy() for i in range(6 )] _snake_case : str = VGroup(*UpperCamelCase ).arrange(UpperCamelCase , buff=0 ) _snake_case : int = VGroup(*UpperCamelCase ).arrange(UpperCamelCase , buff=0 ) _snake_case : List[Any] = VGroup(UpperCamelCase , UpperCamelCase ).arrange(UpperCamelCase , buff=0 ) _snake_case : Tuple = Text('CPU' , font_size=24 ) _snake_case : Optional[Any] = Group(UpperCamelCase , UpperCamelCase ).arrange(UpperCamelCase , buff=0.5 , aligned_edge=UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase ) _snake_case : Any = [mem.copy() for i in range(4 )] _snake_case : Union[str, Any] = VGroup(*UpperCamelCase ).arrange(UpperCamelCase , buff=0 ) _snake_case : int = Text('GPU' , font_size=24 ) _snake_case : List[str] = Group(UpperCamelCase , UpperCamelCase ).arrange(UpperCamelCase , buff=0.5 , aligned_edge=UpperCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(UpperCamelCase ) _snake_case : Optional[int] = [mem.copy() for i in range(6 )] _snake_case : Optional[int] = VGroup(*UpperCamelCase ).arrange(UpperCamelCase , buff=0 ) _snake_case : Union[str, Any] = Text('Model' , font_size=24 ) _snake_case : Union[str, Any] = Group(UpperCamelCase , UpperCamelCase ).arrange(UpperCamelCase , buff=0.5 , aligned_edge=UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.add(UpperCamelCase ) _snake_case : Optional[int] = [] _snake_case : Optional[int] = [] for i, rect in enumerate(UpperCamelCase ): _snake_case : List[str] = fill.copy().set_fill(UpperCamelCase , opacity=0.8 ) target.move_to(UpperCamelCase ) model_arr.append(UpperCamelCase ) _snake_case : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(UpperCamelCase ) self.add(*UpperCamelCase , *UpperCamelCase ) _snake_case : List[str] = [meta_mem.copy() for i in range(6 )] _snake_case : Union[str, Any] = [meta_mem.copy() for i in range(6 )] _snake_case : Optional[int] = VGroup(*UpperCamelCase ).arrange(UpperCamelCase , buff=0 ) _snake_case : Optional[int] = VGroup(*UpperCamelCase ).arrange(UpperCamelCase , buff=0 ) _snake_case : Union[str, Any] = VGroup(UpperCamelCase , UpperCamelCase ).arrange(UpperCamelCase , buff=0 ) _snake_case : List[str] = Text('Disk' , font_size=24 ) _snake_case : Optional[Any] = Group(UpperCamelCase , UpperCamelCase ).arrange(UpperCamelCase , buff=0.5 , aligned_edge=UpperCamelCase ) disk.move_to([-4, -1.25, 0] ) self.add(UpperCamelCase , UpperCamelCase ) _snake_case : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _snake_case : Optional[int] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCamelCase , UpperCamelCase ) _snake_case : int = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(UpperCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCamelCase ) _snake_case : Any = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase ) ) _snake_case : List[Any] = Square(0.3 ) input.set_fill(UpperCamelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , UpperCamelCase , buff=0.5 ) self.play(Write(UpperCamelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=UpperCamelCase , buff=0.02 ) self.play(MoveToTarget(UpperCamelCase ) ) self.play(FadeOut(UpperCamelCase ) ) _snake_case : Union[str, Any] = Arrow(start=UpperCamelCase , end=UpperCamelCase , color=UpperCamelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , UpperCamelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _snake_case : str = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase , run_time=3 ) ) _snake_case : Any = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(UpperCamelCase ) , Circumscribe(model_arr[0] , color=UpperCamelCase , **UpperCamelCase ) , Circumscribe(model_cpu_arr[0] , color=UpperCamelCase , **UpperCamelCase ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase , **UpperCamelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _snake_case : Union[str, Any] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , UpperCamelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _snake_case : str = AnimationGroup( FadeOut(UpperCamelCase , run_time=0.5 ) , MoveToTarget(UpperCamelCase , run_time=0.5 ) , FadeIn(UpperCamelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(UpperCamelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _snake_case : Dict = 0.7 self.play( Circumscribe(model_arr[i] , **UpperCamelCase ) , Circumscribe(cpu_left_col_base[i] , **UpperCamelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=UpperCamelCase , **UpperCamelCase ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase , **UpperCamelCase ) , Circumscribe(model_arr[i + 1] , color=UpperCamelCase , **UpperCamelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=UpperCamelCase , **UpperCamelCase ) , Circumscribe(cpu_left_col_base[-1] , color=UpperCamelCase , **UpperCamelCase ) , Circumscribe(gpu_rect[0] , color=UpperCamelCase , **UpperCamelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _snake_case : Optional[Any] = a_c _snake_case : Optional[int] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(UpperCamelCase ) , FadeOut(UpperCamelCase , run_time=0.5 ) , ) _snake_case : Optional[Any] = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase , run_time=3 ) , MoveToTarget(UpperCamelCase ) ) self.wait()
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] ="""Speech2TextFeatureExtractor""" a_ : Union[str, Any] ="""Speech2TextTokenizer""" def __init__( self : Optional[int] , UpperCamelCase : Any , UpperCamelCase : int ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) _snake_case : Union[str, Any] = self.feature_extractor _snake_case : Tuple = False def __call__( self : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*UpperCamelCase , **UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _snake_case : int = kwargs.pop('raw_speech' ) else: _snake_case : List[str] = kwargs.pop('audio' , UpperCamelCase ) _snake_case : str = kwargs.pop('sampling_rate' , UpperCamelCase ) _snake_case : Tuple = kwargs.pop('text' , UpperCamelCase ) if len(UpperCamelCase ) > 0: _snake_case : Optional[Any] = args[0] _snake_case : Optional[Any] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _snake_case : Optional[int] = self.feature_extractor(UpperCamelCase , *UpperCamelCase , sampling_rate=UpperCamelCase , **UpperCamelCase ) if text is not None: _snake_case : Optional[Any] = self.tokenizer(UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: _snake_case : str = encodings['input_ids'] return inputs def UpperCamelCase_ ( self : str , *UpperCamelCase : Tuple , **UpperCamelCase : str ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @contextmanager def UpperCamelCase_ ( self : str ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _snake_case : Optional[Any] = True _snake_case : List[str] = self.tokenizer yield _snake_case : List[Any] = self.feature_extractor _snake_case : List[str] = False
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCAmelCase_ = """Usage of script: script_name <size_of_canvas:int>""" lowerCAmelCase_ = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCamelCase_ ( lowerCAmelCase: int )-> list[list[bool]]: _snake_case : Tuple = [[False for i in range(lowerCAmelCase )] for j in range(lowerCAmelCase )] return canvas def lowerCamelCase_ ( lowerCAmelCase: list[list[bool]] )-> None: for i, row in enumerate(lowerCAmelCase ): for j, _ in enumerate(lowerCAmelCase ): _snake_case : Dict = bool(random.getrandbits(1 ) ) def lowerCamelCase_ ( lowerCAmelCase: list[list[bool]] )-> list[list[bool]]: _snake_case : int = np.array(lowerCAmelCase ) _snake_case : Optional[Any] = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowerCAmelCase ): for c, pt in enumerate(lowerCAmelCase ): _snake_case : List[Any] = __judge_point( lowerCAmelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) _snake_case : Tuple = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. _snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def lowerCamelCase_ ( lowerCAmelCase: bool , lowerCAmelCase: list[list[bool]] )-> bool: _snake_case : Optional[Any] = 0 _snake_case : Tuple = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. _snake_case : List[Any] = pt if pt: if alive < 2: _snake_case : int = False elif alive == 2 or alive == 3: _snake_case : List[Any] = True elif alive > 3: _snake_case : Tuple = False else: if alive == 3: _snake_case : Optional[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCAmelCase_ = int(sys.argv[1]) # main working structure of this module. lowerCAmelCase_ = create_canvas(canvas_size) seed(c) lowerCAmelCase_ , lowerCAmelCase_ = plt.subplots() fig.show() lowerCAmelCase_ = ListedColormap(["""w""", """k"""]) try: while True: lowerCAmelCase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =VQModel a_ : Any ="""sample""" @property def UpperCamelCase_ ( self : List[str] , UpperCamelCase : Optional[Any]=(32, 32) ): '''simple docstring''' _snake_case : str = 4 _snake_case : Optional[int] = 3 _snake_case : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase ) return {"sample": image} @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return (3, 32, 32) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Any = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } _snake_case : int = self.dummy_input return init_dict, inputs_dict def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case , _snake_case : int = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(UpperCamelCase ) _snake_case : List[Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Dict = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(UpperCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _snake_case : Any = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _snake_case : Tuple = image.to(UpperCamelCase ) with torch.no_grad(): _snake_case : Dict = model(UpperCamelCase ).sample _snake_case : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _snake_case : Union[str, Any] = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) )
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""bert""" def __init__( self : Union[str, Any] , UpperCamelCase : Optional[int]=3_05_22 , UpperCamelCase : str=7_68 , UpperCamelCase : List[str]=12 , UpperCamelCase : Tuple=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : str=0.1 , UpperCamelCase : Tuple=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : str=2 , UpperCamelCase : Union[str, Any]=0.02 , UpperCamelCase : Optional[int]=1e-1_2 , UpperCamelCase : int=0 , UpperCamelCase : Tuple="absolute" , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Dict = vocab_size _snake_case : int = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Optional[Any] = max_position_embeddings _snake_case : int = type_vocab_size _snake_case : List[Any] = initializer_range _snake_case : int = layer_norm_eps _snake_case : int = position_embedding_type _snake_case : Dict = use_cache _snake_case : Any = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
import sys def lowerCamelCase_ ( lowerCAmelCase: Any )-> str: _snake_case : Optional[Any] = len(lowerCAmelCase ) _snake_case : Dict = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] _snake_case : Dict = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2 , lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): _snake_case : int = a + chain_length - 1 _snake_case : Tuple = sys.maxsize for c in range(lowerCAmelCase , lowerCAmelCase ): _snake_case : Dict = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _snake_case : List[str] = cost _snake_case : int = c return matrix, sol def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: List[Any] , lowerCAmelCase: Tuple )-> List[str]: if i == j: print('A' + str(lowerCAmelCase ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(lowerCAmelCase , lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase , optimal_solution[i][j] + 1 , lowerCAmelCase ) print(')' , end=' ' ) def lowerCamelCase_ ( )-> List[str]: _snake_case : int = [30, 35, 15, 5, 10, 20, 25] _snake_case : Optional[Any] = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _snake_case , _snake_case : Dict = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: List[Any] , lowerCAmelCase: str )-> int: # Initialise PyTorch model _snake_case : Optional[int] = BertConfig.from_json_file(lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) _snake_case : Optional[int] = BertForPreTraining(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
import unittest from knapsack import knapsack as k class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Tuple = 0 _snake_case : Any = [0] _snake_case : Union[str, Any] = [0] _snake_case : Optional[int] = len(UpperCamelCase ) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 0 ) _snake_case : Union[str, Any] = [60] _snake_case : int = [10] _snake_case : int = len(UpperCamelCase ) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 0 ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[Any] = 3 _snake_case : List[Any] = [1, 2, 3] _snake_case : Dict = [3, 2, 1] _snake_case : List[Any] = len(UpperCamelCase ) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 5 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = 50 _snake_case : List[str] = [60, 1_00, 1_20] _snake_case : Any = [10, 20, 30] _snake_case : Any = len(UpperCamelCase ) self.assertEqual(k.knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , 2_20 ) if __name__ == "__main__": unittest.main()
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase_ = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[str] , lowerCAmelCase: int=None , lowerCAmelCase: List[str]=None , lowerCAmelCase: str=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Dict=None , )-> Dict: if attention_mask is None: _snake_case : str = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case : Any = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase : Union[str, Any] , UpperCamelCase : int=13 , UpperCamelCase : List[Any]=7 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[Any]=False , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : int=4 , UpperCamelCase : List[str]=4 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : str=0.1 , UpperCamelCase : List[Any]=32 , UpperCamelCase : str=2 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : str=0 , UpperCamelCase : List[str]=0.02 , ): '''simple docstring''' _snake_case : List[str] = parent _snake_case : Optional[int] = batch_size _snake_case : List[str] = seq_length _snake_case : str = is_training _snake_case : Dict = use_labels _snake_case : Any = vocab_size _snake_case : Dict = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : Optional[int] = hidden_act _snake_case : List[Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : Optional[int] = max_position_embeddings _snake_case : List[str] = eos_token_id _snake_case : int = pad_token_id _snake_case : Dict = bos_token_id _snake_case : Tuple = initializer_range def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _snake_case : List[str] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _snake_case : Any = shift_tokens_right(UpperCamelCase , 1 , 2 ) _snake_case : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase , ) _snake_case : Optional[int] = prepare_blenderbot_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : List[str] = 20 _snake_case : Optional[Any] = model_class_name(UpperCamelCase ) _snake_case : List[Any] = model.encode(inputs_dict['input_ids'] ) _snake_case , _snake_case : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _snake_case : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) _snake_case : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _snake_case : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) _snake_case : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _snake_case : Dict = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase , ) _snake_case : str = model.decode(UpperCamelCase , UpperCamelCase ) _snake_case : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def UpperCamelCase_ ( self : Any , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = 20 _snake_case : Optional[Any] = model_class_name(UpperCamelCase ) _snake_case : Optional[Any] = model.encode(inputs_dict['input_ids'] ) _snake_case , _snake_case : Union[str, Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _snake_case : List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _snake_case : List[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase , UpperCamelCase ) _snake_case : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : int = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase , decoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) _snake_case : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _snake_case : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase , decoder_position_ids=UpperCamelCase , ) _snake_case : Optional[Any] = model.decode(UpperCamelCase , UpperCamelCase , decoder_attention_mask=UpperCamelCase ) _snake_case : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' a_ : Optional[int] =99 def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Union[str, Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case : int = input_ids.shape[0] _snake_case : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case , _snake_case : Optional[int] = self._get_config_and_data() _snake_case : int = FlaxBlenderbotForConditionalGeneration(UpperCamelCase ) _snake_case : Optional[Any] = lm_model(input_ids=UpperCamelCase ) _snake_case : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case : Dict = FlaxBlenderbotForConditionalGeneration(UpperCamelCase ) _snake_case : Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _snake_case : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _snake_case : str = lm_model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) _snake_case : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Tuple = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _snake_case : Dict = shift_tokens_right(UpperCamelCase , 1 , 2 ) _snake_case : Union[str, Any] = np.equal(UpperCamelCase , 1 ).astype(np.floataa ).sum() _snake_case : Dict = np.equal(UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase , UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple =True a_ : Optional[int] =( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) a_ : List[Any] =(FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Tuple = FlaxBlenderbotModelTester(self ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case , _snake_case : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case , _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case , _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : Dict = self._prepare_for_class(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = model_class(UpperCamelCase ) @jax.jit def encode_jitted(UpperCamelCase : str , UpperCamelCase : Dict=None , **UpperCamelCase : Union[str, Any] ): return model.encode(input_ids=UpperCamelCase , attention_mask=UpperCamelCase ) with self.subTest('JIT Enabled' ): _snake_case : int = encode_jitted(**UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _snake_case : List[str] = encode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case : Optional[int] = model_class(UpperCamelCase ) _snake_case : Optional[int] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _snake_case : Optional[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : str ): return model.decode( decoder_input_ids=UpperCamelCase , decoder_attention_mask=UpperCamelCase , encoder_outputs=UpperCamelCase , ) with self.subTest('JIT Enabled' ): _snake_case : List[str] = decode_jitted(**UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _snake_case : int = decode_jitted(**UpperCamelCase ).to_tuple() self.assertEqual(len(UpperCamelCase ) , len(UpperCamelCase ) ) for jitted_output, output in zip(UpperCamelCase , UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: _snake_case : Union[str, Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case : List[Any] = np.ones((1, 1) ) * model.config.eos_token_id _snake_case : Tuple = model(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} _snake_case : List[Any] = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} _snake_case : List[str] = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=UpperCamelCase ) _snake_case : Optional[int] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) _snake_case : Dict = ['Sam'] _snake_case : Union[str, Any] = tokenizer(UpperCamelCase , return_tensors='jax' ) _snake_case : Any = model.generate(**UpperCamelCase , **UpperCamelCase ) _snake_case : Optional[Any] = 'Sam is a great name. It means "sun" in Gaelic.' _snake_case : Tuple = tokenizer.batch_decode(UpperCamelCase , **UpperCamelCase ) assert generated_txt[0].strip() == tgt_text
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( lowerCAmelCase: Dict )-> List[str]: _snake_case : str = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Any )-> Optional[Any]: _snake_case , _snake_case : Any = emb.weight.shape _snake_case : Union[str, Any] = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) _snake_case : Tuple = emb.weight.data return lin_layer def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> Any: _snake_case : Optional[Any] = torch.load(lowerCAmelCase , map_location='cpu' ) _snake_case : Optional[int] = Namespace(**checkpoint['cfg']['model'] ) _snake_case : Optional[Any] = checkpoint['model'] remove_ignore_keys_(lowerCAmelCase ) _snake_case : str = state_dict['decoder.embed_tokens.weight'].shape[0] _snake_case : Union[str, Any] = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} _snake_case : List[str] = XGLMConfig( vocab_size=lowerCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _snake_case : List[Any] = XGLMForCausalLM(lowerCAmelCase ) _snake_case : Optional[int] = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) _snake_case : List[str] = img _snake_case : str = img.shape[1] _snake_case : List[str] = img.shape[0] _snake_case : Optional[int] = dst_width _snake_case : int = dst_height _snake_case : Optional[int] = self.src_w / self.dst_w _snake_case : Dict = self.src_h / self.dst_h _snake_case : Any = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): _snake_case : List[Any] = self.img[self.get_y(UpperCamelCase )][self.get_x(UpperCamelCase )] def UpperCamelCase_ ( self : List[str] , UpperCamelCase : int ): '''simple docstring''' return int(self.ratio_x * x ) def UpperCamelCase_ ( self : Any , UpperCamelCase : int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": lowerCAmelCase_ , lowerCAmelCase_ = 800, 600 lowerCAmelCase_ = imread("""image_data/lena.jpg""", 1) lowerCAmelCase_ = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Any , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : List[str]=10_24 , UpperCamelCase : int=10_24 , UpperCamelCase : Any=3.6 ): '''simple docstring''' _snake_case : Optional[int] = tokenizer _snake_case : List[Any] = tokenizer.bos_token_id _snake_case : Optional[int] = dataset _snake_case : Optional[Any] = seq_length _snake_case : Optional[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Optional[int] ): '''simple docstring''' _snake_case : int = iter(self.dataset ) _snake_case : int = True while more_examples: _snake_case , _snake_case : Dict = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: _snake_case : Union[str, Any] = False break _snake_case : Optional[int] = tokenizer(UpperCamelCase , truncation=UpperCamelCase )['input_ids'] _snake_case : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase ) , self.seq_length ): _snake_case : Union[str, Any] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase ) == self.seq_length: yield torch.tensor(UpperCamelCase ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] )-> Tuple: _snake_case : int = {'streaming': True} _snake_case : Tuple = load_dataset(args.dataset_name , split='train' , **lowerCAmelCase ) _snake_case : List[Any] = ConstantLengthDataset(lowerCAmelCase , lowerCAmelCase , seq_length=args.seq_length ) _snake_case : int = DataLoader(lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> Dict: model.eval() _snake_case : List[Any] = [] for step, batch in enumerate(lowerCAmelCase ): with torch.no_grad(): _snake_case : List[Any] = model(lowerCAmelCase , labels=lowerCAmelCase ) _snake_case : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _snake_case : Union[str, Any] = torch.mean(torch.cat(lowerCAmelCase ) ) try: _snake_case : Any = torch.exp(lowerCAmelCase ) except OverflowError: _snake_case : Tuple = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("""Evaluating and saving model after training""") lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
669
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Optional[Any] =(UniPCMultistepScheduler,) a_ : Tuple =(("""num_inference_steps""", 25),) def UpperCamelCase_ ( self : int , **UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : Tuple = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**UpperCamelCase ) return config def UpperCamelCase_ ( self : Tuple , UpperCamelCase : str=0 , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : Tuple = dict(self.forward_default_kwargs ) _snake_case : Optional[int] = kwargs.pop('num_inference_steps' , UpperCamelCase ) _snake_case : str = self.dummy_sample _snake_case : Tuple = 0.1 * sample _snake_case : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : int = self.get_scheduler_config(**UpperCamelCase ) _snake_case : List[Any] = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals _snake_case : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase ) _snake_case : Optional[Any] = scheduler_class.from_pretrained(UpperCamelCase ) new_scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals _snake_case : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case , _snake_case : Optional[int] = sample, sample for t in range(UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _snake_case : int = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample _snake_case : List[Any] = new_scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : Any , UpperCamelCase : int=0 , **UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : str = dict(self.forward_default_kwargs ) _snake_case : Optional[Any] = kwargs.pop('num_inference_steps' , UpperCamelCase ) _snake_case : int = self.dummy_sample _snake_case : Dict = 0.1 * sample _snake_case : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : List[Any] = self.get_scheduler_config() _snake_case : List[str] = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase ) _snake_case : List[str] = scheduler_class.from_pretrained(UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _snake_case : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : Dict = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample _snake_case : Tuple = new_scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Optional[Any] ): '''simple docstring''' if scheduler is None: _snake_case : List[Any] = self.scheduler_classes[0] _snake_case : Optional[Any] = self.get_scheduler_config(**UpperCamelCase ) _snake_case : Optional[int] = scheduler_class(**UpperCamelCase ) _snake_case : int = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**UpperCamelCase ) _snake_case : Any = scheduler_class(**UpperCamelCase ) _snake_case : List[Any] = 10 _snake_case : Optional[int] = self.dummy_model() _snake_case : List[str] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Union[str, Any] = model(UpperCamelCase , UpperCamelCase ) _snake_case : Optional[int] = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample return sample def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[str] = dict(self.forward_default_kwargs ) _snake_case : Optional[int] = kwargs.pop('num_inference_steps' , UpperCamelCase ) for scheduler_class in self.scheduler_classes: _snake_case : str = self.get_scheduler_config() _snake_case : Tuple = scheduler_class(**UpperCamelCase ) _snake_case : Union[str, Any] = self.dummy_sample _snake_case : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase , 'set_timesteps' ): scheduler.set_timesteps(UpperCamelCase ) elif num_inference_steps is not None and not hasattr(UpperCamelCase , 'set_timesteps' ): _snake_case : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Any = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case : int = dummy_past_residuals[: scheduler.config.solver_order] _snake_case : Union[str, Any] = scheduler.timesteps[5] _snake_case : str = scheduler.timesteps[6] _snake_case : Any = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample _snake_case : Any = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = UniPCMultistepScheduler(**self.get_scheduler_config() ) _snake_case : Optional[int] = self.full_loop(scheduler=UpperCamelCase ) _snake_case : Tuple = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 _snake_case : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case : Any = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case : int = self.full_loop(scheduler=UpperCamelCase ) _snake_case : List[Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCamelCase , prediction_type=UpperCamelCase , sample_max_value=UpperCamelCase , solver_order=UpperCamelCase , solver_type=UpperCamelCase , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCamelCase , solver_type=UpperCamelCase , prediction_type=UpperCamelCase , ) _snake_case : Optional[int] = self.full_loop( solver_order=UpperCamelCase , solver_type=UpperCamelCase , prediction_type=UpperCamelCase , ) assert not torch.isnan(UpperCamelCase ).any(), "Samples have nan numbers" def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(lower_order_final=UpperCamelCase ) self.check_over_configs(lower_order_final=UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=UpperCamelCase , time_step=0 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Dict = self.full_loop() _snake_case : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.full_loop(prediction_type='v_prediction' ) _snake_case : Dict = torch.mean(torch.abs(UpperCamelCase ) ) assert abs(result_mean.item() - 0.10_14 ) < 1e-3 def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Tuple = self.scheduler_classes[0] _snake_case : int = self.get_scheduler_config(thresholding=UpperCamelCase , dynamic_thresholding_ratio=0 ) _snake_case : int = scheduler_class(**UpperCamelCase ) _snake_case : Dict = 10 _snake_case : int = self.dummy_model() _snake_case : Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Dict = model(UpperCamelCase , UpperCamelCase ) _snake_case : int = scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase_ ( self : int , **UpperCamelCase : List[str] ): '''simple docstring''' for scheduler_class in self.scheduler_classes: _snake_case : str = self.get_scheduler_config(**UpperCamelCase ) _snake_case : Dict = scheduler_class(**UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
669
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
1
import pprint import requests lowerCAmelCase_ = """https://zenquotes.io/api""" def lowerCamelCase_ ( )-> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def lowerCamelCase_ ( )-> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": lowerCAmelCase_ = random_quotes() pprint.pprint(response)
669
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =["""image_processor""", """tokenizer"""] a_ : Optional[int] ="""CLIPImageProcessor""" a_ : Optional[Any] =("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[Any]=None , **UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) _snake_case : Optional[Any] = kwargs.pop('feature_extractor' ) _snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Dict ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _snake_case : Optional[int] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: _snake_case : Optional[int] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: _snake_case : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : Any = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
1
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase_ = """http://www.mocksite.com/file1.txt""" lowerCAmelCase_ = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase_ = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class _lowerCAmelCase : '''simple docstring''' a_ : int =200 a_ : List[str] ={"""Content-Length""": """100"""} a_ : Tuple ={} def UpperCamelCase_ ( self : Any , **UpperCamelCase : Any ): '''simple docstring''' return [bytes(UpperCamelCase , 'utf-8' )] def lowerCamelCase_ ( *lowerCAmelCase: Tuple , **lowerCAmelCase: Tuple )-> str: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict )-> Optional[Any]: import requests monkeypatch.setattr(lowerCAmelCase , 'request' , lowerCAmelCase ) _snake_case : List[str] = URL if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[int] = url elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Any = [url] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': url} _snake_case : int = 'dummy' _snake_case : Optional[Any] = 'downloads' _snake_case : Union[str, Any] = tmp_path _snake_case : Dict = DownloadConfig( cache_dir=os.path.join(lowerCAmelCase , lowerCAmelCase ) , use_etag=lowerCAmelCase , ) _snake_case : str = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Optional[int] = dl_manager.download(lowerCAmelCase ) _snake_case : Tuple = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = [downloaded_paths] _snake_case : List[str] = [urls] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in downloaded_paths.keys() _snake_case : Any = downloaded_paths.values() _snake_case : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCAmelCase , lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _snake_case : str = Path(lowerCAmelCase ) _snake_case : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _snake_case : List[str] = downloaded_path.read_text() assert content == CONTENT _snake_case : Any = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _snake_case : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Optional[int] , lowerCAmelCase: Any )-> str: _snake_case : str = str(lowerCAmelCase ) if issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : str = filename elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[Any] = [filename] elif issubclass(lowerCAmelCase , lowerCAmelCase ): _snake_case : Optional[Any] = {'train': filename} _snake_case : Any = 'dummy' _snake_case : Union[str, Any] = xz_file.parent _snake_case : int = 'extracted' _snake_case : Union[str, Any] = DownloadConfig( cache_dir=lowerCAmelCase , use_etag=lowerCAmelCase , ) _snake_case : List[str] = DownloadManager(dataset_name=lowerCAmelCase , download_config=lowerCAmelCase ) _snake_case : Dict = dl_manager.extract(lowerCAmelCase ) _snake_case : Optional[int] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : List[str] = [extracted_paths] _snake_case : int = [paths] elif isinstance(lowerCAmelCase , lowerCAmelCase ): assert "train" in extracted_paths.keys() _snake_case : Optional[int] = extracted_paths.values() _snake_case : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCAmelCase , lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _snake_case : List[str] = Path(lowerCAmelCase ) _snake_case : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCAmelCase , etag=lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _snake_case : Optional[int] = extracted_path.read_text() _snake_case : int = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: List[Any] )-> Dict: assert path.endswith('.jsonl' ) for num_items, line in enumerate(lowerCAmelCase , start=1 ): _snake_case : Dict = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: List[str] )-> Dict: _snake_case : List[str] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: int )-> str: _snake_case : List[Any] = request.getfixturevalue(lowerCAmelCase ) _snake_case : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCAmelCase ) , start=1 ): _test_jsonl(lowerCAmelCase , lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase_ ( lowerCAmelCase: Any )-> int: _snake_case : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCAmelCase ) , start=1 ): assert os.path.basename(lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
669
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : int ="""roberta""" def __init__( self : int , UpperCamelCase : Tuple=5_02_65 , UpperCamelCase : Any=7_68 , UpperCamelCase : List[Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : Dict=30_72 , UpperCamelCase : Any="gelu" , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Optional[Any]=5_12 , UpperCamelCase : List[str]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=1e-1_2 , UpperCamelCase : str=1 , UpperCamelCase : int=0 , UpperCamelCase : Any=2 , UpperCamelCase : int="absolute" , UpperCamelCase : int=True , UpperCamelCase : List[Any]=None , **UpperCamelCase : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) _snake_case : Any = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = hidden_act _snake_case : Union[str, Any] = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : Dict = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Dict = position_embedding_type _snake_case : Union[str, Any] = use_cache _snake_case : str = classifier_dropout class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": _snake_case : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
669
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCAmelCase_ = False try: lowerCAmelCase_ = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class _lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : str = None , UpperCamelCase : list = [] ): '''simple docstring''' _snake_case : Tuple = 0 _snake_case : Optional[Any] = choices _snake_case : Optional[int] = prompt if sys.platform == "win32": _snake_case : Any = '*' else: _snake_case : Dict = '➔ ' def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int , UpperCamelCase : str = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase ) else: forceWrite(self.choices[index] , UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(UpperCamelCase ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Direction , UpperCamelCase : int = 1 ): '''simple docstring''' _snake_case : int = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase ) move_cursor(UpperCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def UpperCamelCase_ ( self : int ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def UpperCamelCase_ ( self : int ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase )] for number in range(10 )] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Dict = int(chr(self.current_selection ) ) _snake_case : int = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase ) else: return else: return def UpperCamelCase_ ( self : List[str] , UpperCamelCase : int = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) _snake_case : Optional[Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: _snake_case : Tuple = int(builtins.input() ) except ValueError: _snake_case : str = default_choice else: _snake_case : Optional[int] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(UpperCamelCase , '\n' ) return choice
669
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
1
import random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: bool = False )-> dict: _snake_case : dict = {i: [] for i in range(lowerCAmelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCAmelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCAmelCase ): for j in range(i + 1 , lowerCAmelCase ): if random.random() < probability: graph[i].append(lowerCAmelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCAmelCase ) return graph def lowerCamelCase_ ( lowerCAmelCase: int )-> dict: return { i: [j for j in range(lowerCAmelCase ) if i != j] for i in range(lowerCAmelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": 512, """google/realm-cc-news-pretrained-encoder""": 512, """google/realm-cc-news-pretrained-scorer""": 512, """google/realm-cc-news-pretrained-openqa""": 512, """google/realm-orqa-nq-openqa""": 512, """google/realm-orqa-nq-reader""": 512, """google/realm-orqa-wq-openqa""": 512, """google/realm-orqa-wq-reader""": 512, } lowerCAmelCase_ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Union[str, Any] =VOCAB_FILES_NAMES a_ : List[str] =PRETRAINED_VOCAB_FILES_MAP a_ : str =PRETRAINED_INIT_CONFIGURATION a_ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] =RealmTokenizer def __init__( self : List[str] , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Optional[Any]="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : Optional[Any]="[MASK]" , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : int = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : List[str] = do_lower_case _snake_case : List[Any] = strip_accents _snake_case : Dict = tokenize_chinese_chars _snake_case : Any = normalizer_class(**UpperCamelCase ) _snake_case : Optional[int] = do_lower_case def UpperCamelCase_ ( self : Dict , UpperCamelCase : Any , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = PaddingStrategy.MAX_LENGTH _snake_case : Any = text _snake_case : List[str] = kwargs.pop('text_pair' , UpperCamelCase ) _snake_case : int = kwargs.pop('return_tensors' , UpperCamelCase ) _snake_case : Optional[int] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCamelCase ): if batch_text_pair is not None: _snake_case : List[Any] = batch_text_pair[idx] else: _snake_case : Optional[Any] = None _snake_case : Optional[int] = super().__call__(UpperCamelCase , UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) _snake_case : str = encoded_candidates.get('input_ids' ) _snake_case : Tuple = encoded_candidates.get('attention_mask' ) _snake_case : List[str] = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCamelCase ) _snake_case : str = {key: item for key, item in output_data.items() if len(UpperCamelCase ) != 0} return BatchEncoding(UpperCamelCase , tensor_type=UpperCamelCase ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : int = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : Optional[Any] = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Any =OpenAIGPTTokenizer a_ : List[Any] =OpenAIGPTTokenizerFast a_ : str =True a_ : int =False def UpperCamelCase_ ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _snake_case : Tuple = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : str = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] _snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(UpperCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Tuple ): '''simple docstring''' return "lower newer", "lower newer" def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _snake_case : Any = 'lower' _snake_case : Optional[Any] = ['low', 'er</w>'] _snake_case : Optional[int] = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : Any = tokens + ['<unk>'] _snake_case : Dict = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : str=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _snake_case : int = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) # Simple input _snake_case : Optional[int] = 'This is a simple input' _snake_case : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] _snake_case : str = ('This is a simple input', 'This is a pair') _snake_case : Tuple = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase , tokenizer_r.encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase , tokenizer_r.batch_encode_plus , UpperCamelCase , max_length=UpperCamelCase , padding='max_length' , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' pass
669
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCamelCase_ ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: _snake_case : Tuple = TOKENIZER_CLASSES else: _snake_case : Union[str, Any] = {tokenizer_name: getattr(lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: _snake_case : Dict = TOKENIZER_CLASSES[tokenizer_name] _snake_case : Optional[Any] = True if checkpoint_name is None: _snake_case : Union[str, Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case : Optional[int] = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer _snake_case : str = tokenizer_class.from_pretrained(lowerCAmelCase , force_download=lowerCAmelCase ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case : Tuple = checkpoint.split('/' ) _snake_case : int = os.path.join(lowerCAmelCase , lowerCAmelCase ) elif add_prefix: _snake_case : Dict = checkpoint _snake_case : Optional[Any] = dump_path else: _snake_case : str = None _snake_case : Union[str, Any] = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case : Optional[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case : Optional[int] = file_path.split(lowerCAmelCase )[-1][0] if next_char == "/": _snake_case : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) _snake_case : str = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) _snake_case : Optional[int] = tokenizer.save_pretrained( lowerCAmelCase , legacy_format=lowerCAmelCase , filename_prefix=lowerCAmelCase ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCAmelCase ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
669
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _lowerCAmelCase ( pl.LightningModule ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : str = model _snake_case : Optional[Any] = 2 _snake_case : Optional[Any] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str , lowerCAmelCase: str )-> Dict: # load longformer model from model identifier _snake_case : Tuple = LongformerModel.from_pretrained(lowerCAmelCase ) _snake_case : Tuple = LightningModel(lowerCAmelCase ) _snake_case : int = torch.load(lowerCAmelCase , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model _snake_case : Dict = LongformerForQuestionAnswering.from_pretrained(lowerCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCAmelCase ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase_ = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
669
def lowerCamelCase_ ( lowerCAmelCase: bytes )-> str: return "".join([hex(lowerCAmelCase )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase )] ) def lowerCamelCase_ ( lowerCAmelCase: str )-> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowerCAmelCase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( UpperCamelCase : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self : int ): '''simple docstring''' raise NotImplementedError()
669
import csv import tweepy # Twitter API credentials lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" lowerCAmelCase_ = """""" def lowerCamelCase_ ( lowerCAmelCase: str )-> None: # authorize twitter, initialize tweepy _snake_case : Optional[Any] = tweepy.OAuthHandler(lowerCAmelCase , lowerCAmelCase ) auth.set_access_token(lowerCAmelCase , lowerCAmelCase ) _snake_case : List[Any] = tweepy.API(lowerCAmelCase ) # initialize a list to hold all the tweepy Tweets _snake_case : Any = [] # make initial request for most recent tweets (200 is the maximum allowed count) _snake_case : List[str] = api.user_timeline(screen_name=lowerCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # save the id of the oldest tweet less one _snake_case : List[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowerCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _snake_case : Tuple = api.user_timeline( screen_name=lowerCAmelCase , count=2_00 , max_id=lowerCAmelCase ) # save most recent tweets alltweets.extend(lowerCAmelCase ) # update the id of the oldest tweet less one _snake_case : List[str] = alltweets[-1].id - 1 print(F"""...{len(lowerCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _snake_case : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , 'w' ) as f: _snake_case : Any = csv.writer(lowerCAmelCase ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(lowerCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
669
1
def lowerCamelCase_ ( lowerCAmelCase: str )-> bool: if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) _snake_case : Optional[Any] = sorted(string.lower() ) return len(lowerCAmelCase ) == len(set(lowerCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase_ = input("""Enter a string """).strip() lowerCAmelCase_ = is_isogram(input_str) print(F"""{input_str} is {"an" if isogram else "not an"} isogram.""")
669
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[Union[str, Path]] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None a_ : bool =False a_ : bool =False a_ : bool =False a_ : bool =True a_ : Optional[int] =None a_ : int =1 a_ : Optional[Union[str, bool]] =None a_ : bool =False a_ : Optional[Dict] =None a_ : Optional[str] =None def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(UpperCamelCase ) for k, v in self.__dict__.items()} )
669
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""YolosFeatureExtractor"""] lowerCAmelCase_ = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
669
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase_ = ["""gpt2"""] lowerCAmelCase_ = """gpt2""" if is_tf_available(): class _lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict ): '''simple docstring''' super().__init__() _snake_case : Optional[int] = tokenizer _snake_case : Union[str, Any] = AutoConfig.from_pretrained(UpperCamelCase ) _snake_case : int = TFGPTaLMHeadModel.from_config(UpperCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = self.tokenizer(UpperCamelCase ) _snake_case : Union[str, Any] = tokenized['input_ids'].to_tensor() _snake_case : Any = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _snake_case : Tuple = self.model(input_ids=UpperCamelCase , attention_mask=UpperCamelCase )['logits'] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): '''simple docstring''' super().setUp() _snake_case : Optional[int] = [GPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _snake_case : Tuple = [TFGPTaTokenizer.from_pretrained(UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _snake_case : Any = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] _snake_case : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _snake_case : Optional[int] = tokenizer([test_inputs] , return_tensors='tf' ) _snake_case : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _snake_case : Dict = python_outputs[key].numpy() _snake_case : Optional[Any] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : str = tf.function(UpperCamelCase ) for test_inputs in self.test_sentences: _snake_case : int = tf.constant(UpperCamelCase ) _snake_case : Tuple = compiled_tokenizer(UpperCamelCase ) _snake_case : int = tf_tokenizer(UpperCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Union[str, Any] = ModelToSave(tokenizer=UpperCamelCase ) _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Tuple = model.serving(UpperCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _snake_case : str = Path(UpperCamelCase ) / 'saved.model' tf.saved_model.save(UpperCamelCase , UpperCamelCase , signatures={'serving_default': model.serving} ) _snake_case : Optional[int] = tf.saved_model.load(UpperCamelCase ) _snake_case : List[str] = loaded_model.signatures['serving_default'](UpperCamelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _snake_case : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : Any = tf_tokenizer(UpperCamelCase ) # Build model with some sample inputs _snake_case : Optional[Any] = tf_tokenizer.get_config() _snake_case : Tuple = TFGPTaTokenizer.from_config(UpperCamelCase ) _snake_case : Optional[Any] = model_from_config(UpperCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _snake_case : Union[str, Any] = 12_31_23 for max_length in [3, 5, 10_24]: _snake_case : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _snake_case : List[str] = tf_tokenizer(UpperCamelCase , max_length=UpperCamelCase ) _snake_case : int = out['input_ids'].numpy().shape[1] assert out_length == max_length
669
1
from __future__ import annotations from typing import Any def lowerCamelCase_ ( lowerCAmelCase: list[Any] )-> None: create_state_space_tree(lowerCAmelCase , [] , 0 ) def lowerCamelCase_ ( lowerCAmelCase: list[Any] , lowerCAmelCase: list[Any] , lowerCAmelCase: int )-> None: if index == len(lowerCAmelCase ): print(lowerCAmelCase ) return create_state_space_tree(lowerCAmelCase , lowerCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowerCAmelCase , lowerCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowerCamelCase_ ( )-> Any: _snake_case : List[str] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _snake_case : Optional[Any] = Dataset.from_dict(lowerCAmelCase ) return dataset class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = get_dataset() _snake_case : Tuple = make_duplicate_clusters(UpperCamelCase , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : List[str] = get_dataset() _snake_case , _snake_case : str = deduplicate_dataset(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 2 ) print(UpperCamelCase ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , UpperCamelCase )
669
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Tuple="shi-labs/oneformer_demo" )-> Any: with open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type='dataset' ) , 'r' ) as f: _snake_case : str = json.load(lowerCAmelCase ) _snake_case : List[str] = {} _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = [] for key, info in class_info.items(): _snake_case : Optional[int] = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowerCAmelCase ) ) _snake_case : List[str] = thing_ids _snake_case : Optional[Any] = class_names return metadata class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Any=7 , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Dict=30 , UpperCamelCase : int=4_00 , UpperCamelCase : List[str]=None , UpperCamelCase : Optional[Any]=True , UpperCamelCase : str=True , UpperCamelCase : Any=[0.5, 0.5, 0.5] , UpperCamelCase : int=[0.5, 0.5, 0.5] , UpperCamelCase : Dict=10 , UpperCamelCase : Dict=False , UpperCamelCase : Dict=2_55 , UpperCamelCase : Dict="shi-labs/oneformer_demo" , UpperCamelCase : Optional[int]="ade20k_panoptic.json" , UpperCamelCase : Tuple=10 , ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Union[str, Any] = batch_size _snake_case : Tuple = num_channels _snake_case : List[str] = min_resolution _snake_case : List[str] = max_resolution _snake_case : Optional[Any] = do_resize _snake_case : Optional[Any] = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size _snake_case : Optional[int] = do_normalize _snake_case : Any = image_mean _snake_case : List[Any] = image_std _snake_case : Any = class_info_file _snake_case : List[str] = prepare_metadata(UpperCamelCase , UpperCamelCase ) _snake_case : Any = num_text _snake_case : str = repo_path # for the post_process_functions _snake_case : Optional[Any] = 2 _snake_case : str = 10 _snake_case : Union[str, Any] = 10 _snake_case : List[Any] = 3 _snake_case : str = 4 _snake_case : List[Any] = num_labels _snake_case : str = do_reduce_labels _snake_case : List[str] = ignore_index def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=False ): '''simple docstring''' if not batched: _snake_case : Any = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): _snake_case , _snake_case : Any = image.size else: _snake_case , _snake_case : Any = image.shape[1], image.shape[2] if w < h: _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * h / w ) _snake_case : Any = self.size['shortest_edge'] elif w > h: _snake_case : int = self.size['shortest_edge'] _snake_case : Union[str, Any] = int(self.size['shortest_edge'] * w / h ) else: _snake_case : Dict = self.size['shortest_edge'] _snake_case : Dict = self.size['shortest_edge'] else: _snake_case : List[Any] = [] for image in image_inputs: _snake_case , _snake_case : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case : List[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] _snake_case : Optional[Any] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Tuple =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string a_ : Any =image_processing_class def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Dict = OneFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(UpperCamelCase , 'size' ) ) self.assertTrue(hasattr(UpperCamelCase , 'ignore_index' ) ) self.assertTrue(hasattr(UpperCamelCase , 'class_info_file' ) ) self.assertTrue(hasattr(UpperCamelCase , 'num_text' ) ) self.assertTrue(hasattr(UpperCamelCase , 'repo_path' ) ) self.assertTrue(hasattr(UpperCamelCase , 'metadata' ) ) self.assertTrue(hasattr(UpperCamelCase , 'do_reduce_labels' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input _snake_case : Optional[Any] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : List[Any] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : int = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input _snake_case : int = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : Optional[int] = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : Union[str, Any] = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : Optional[int] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input _snake_case : Optional[int] = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case : int = self.image_processing_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) _snake_case : List[str] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Tuple=False , UpperCamelCase : str=False , UpperCamelCase : Dict="np" ): '''simple docstring''' _snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _snake_case : List[str] = self.image_processing_tester.num_labels _snake_case : Optional[int] = None _snake_case : str = None _snake_case : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase ) if with_segmentation_maps: _snake_case : Optional[int] = num_labels if is_instance_map: _snake_case : Union[str, Any] = list(range(UpperCamelCase ) ) * 2 _snake_case : Tuple = dict(enumerate(UpperCamelCase ) ) _snake_case : Union[str, Any] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _snake_case : int = [Image.fromarray(UpperCamelCase ) for annotation in annotations] _snake_case : List[Any] = image_processor( UpperCamelCase , ['semantic'] * len(UpperCamelCase ) , UpperCamelCase , return_tensors='pt' , instance_id_to_semantic_id=UpperCamelCase , pad_and_return_pixel_mask=UpperCamelCase , ) return inputs def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' def common(UpperCamelCase : Any=False , UpperCamelCase : int=None ): _snake_case : Any = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase , is_instance_map=UpperCamelCase , segmentation_type=UpperCamelCase ) _snake_case : Union[str, Any] = inputs['mask_labels'] _snake_case : Optional[int] = inputs['class_labels'] _snake_case : Optional[int] = inputs['pixel_values'] _snake_case : Optional[Any] = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) common(is_instance_map=UpperCamelCase , segmentation_type='pil' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Union[str, Any] = np.zeros((20, 50) ) _snake_case : int = 1 _snake_case : int = 1 _snake_case : Optional[Any] = 1 _snake_case : List[Any] = binary_mask_to_rle(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = fature_extractor.post_process_semantic_segmentation(UpperCamelCase ) self.assertEqual(len(UpperCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _snake_case : Optional[Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _snake_case : Union[str, Any] = fature_extractor.post_process_semantic_segmentation(UpperCamelCase , target_sizes=UpperCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : int = image_processor.post_process_instance_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : str = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) _snake_case : Optional[Any] = self.image_processing_tester.get_fake_oneformer_outputs() _snake_case : Any = image_processor.post_process_panoptic_segmentation(UpperCamelCase , threshold=0 ) self.assertTrue(len(UpperCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , UpperCamelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
669
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCamelCase_ ( )-> Tuple: _snake_case : int = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _snake_case : int = get_sagemaker_input() else: _snake_case : Any = get_cluster_input() return config def lowerCamelCase_ ( lowerCAmelCase: str=None )-> Any: if subparsers is not None: _snake_case : List[Any] = subparsers.add_parser('config' , description=lowerCAmelCase ) else: _snake_case : Dict = argparse.ArgumentParser('Accelerate config command' , description=lowerCAmelCase ) parser.add_argument( '--config_file' , default=lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def lowerCamelCase_ ( lowerCAmelCase: Any )-> Any: _snake_case : Dict = get_user_input() if args.config_file is not None: _snake_case : List[str] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _snake_case : Union[str, Any] = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F"""accelerate configuration saved at {config_file}""" ) def lowerCamelCase_ ( )-> Dict: _snake_case : List[str] = config_command_parser() _snake_case : str = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
669
1
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase_ = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def lowerCamelCase_ ( lowerCAmelCase: str = "mumbai" )-> Generator[tuple[str, str], None, None]: _snake_case : List[Any] = BeautifulSoup(requests.get(url + location ).content , 'html.parser' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'} ): _snake_case : Optional[int] = job.find('a' , attrs={'data-tn-element': 'jobTitle'} ).text.strip() _snake_case : int = job.find('span' , {'class': 'company'} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : Optional[int] =field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) a_ : bool =field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a_ : Optional[int] =field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class _lowerCAmelCase : '''simple docstring''' a_ : str =field( default=UpperCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) a_ : str =field( default=UpperCAmelCase_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ : Optional[str] =field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ : Optional[bool] =field( default=UpperCAmelCase_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ : str =field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) a_ : bool =field( default=UpperCAmelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowerCamelCase_ ( )-> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _snake_case , _snake_case , _snake_case : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , lowerCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) datasets.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _snake_case : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _snake_case : List[Any] = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _snake_case : Optional[Any] = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : str = train_dataset.features['label'].names if training_args.do_eval: _snake_case : List[str] = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : Tuple = eval_dataset.features['label'].names if training_args.do_predict: _snake_case : List[str] = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : Optional[int] = predict_dataset.features['label'].names # Labels _snake_case : Any = len(lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase , idalabel={str(lowerCAmelCase ): label for i, label in enumerate(lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(lowerCAmelCase )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _snake_case : str = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _snake_case : Dict = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _snake_case : Optional[int] = False def preprocess_function(lowerCAmelCase: Optional[Any] ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=lowerCAmelCase , max_length=data_args.max_seq_length , truncation=lowerCAmelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: _snake_case : Optional[int] = min(len(lowerCAmelCase ) , data_args.max_train_samples ) _snake_case : List[Any] = train_dataset.select(range(lowerCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _snake_case : str = train_dataset.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCAmelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: _snake_case : Optional[int] = min(len(lowerCAmelCase ) , data_args.max_eval_samples ) _snake_case : Union[str, Any] = eval_dataset.select(range(lowerCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _snake_case : Optional[int] = eval_dataset.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _snake_case : Union[str, Any] = min(len(lowerCAmelCase ) , data_args.max_predict_samples ) _snake_case : Union[str, Any] = predict_dataset.select(range(lowerCAmelCase ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _snake_case : int = predict_dataset.map( lowerCAmelCase , batched=lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function _snake_case : str = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase: EvalPrediction ): _snake_case : Dict = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase ) else p.predictions _snake_case : Any = np.argmax(lowerCAmelCase , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _snake_case : Tuple = default_data_collator elif training_args.fpaa: _snake_case : List[str] = DataCollatorWithPadding(lowerCAmelCase , pad_to_multiple_of=8 ) else: _snake_case : str = None # Initialize our Trainer _snake_case : List[Any] = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , data_collator=lowerCAmelCase , ) # Training if training_args.do_train: _snake_case : Any = None if training_args.resume_from_checkpoint is not None: _snake_case : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case : Tuple = last_checkpoint _snake_case : str = trainer.train(resume_from_checkpoint=lowerCAmelCase ) _snake_case : Any = train_result.metrics _snake_case : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase ) ) _snake_case : List[str] = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCAmelCase ) trainer.save_metrics('train' , lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _snake_case : Dict = trainer.evaluate(eval_dataset=lowerCAmelCase ) _snake_case : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase ) _snake_case : Tuple = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics('eval' , lowerCAmelCase ) trainer.save_metrics('eval' , lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _snake_case , _snake_case , _snake_case : Optional[int] = trainer.predict(lowerCAmelCase , metric_key_prefix='predict' ) _snake_case : Tuple = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCAmelCase ) ) _snake_case : List[str] = min(lowerCAmelCase , len(lowerCAmelCase ) ) trainer.log_metrics('predict' , lowerCAmelCase ) trainer.save_metrics('predict' , lowerCAmelCase ) _snake_case : List[Any] = np.argmax(lowerCAmelCase , axis=1 ) _snake_case : int = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCAmelCase ): _snake_case : Union[str, Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
669
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
1
from random import randint, random def lowerCamelCase_ ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: bool = False , lowerCAmelCase: bool = False , lowerCAmelCase: int = 5 , )-> list: _snake_case : Dict = [[-1] * number_of_cells] # Create a highway without any car _snake_case : List[str] = 0 _snake_case : List[str] = max(lowerCAmelCase , 0 ) while i < number_of_cells: _snake_case : Optional[Any] = ( randint(0 , lowerCAmelCase ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int )-> int: _snake_case : Dict = 0 _snake_case : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(lowerCAmelCase ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowerCAmelCase , -1 ) def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : List[Any] = len(lowerCAmelCase ) # Beforce calculations, the highway is empty _snake_case : List[Any] = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case : int = min(highway_now[car_index] + 1 , lowerCAmelCase ) # Number of empty cell before the next car _snake_case : Tuple = get_distance(lowerCAmelCase , lowerCAmelCase ) - 1 # We can't have the car causing an accident _snake_case : Union[str, Any] = min(next_highway[car_index] , lowerCAmelCase ) if random() < probability: # Randomly, a driver will slow down _snake_case : int = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase_ ( lowerCAmelCase: list , lowerCAmelCase: int , lowerCAmelCase: float , lowerCAmelCase: int )-> list: _snake_case : Dict = len(highway[0] ) for i in range(lowerCAmelCase ): _snake_case : Any = update(highway[i] , lowerCAmelCase , lowerCAmelCase ) _snake_case : Tuple = [-1] * number_of_cells for car_index in range(lowerCAmelCase ): _snake_case : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case : Union[str, Any] = (car_index + speed) % number_of_cells # Commit the change of position _snake_case : Tuple = speed highway.append(lowerCAmelCase ) return highway if __name__ == "__main__": import doctest doctest.testmod()
669
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase_ ( lowerCAmelCase: Tuple , lowerCAmelCase: bool = True , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: float = math.inf , lowerCAmelCase: float = -math.inf , lowerCAmelCase: bool = False , lowerCAmelCase: float = 1_00 , lowerCAmelCase: float = 0.0_1 , lowerCAmelCase: float = 1 , )-> Any: _snake_case : int = False _snake_case : Any = search_prob _snake_case : Tuple = start_temperate _snake_case : Any = [] _snake_case : List[str] = 0 _snake_case : Optional[Any] = None while not search_end: _snake_case : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Dict = current_state scores.append(lowerCAmelCase ) iterations += 1 _snake_case : Optional[int] = None _snake_case : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Dict = random.randint(0 , len(lowerCAmelCase ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(lowerCAmelCase ) _snake_case : Union[str, Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : Optional[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : List[str] = True else: _snake_case : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowerCAmelCase ) , lowerCAmelCase ) plt.xlabel('Iterations' ) plt.ylabel('Function values' ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: List[Any] )-> List[Any]: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase_ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: Dict )-> Dict: return (3 * x**2) - (6 * y) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) lowerCAmelCase_ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase_ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
669
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase_ = False class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[str] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _snake_case : Union[str, Any] = torch.manual_seed(0 ) _snake_case : List[Any] = pipe.dual_guided( prompt='first prompt' , image=UpperCamelCase , text_to_image_strength=0.75 , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase ) _snake_case : Optional[Any] = VersatileDiffusionPipeline.from_pretrained(UpperCamelCase , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : int = generator.manual_seed(0 ) _snake_case : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=UpperCamelCase , text_to_image_strength=0.75 , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _snake_case : List[str] = 'cyberpunk 2077' _snake_case : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _snake_case : Union[str, Any] = torch.manual_seed(0 ) _snake_case : Optional[Any] = pipe.dual_guided( prompt=UpperCamelCase , image=UpperCamelCase , text_to_image_strength=0.75 , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _snake_case : Dict = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _snake_case : str = np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _snake_case : Tuple = 'A painting of a squirrel eating a burger ' _snake_case : Dict = torch.manual_seed(0 ) _snake_case : Tuple = pipe.text_to_image( prompt=UpperCamelCase , generator=UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _snake_case : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _snake_case : List[Any] = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _snake_case : Tuple = pipe.image_variation(UpperCamelCase , generator=UpperCamelCase , output_type='numpy' ).images _snake_case : Dict = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _snake_case : Tuple = np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
669
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Tuple ="""audio-spectrogram-transformer""" def __init__( self : List[Any] , UpperCamelCase : Union[str, Any]=7_68 , UpperCamelCase : int=12 , UpperCamelCase : str=12 , UpperCamelCase : Tuple=30_72 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Any=0.0 , UpperCamelCase : Dict=0.0 , UpperCamelCase : List[Any]=0.02 , UpperCamelCase : Dict=1e-1_2 , UpperCamelCase : str=16 , UpperCamelCase : List[Any]=True , UpperCamelCase : Any=10 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : int=10_24 , UpperCamelCase : Optional[Any]=1_28 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Tuple = hidden_size _snake_case : str = num_hidden_layers _snake_case : Optional[Any] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Optional[Any] = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Any = initializer_range _snake_case : List[str] = layer_norm_eps _snake_case : int = patch_size _snake_case : List[str] = qkv_bias _snake_case : int = frequency_stride _snake_case : List[Any] = time_stride _snake_case : List[Any] = max_length _snake_case : List[str] = num_mel_bins
669
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): _snake_case : Union[str, Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCAmelCase ) if number < 1: _snake_case : int = F"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCAmelCase ) _snake_case : int = 1 for i in range(1 , lowerCAmelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
669
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowerCAmelCase_ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowerCAmelCase_ = """main""" # Default branch name lowerCAmelCase_ = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) lowerCAmelCase_ = """aaaaaaa""" # This commit does not exist, so we should 404. lowerCAmelCase_ = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes lowerCAmelCase_ = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def lowerCamelCase_ ( )-> int: print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def lowerCamelCase_ ( )-> Optional[int]: print('Bonjour!' ) yield print('Au revoir!' ) class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int ): '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[Any] ): '''simple docstring''' with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase_ ( self : str , UpperCamelCase : Optional[Any] ): '''simple docstring''' with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str ): '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase ) , ['labels'] ) self.assertEqual(find_labels(UpperCamelCase ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(UpperCamelCase ) , ['start_positions', 'end_positions'] ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase ) , ['labels'] ) @require_tf def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase ) , ['labels'] ) self.assertEqual(find_labels(UpperCamelCase ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(UpperCamelCase ) , ['start_positions', 'end_positions'] ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase ) , ['labels'] ) @require_flax def UpperCamelCase_ ( self : Any ): '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase ) , [] ) self.assertEqual(find_labels(UpperCamelCase ) , [] ) self.assertEqual(find_labels(UpperCamelCase ) , [] ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(UpperCamelCase ) , [] )
669
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase_ = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase_ = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[Any] =VOCAB_FILES_NAMES a_ : Tuple =PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Any =LxmertTokenizer def __init__( self : Any , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Dict=None , UpperCamelCase : List[str]=True , UpperCamelCase : List[str]="[UNK]" , UpperCamelCase : List[Any]="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Optional[int]="[MASK]" , UpperCamelCase : Optional[int]=True , UpperCamelCase : str=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) _snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase ) != tokenize_chinese_chars ): _snake_case : List[Any] = getattr(UpperCamelCase , normalizer_state.pop('type' ) ) _snake_case : Optional[int] = do_lower_case _snake_case : Dict = strip_accents _snake_case : Optional[int] = tokenize_chinese_chars _snake_case : Optional[Any] = normalizer_class(**UpperCamelCase ) _snake_case : int = do_lower_case def UpperCamelCase_ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : str=None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Tuple = [self.sep_token_id] _snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' _snake_case : int = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
669
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets lowerCAmelCase_ = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ lowerCAmelCase_ = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ lowerCAmelCase_ = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def lowerCamelCase_ ( lowerCAmelCase: int )-> Dict: def remove_articles(lowerCAmelCase: List[str] ): _snake_case : str = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(lowerCAmelCase , ' ' , lowerCAmelCase ) def white_space_fix(lowerCAmelCase: str ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase: str ): _snake_case : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase: Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase ) ) ) ) def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: int )-> Union[str, Any]: return int(normalize_answer(lowerCAmelCase ) == normalize_answer(lowerCAmelCase ) ) def lowerCamelCase_ ( lowerCAmelCase: Dict , lowerCAmelCase: List[Any] )-> Tuple: _snake_case : List[Any] = [any(compute_exact(lowerCAmelCase , lowerCAmelCase ) for ref in refs ) for pred, refs in zip(lowerCAmelCase , lowerCAmelCase )] return (sum(lowerCAmelCase ) / len(lowerCAmelCase )) * 1_00 def lowerCamelCase_ ( lowerCAmelCase: Optional[int] , lowerCAmelCase: Optional[Any] , lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] )-> Optional[int]: _snake_case : Dict = [rgram for rgrams in rgramslist for rgram in rgrams] _snake_case : str = Counter(lowerCAmelCase ) _snake_case : Union[str, Any] = Counter(lowerCAmelCase ) _snake_case : Dict = Counter() for sgram, scount in sgramcounter.items(): _snake_case : Dict = scount * numref _snake_case : Union[str, Any] = Counter(lowerCAmelCase ) _snake_case : Union[str, Any] = Counter() for cgram, ccount in cgramcounter.items(): _snake_case : Any = ccount * numref # KEEP _snake_case : int = sgramcounter_rep & cgramcounter_rep _snake_case : Dict = keepgramcounter_rep & rgramcounter _snake_case : Any = sgramcounter_rep & rgramcounter _snake_case : str = 0 _snake_case : Tuple = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _snake_case : int = 1 _snake_case : Tuple = 1 if len(lowerCAmelCase ) > 0: _snake_case : Tuple = keeptmpscorea / len(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _snake_case : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _snake_case : Optional[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: _snake_case : Dict = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _snake_case : List[str] = sgramcounter_rep - cgramcounter_rep _snake_case : Tuple = delgramcounter_rep - rgramcounter _snake_case : Any = sgramcounter_rep - rgramcounter _snake_case : int = 0 _snake_case : List[str] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _snake_case : List[str] = 1 if len(lowerCAmelCase ) > 0: _snake_case : Tuple = deltmpscorea / len(lowerCAmelCase ) # ADDITION _snake_case : Any = set(lowerCAmelCase ) - set(lowerCAmelCase ) _snake_case : str = set(lowerCAmelCase ) & set(lowerCAmelCase ) _snake_case : Optional[int] = set(lowerCAmelCase ) - set(lowerCAmelCase ) _snake_case : Dict = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _snake_case : List[str] = 1 _snake_case : Optional[Any] = 1 if len(lowerCAmelCase ) > 0: _snake_case : Any = addtmpscore / len(lowerCAmelCase ) if len(lowerCAmelCase ) > 0: _snake_case : Optional[Any] = addtmpscore / len(lowerCAmelCase ) _snake_case : List[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: _snake_case : Dict = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: Any , lowerCAmelCase: Tuple )-> int: _snake_case : Dict = len(lowerCAmelCase ) _snake_case : Optional[Any] = ssent.split(' ' ) _snake_case : str = csent.split(' ' ) _snake_case : List[Any] = [] _snake_case : Union[str, Any] = [] _snake_case : List[str] = [] _snake_case : Any = [] _snake_case : Union[str, Any] = [] _snake_case : List[str] = [] _snake_case : Optional[int] = [] _snake_case : Any = [] _snake_case : Union[str, Any] = [] _snake_case : Tuple = [] for rsent in rsents: _snake_case : List[str] = rsent.split(' ' ) _snake_case : Dict = [] _snake_case : Optional[Any] = [] _snake_case : Optional[int] = [] ragramslist.append(lowerCAmelCase ) for i in range(0 , len(lowerCAmelCase ) - 1 ): if i < len(lowerCAmelCase ) - 1: _snake_case : str = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(lowerCAmelCase ) if i < len(lowerCAmelCase ) - 2: _snake_case : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(lowerCAmelCase ) if i < len(lowerCAmelCase ) - 3: _snake_case : str = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(lowerCAmelCase ) ragramslist.append(lowerCAmelCase ) ragramslist.append(lowerCAmelCase ) ragramslist.append(lowerCAmelCase ) for i in range(0 , len(lowerCAmelCase ) - 1 ): if i < len(lowerCAmelCase ) - 1: _snake_case : Union[str, Any] = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(lowerCAmelCase ) if i < len(lowerCAmelCase ) - 2: _snake_case : int = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(lowerCAmelCase ) if i < len(lowerCAmelCase ) - 3: _snake_case : List[Any] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(lowerCAmelCase ) for i in range(0 , len(lowerCAmelCase ) - 1 ): if i < len(lowerCAmelCase ) - 1: _snake_case : Optional[Any] = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(lowerCAmelCase ) if i < len(lowerCAmelCase ) - 2: _snake_case : Optional[Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(lowerCAmelCase ) if i < len(lowerCAmelCase ) - 3: _snake_case : int = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(lowerCAmelCase ) ((_snake_case) , (_snake_case) , (_snake_case)) : Tuple = SARIngram(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ((_snake_case) , (_snake_case) , (_snake_case)) : str = SARIngram(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ((_snake_case) , (_snake_case) , (_snake_case)) : str = SARIngram(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ((_snake_case) , (_snake_case) , (_snake_case)) : Optional[int] = SARIngram(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _snake_case : Union[str, Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _snake_case : Any = sum([delascore, delascore, delascore, delascore] ) / 4 _snake_case : Any = sum([addascore, addascore, addascore, addascore] ) / 4 _snake_case : Optional[int] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase_ ( lowerCAmelCase: Any , lowerCAmelCase: bool = True , lowerCAmelCase: str = "13a" , lowerCAmelCase: bool = True )-> Union[str, Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _snake_case : str = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _snake_case : Optional[int] = sacrebleu.metrics.bleu._get_tokenizer(lowerCAmelCase )()(lowerCAmelCase ) else: _snake_case : Any = sacrebleu.TOKENIZERS[tokenizer]()(lowerCAmelCase ) elif tokenizer == "moses": _snake_case : Dict = sacremoses.MosesTokenizer().tokenize(lowerCAmelCase , return_str=lowerCAmelCase , escape=lowerCAmelCase ) elif tokenizer == "penn": _snake_case : int = sacremoses.MosesTokenizer().penn_tokenize(lowerCAmelCase , return_str=lowerCAmelCase ) else: _snake_case : Optional[int] = sentence if not return_str: _snake_case : Tuple = normalized_sent.split() return normalized_sent def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: Optional[Any] , lowerCAmelCase: str )-> int: if not (len(lowerCAmelCase ) == len(lowerCAmelCase ) == len(lowerCAmelCase )): raise ValueError('Sources length must match predictions and references lengths.' ) _snake_case : Dict = 0 for src, pred, refs in zip(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): sari_score += SARIsent(normalize(lowerCAmelCase ) , normalize(lowerCAmelCase ) , [normalize(lowerCAmelCase ) for sent in refs] ) _snake_case : Any = sari_score / len(lowerCAmelCase ) return 1_00 * sari_score def lowerCamelCase_ ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: List[str] , lowerCAmelCase: Optional[Any]="exp" , lowerCAmelCase: List[Any]=None , lowerCAmelCase: List[str]=False , lowerCAmelCase: int=False , lowerCAmelCase: List[str]=False , )-> Union[str, Any]: _snake_case : Optional[Any] = len(references[0] ) if any(len(lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case : Optional[Any] = [[refs[i] for refs in references] for i in range(lowerCAmelCase )] _snake_case : int = sacrebleu.corpus_bleu( lowerCAmelCase , lowerCAmelCase , smooth_method=lowerCAmelCase , smooth_value=lowerCAmelCase , force=lowerCAmelCase , lowercase=lowerCAmelCase , use_effective_order=lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] ): '''simple docstring''' _snake_case : str = {} result.update({'sari': compute_sari(sources=UpperCamelCase , predictions=UpperCamelCase , references=UpperCamelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=UpperCamelCase , references=UpperCamelCase )} ) result.update({'exact': compute_em(predictions=UpperCamelCase , references=UpperCamelCase )} ) return result
669
from __future__ import annotations from random import random class _lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , UpperCamelCase : int | None = None ): '''simple docstring''' _snake_case : str = value _snake_case : List[Any] = random() _snake_case : Node | None = None _snake_case : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ): '''simple docstring''' _snake_case : List[str] = str(self.value ) + ' ' _snake_case : List[Any] = str(self.left or '' ) _snake_case : int = str(self.right or '' ) return value + left + right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case : Optional[Any] = split(root.left , lowerCAmelCase ) return left, root else: _snake_case , _snake_case : List[str] = split(root.right , lowerCAmelCase ) return root, right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: Node | None )-> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case : str = merge(left.right , lowerCAmelCase ) return left else: _snake_case : Union[str, Any] = merge(lowerCAmelCase , right.left ) return right def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case : Tuple = Node(lowerCAmelCase ) _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , lowerCAmelCase ) return merge(merge(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: int )-> Node | None: _snake_case , _snake_case : Optional[int] = split(lowerCAmelCase , value - 1 ) _snake_case , _snake_case : List[str] = split(lowerCAmelCase , lowerCAmelCase ) return merge(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase_ ( lowerCAmelCase: Node | None )-> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowerCamelCase_ ( lowerCAmelCase: Node | None , lowerCAmelCase: str )-> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case : List[str] = insert(lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case : Any = erase(lowerCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowerCamelCase_ ( )-> None: _snake_case : Tuple = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) _snake_case : List[Any] = input() while args != "q": _snake_case : int = interact_treap(lowerCAmelCase , lowerCAmelCase ) print(lowerCAmelCase ) _snake_case : Tuple = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
669
1